
SimpleLink™ Wi-Fi® CC3x20, CC3x3x
Network Processor

User’s Guide

Literature Number: SWRU455M
FEBRUARY 2017 – REVISED OCTOBER 2020

Overview... 11
Trademarks...11

1 Introduction...13
1.1 Features... 14
1.2 Key Features..14
1.3 Block Diagram..16
1.4 Host Driver Overview... 18
1.5 Acronyms and Terminologies... 20

2 Networking Application..21
2.1 Introduction.. 22
2.2 Basic Examples..24

3 Device.. 27
3.1 Introduction.. 28
3.2 Key Features..28
3.3 Start and Stop.. 28
3.4 Host Interface...30
3.5 Version... 33
3.6 Event Mask.. 34
3.7 Time and Date..34
3.8 MAC Address... 35
3.9 Device Name..36
3.10 Domain Name.. 36
3.11 Device Status... 37
3.12 Persistent Configuration...37
3.13 Device Statistics...37
3.14 Errors..41

4 WLAN... 43
4.1 Introduction.. 44
4.2 Key Features..44
4.3 Station (STA)..44
4.4 Access Point.. 55
4.5 Wi-Fi Direct...63
4.6 WLAN Security...73
4.7 Scan... 77
4.8 Antenna Diversity... 79
4.9 Calibrations.. 81
4.10 BLE / 2.4-GHz Radio Coexistence...83

5 Network Addresses.. 87
5.1 Introduction.. 88
5.2 Key Features..88
5.3 Addressing... 88
5.4 DHCPv4 Client... 91
5.5 DHCPv4 Server..93
5.6 DNS Server.. 94
5.7 Errors and Asynchronous Events...95

6 Socket.. 97
6.1 Introduction.. 98
6.2 Key Features..98
6.3 Socket Types..98

Table of Contents

www.ti.com Table of Contents

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 3

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

6.4 BSD API... 99
6.5 Socket Working Flow..100
6.6 DNS..109
6.7 Operation Modes..110
6.8 IP Fragmentation..115
6.9 Errors..116

7 Secure Socket... 117
7.1 Introduction...118
7.2 Key Features.. 118
7.3 Opening a Secure Socket...118
7.4 Trusted Root-Certificate Catalog.. 119
7.5 Options and Features Use..119
7.6 Supported Cryptographic Algorithms... 125
7.7 Common Errors and Asynchronous Events... 126

8 File System..129
8.1 Introduction.. 130
8.2 Key Features..130
8.3 File System Characteristics..130
8.4 Write a File... 132
8.5 Read a File...138
8.6 Delete a File... 140
8.7 Rename a File..141
8.8 File System Helper Functions.. 141
8.9 Bundle Protection...143
8.10 File Commit Feature...146
8.11 File Rollback Process...147
8.12 Programming..147
8.13 Restore to Factory..149
8.14 Security Alerts.. 151
8.15 Design Consideration...152

9 HTTP Server.. 157
9.1 Introduction.. 158
9.2 Key Features..162
9.3 Configurations and Settings... 162
9.4 RESTful API Processing.. 163
9.5 Device Parameter Querying Through HTTP (Device Tokens)... 168
9.6 Resource Search Order... 175
9.7 Host HTTP Requests Processing.. 176
9.8 Security.. 185
9.9 Processing of Parallel Requests.. 186

10 mDNS... 187
10.1 Introduction.. 188
10.2 Key Features..188
10.3 Configurations and Settings... 188
10.4 Query... 188
10.5 Get Service List..191
10.6 Advertisement.. 192
10.7 Limitations.. 194

11 Rx Filters..195
11.1 Introduction...196
11.2 Matching Process...197
11.3 Examples of Filter Use... 200
11.4 Filter Creation...202
11.5 Managing Filters...212

12 Ping.. 215
12.1 General Description... 216
12.2 Start and Stop Ping.. 216
12.3 Limitations.. 217

13 Transceiver..219
13.1 Introduction.. 220

Table of Contents www.ti.com

4 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

13.2 Key Features..220
13.3 Configurations and Setting...220
13.4 Internal Packet Generator.. 224
13.5 CW... 225
13.6 Changing Socket Properties.. 225
13.7 Limitations.. 227

14 Real-Time RSSI... 229
14.1 Introduction.. 230
14.2 Data Structure.. 230
14.3 Configurations and Settings... 230
14.4 Constraints... 231

15 Power Management.. 233
15.1 Introduction.. 234
15.2 Configurations and Settings... 235
15.3 Network Applications and Power Consumption... 236
15.4 Design Guidelines.. 236

16 Provisioning.. 237
16.1 Introduction.. 238
16.2 Key Features..238
16.3 Provisioning Process Overview..238
16.4 Host Provisioning Application Flow.. 239
16.5 Configuration Modes.. 240
16.6 Starting and Stopping the Provisioning Process.. 241
16.7 Auto-Provisioning... 241
16.8 Delivering Feedback to the User..242
16.9 External Configuration..243
16.10 Common Events and Errors...243
16.11 Usage Examples.. 245

17 Crypto Utilities.. 253
17.1 Introduction.. 254
17.2 Secured Content Delivery.. 261

18 Hostless Mode.. 265
18.1 Introduction.. 266
18.2 Script Overview.. 266
18.3 Conditions.. 266
18.4 Sub-Conditions...267
18.5 Actions... 267

19 Porting the Host Driver...269
19.1 Introduction.. 270
19.2 Create Platform Porting File...271
19.3 Select Capabilities Set... 271
19.4 Bind the Device Enable/Disable Line... 273
19.5 Implement the Interface Communication Abstract Layer... 274
19.6 Choose Memory-Management Model..275
19.7 Implement OS Adaptation Layer.. 275
19.8 Implement Timestamp Services...277
19.9 Set Asynchronous Event Handler Routines... 278

20 Debug...279
20.1 Capture NWP Logs.. 280

A Host APIs.. 285
A.1 Host APIs...285

B Persistency... 289
B.1 Persistency.. 289

C Regulatory Domain.. 295
C.1 Regulatory Domain..295

D Supported Host Interfaces.. 307
D.1 SPI Host Interface... 307
D.2 UART Host Interface..315

Revision History.. 325

www.ti.com Table of Contents

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 5

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

List of Figures
Figure 1-1. SimpleLink™ Wi-Fi® Solution Block Diagram...16
Figure 1-2. Networking Subsystem Block Diagram... 17
Figure 1-3. Quick Host APIs Reference...19
Figure 1-4. Host Driver Adaptation Modules (Platform-Dependent).. 20
Figure 2-1. Wi-Fi Connectivity..23
Figure 3-1. Typical CC31xx Setup (SPI)..31
Figure 3-2. Typical CC31xx Setup (UART)..32
Figure 3-3. Device Statistics Flow... 39
Figure 4-1. Tx Output Power vs Tx Power Settings...46
Figure 4-2. BLE Coexistence...84
Figure 4-3. Coexistence Mechanism... 86
Figure 5-1. DHCPv4 IP Acquisition Modes..92
Figure 6-1. TCP Socket Flow...101
Figure 6-2. UDP Socket Flow.. 104
Figure 6-3. NWP-Host Packet Format... 108
Figure 6-4. Trigger Mode Flow...113
Figure 8-1. Image Creator Log.. 155
Figure 9-1. Configuration Pages..158
Figure 9-2. Changing Configuration...159
Figure 9-3. Reading Configuration...159
Figure 9-4. Static Pages.. 160
Figure 9-5. Custom Pages With Device Tokens.. 160
Figure 9-6. Static Pages With Host Tokens... 161
Figure 9-7. Host Application Interface... 161
Figure 9-8. GET Request Flow.. 175
Figure 9-9. POST Request Flow..176
Figure 9-10. PUT and DELETE Request Flow.. 176
Figure 9-11. GET Request With and Without Fragmentation.. 179
Figure 9-12. POST Processing Flow... 182
Figure 9-13. Delayed Response.. 183
Figure 11-1. Rx Filters..196
Figure 11-2. Rx Filter Match Flow..198
Figure 11-3. Example 1..200
Figure 11-4. Example 2..201
Figure 16-1. The Provisioning Environment.. 239
Figure 16-2. The Provisioning Process..240
Figure 16-3. Successful SmartConfig Provisioning... 246
Figure 16-4. Unsuccessful SmartConfig Provisioning... 247
Figure 16-5. Successful SmartConfig Provisioning With AP Fallback... 248
Figure 16-6. Successful AP Provisioning...249
Figure 16-7. Successful AP Provisioning With Cloud Confirmation...250
Figure 16-8. External Configuration Method: WAC..251
Figure 16-9. Successful SmartConfig Provisioning While External Configuration Enabled...252
Figure 17-1. Secure Content Delivery... 262
Figure 17-2. AES Key Diagram... 263
Figure 17-3. File Format.. 264
Figure 19-1. User.h Location... 271
Figure 20-1. Tera Term Port Settings...281
Figure 20-2. Tera Term Log Settings... 281
Figure 20-3. Putty Port Settings...282
Figure 20-4. Putty Log Settings... 282
Figure D-1. Basic SPI Configuration..307
Figure D-2. SPI Modes Timings...308
Figure D-3. SPI Mode 0 Detailed Timings... 309
Figure D-4. Shared SPI Block Diagram... 310
Figure D-5. SPI Initialization Flow..312
Figure D-6. CC3100 Host to Device Synchronization Word.. 313
Figure D-7. CC3100 Device to Host Synchronization Word.. 313

Table of Contents www.ti.com

6 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure D-8. CC31XX SPI Host Command Flow.. 314
Figure D-9. CC31XX SPI Host Data TX Flow..314
Figure D-10. CC31XX SPI Device Asynchronous Event Flow.. 315
Figure D-11. Typical UART Configuration..315
Figure D-12. Typical 5-Wire UART Configuration..316
Figure D-13. 4-Wire UART Configuration.. 316
Figure D-14. 3-Wire UART Configuration.. 317
Figure D-15. UART Initialization Sequence... 318
Figure D-16. UART Change Baud Rate Sequence... 320
Figure D-17. CC31XX UART Host Command Flow...322

List of Tables
Table 1-1. Key Features...14
Table 1-2. Software Modules of the Host Driver.. 18
Table 1-3. Acronyms and Terminologies..20
Table 2-1. Design Considerations for Doorbell Applications..25
Table 2-2. Design Considerations for Power Socket Application...25
Table 2-3. Design Considerations for Tag Applications... 26
Table 3-1. Key Features...28
Table 3-2. SPI Configuration..31
Table 3-3. UART Settings.. 31
Table 3-4. Possible Chip ID Values..33
Table 3-5. Common Asynchronous Error Events...41
Table 3-6. Common Error Codes... 41
Table 4-1. Key Features...44
Table 4-2. Default Parameters in Station Mode... 45
Table 4-3. Country Codes.. 46
Table 4-4. Common Errors...52
Table 4-5. Attributes of RSSI Trigger... 53
Table 4-6. AP Default Parameters... 55
Table 4-7. Country Codes.. 56
Table 4-8. 2.4-GHz Supported Channels...57
Table 4-9. Common Errors...62
Table 4-10. Wi-Fi Direct Default Parameters... 63
Table 4-11. Common Errors...73
Table 4-12. Supported Personal Security Types..73
Table 4-13. Antenna Diversity Modes.. 79
Table 4-14. Antenna Diversity Pad Configuration.. 81
Table 4-15. 2.4-GHz Wi-Fi Calibration Modes... 82
Table 4-16. Key Features...84
Table 4-17. Pin Numbers... 85
Table 5-1. Key Features...88
Table 5-2. Addressing.. 88
Table 5-3. DHCP Server Defaults.. 93
Table 5-4. Major Asynchronous Events in NetApp Silo... 95
Table 5-5. Major Asynchronous Events in NetCfg Silo.. 95
Table 5-6. Major Errors While Calling sl_NetCfgSet.. 96
Table 6-1. Key Features...98
Table 6-2. BSD APIs.. 99
Table 6-3. Multicast..105
Table 6-4. Operational Modes.. 111
Table 6-5. Asynchronous Error Events...116
Table 6-6. Common Error Status Codes.. 116
Table 7-1. Key Features...118
Table 7-2. Related Files... 121
Table 7-3. Cryptographic Algorithms..125
Table 7-4. Common Errors...127
Table 8-1. Key Features...130
Table 8-2. Secure Files.. 131
Table 8-3. Creation Function Errors...133

www.ti.com Table of Contents

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 7

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 8-4. Creation Flags...135
Table 8-5. Creation Function Errors...135
Table 8-6. Write Function Errors.. 136
Table 8-7. Close After Write Function Errors... 137
Table 8-8. Open-For-Read Function Errors... 139
Table 8-9. Open-For-Read Function Errors... 139
Table 8-10. Delete Function Errors.. 140
Table 8-11. Rename Function Errors... 141
Table 8-12. Bundle Protection..143
Table 8-13. Bundle States..144
Table 8-14. Minimum Recommenced Serial Flashes Sizes...153
Table 9-1. Key Features...162
Table 9-2. Configuration Options... 162
Table 9-3. Ping Options... 163
Table 9-4. IP Configurations.. 164
Table 9-5. URN Configurations.. 164
Table 9-6. WLAN Profiles...165
Table 9-7. WLAN EAP Profiles.. 165
Table 9-8. Erase Profiles..165
Table 9-9. WLAN Scan.. 166
Table 9-10. Connection Policies.. 166
Table 9-11. Station Action.. 167
Table 9-12. AP Control...167
Table 9-13. Date and Time...168
Table 9-14. System Information Tokens...169
Table 9-15. Version Information Tokens...169
Table 9-16. Network Information Tokens... 170
Table 9-17. Ping Results Tokens... 172
Table 9-18. Connection Policies Status Tokens...172
Table 9-19. Provisioning Tokens.. 172
Table 9-20. Display Profile Information Tokens..173
Table 9-21. P2P Information Tokens..174
Table 9-22. TLV Structure.. 177
Table 9-23. HTTP Metadata Types.. 177
Table 9-24. Internal Metadata Types... 177
Table 9-25. Metadata Breakout Examples...178
Table 10-1. Key Features...188
Table 11-1. Possible Triggers...198
Table 11-2. Possible Rules...199
Table 11-3. Possible Actions..199
Table 11-4. Possible Compare Functions.. 203
Table 11-5. Field Values...204
Table 11-6. Rule Field Layers.. 208
Table 13-1. Key Features...220
Table 14-1. Information Frame Metrics.. 230
Table 15-1. Key Features...234
Table 15-2. Power and Latency... 235
Table 15-3. Power Policy... 235
Table 16-1. Key Features...238
Table 16-2. Provisioning Status... 243
Table 16-3. Errors.. 245
Table 17-1. Key Features...254
Table 17-2. Common Errors...260
Table 19-1. : Selecting Capabilities..271
Table 20-1. Terminal Settings.. 280
Table A-1. Host APIs..285
Table B-1. Persistency Settings... 289
Table C-1. Country Codes and Channels.. 295
Table D-1. SPI Modes..308
Table D-2. Supported Configurations...310

Table of Contents www.ti.com

8 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table D-3. UART Configuration... 317
Table D-4. Parameters...321
Table D-5. Parameters...321
Table D-6. Sync Word Patterns..323

www.ti.com Table of Contents

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 9

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table of Contents www.ti.com

10 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

This page intentionally left blank.

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

The CC3x20, CC3x35, and CC3x30 devices are part of the SimpleLink™ microcontroller (MCU) platform which
consists of Wi-Fi®, Bluetooth® low energy, Sub-1 GHz and host MCUs, which all share a common, easy-to-use
development environment with a single core software development kit (SDK) and rich tool set. A one-time
integration of the SimpleLink™ platform enables you to add any combination of the portfolio’s devices into your
design, allowing 100 percent code reuse when your design requirements change. For more information, visit
www.ti.com/simplelink.

The SimpleLink™ Wi-Fi® Internet-on-a chip™ family of devices from Texas Instruments™ provides a suite of
integrated protocols for Wi-Fi® and Internet connectivity to dramatically simplify the implementation of Internet-
enabled devices and applications.

This document provides software (SW) programmers with all of the required knowledge for working with the
networking subsystem of the SimpleLink™ Wi-Fi® devices. This guide provides basic guidelines for writing
robust, optimized networking host applications, and describes the capabilities of the networking subsystem. The
guide contains some example code snapshots to give users an idea of how to work with the host driver. More
comprehensive code examples can be found in the formal software development kit (SDK). This guide does not
provide a detailed description of the host driver APIs.

Trademarks
SimpleLink™, Internet-on-a chip™, Texas Instruments™, SmartConfig™, and are trademarks of Texas
Instruments.
Wi-Fi® and Wi-Fi Direct® are registered trademarks of Wi-Fi Alliance.
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.
Arm® and Cortex® are registered trademarks of Arm Limited.
Google® is a registered trademark of Google, Inc.
All other trademarks are the property of their respective owners.

Preface
Overview

www.ti.com Overview

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 11

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/simplelink
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Overview www.ti.com

12 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

This page intentionally left blank.

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

This chapter gives a brief introduction to the networking subsystem, lists the key features of the device, and
provides an overview of the host driver.

The SimpleLink™ Wi-Fi® family of devices consist on two types of devices: wireless MCU devices with a built-in
network processor, and network processor standalone devices.

The SimpleLink™ Wi-Fi® CC31xx wireless network processor allows the connection of any low-cost, low-power
microcontroller (MCU) to the Internet of Things (IoT), using standard communication interfaces such as SPI or
UART. The scope of this document covers the following part numbers belonging to this type: CC3120, CC3130,
and CC3135.

The SimpleLink™ Wi-Fi® CC32xx is a wireless MCU with an integrated high-performance Arm® Cortex®-M4
MCU, built-in Wi-Fi®, and a networking subsystem, allowing developers to write an entire application with a
single-chip solution. The scope of this document covers the following part numbers belonging to this type:
CC3220R, CC3220S, CC3220SF, CC3235S, CC3235SF, CC3230S, and CC3230SF.

1.1 Features...14
1.2 Key Features... 14
1.3 Block Diagram.. 16
1.4 Host Driver Overview... 18
1.5 Acronyms and Terminologies... 20

Chapter 1
Introduction

www.ti.com Introduction

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 13

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

1.1 Features
The SimpleLink™ Wi-Fi® Internet-on-a chip™ family of devices introduces some advanced features and
capabilities that further simplify connectivity of devices to the Internet:

• Support for IPv4 and IPv6
• Dual-band Wi-Fi® 2.4 GHz / 5 GHz
• Improved power consumption, with support for WFA IoT Low Power
• Integrated network applications such as HTTPS server
• File system security capabilities
• Wi-Fi® access point (AP) with support for up to four stations

• BLE / 2.4 GHz radio Coexistence
• Antenna diversity
• FIPS 140-2 level 1, compliant (For specific FIPS certification status, refer to https://csrc.nist.gov/projects/

cryptographic-module-validation-program/validated-modules.)
• Real-time RSSI data
• Hostless mode
• RSSI Trigger
• Soft Roaming
• Integrated TLS stack with support for OCSP (Online Certificate Status Protocol)

1.2 Key Features
Table 1-1 lists the key features of the SimpleLink™ Wi-Fi® device family.

Table 1-1. Key Features
Feature Description CC3120/CC3220 CC3135/CC3235 CC3130/CC3230

Wi-Fi standards 802.11b/g/n station + + +

802.11b/g access point with support for up to four
stations + + +

Wi-Fi Direct client / group owner + + +

802.11a +

WFA IOT Low Power + +

Wi-Fi channels 1–13 + + +

36,40,44,48,52,56,60,64,100,104,108,112,116,120,124,
128,132,136,140,149,153,157,161,165 +

Personal and
Enterprise Wi-Fi
security

WEP, WPA/WPA2 PSK + + +

WPA2+PMF, WPA3 + +

WPA2 Enterprise (802.1x) + + +

Wi-Fi provisioning SmartConfig™ technology + + +

Wi-Fi Protected Setup (WPS2) + + +

Access point mode with internal HTTP web server + + +

IP protocols IPv4/IPv6 + + +

IP addressing Static IP, LLA, DHCPv4, DHCPv6 with DAD + + +

Cross layer ARP, ICMPv4, IGMP, ICMPv6, MLD, NDP + + +

Transport UDP, TCP + + +

SSLv3.0/TLSv1.0/TLSv1.1/TLSv1.2 6 16 16

RAW + + +

Network
applications and
utilities

Ping + + +

HTTP/HTTPS web server (including dynamic user call
backs and RESTful API support) + + +

Introduction www.ti.com

14 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://csrc.nist.gov/projects/cryptographic-module-validation-program/validated-modules
https://csrc.nist.gov/projects/cryptographic-module-validation-program/validated-modules
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 1-1. Key Features (continued)
Feature Description CC3120/CC3220 CC3135/CC3235 CC3130/CC3230

mDNS + + +

DNS-SD + + +

DHCP server + + +

OCSP TLS extension + +

Host interface UART/SPI + + +

Security Secure key storage + + +

Trusted root-certificate catalog + + +

TI root-of-trust public key + + +

File system security + + +

Secure boot + + +

Secure content delivery + + +

Initial secure programming + + +

Debug security + + +

Software tamper detection + + +

Cloning protection + + +

FIPS 140-2 level 1, compliant +

Power
management

Enhanced power policy management uses 802.11
power save, and deep-sleep power modes + + +

Other Transceiver + + +

Programmable Rx filters with events trigger mechanism + + +

RSSI Trigger + + +

Hostless mode + +

Soft Roaming + +

Agile multiband + +

Triggered roaming + +

Real time RSSI + +

BLE / 2.4-GHz radio Coexistence + +

www.ti.com Introduction

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 15

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

1.3 Block Diagram
Figure 1-1 shows a block diagram of the SimpleLink™ Wi-Fi® solution at a high level.

WLAN

Networking Subsystem

 Host Interface

Network Stack

Network Applications

Services

Host

6LPSOH/LQN��+RVW�'ULYHU

SPI/UART

Device Wlan NetApp NetCfg NetUtil FSSocket

Figure 1-1. SimpleLink™ Wi-Fi® Solution Block Diagram

In the CC32xx wireless MCU the host is a Cortex®-M4 core, the networking subsystem is built into the device as
an additional peripheral, and the interface between the Cortex®-M4 Core and the networking subsystem is
internal.

The host driver is the same for the CC31xx and CC32xx devices, and the networking capabilities are similar for
both devices. The network stack is fully implemented in the networking subsystem, thereby offloading the
networking activities from the host MCU.

A simple application that only sends a UDP datagram on the local network requires minimum APIs as follows:

sl_Start Start the SimpleLink device in Wi-Fi Station mode
sl_WlanConnectConnect to a Wi-Fi network
sl_Socket Create a socket
sl_SendTo Sends UDP data
sl_Close Close the socket
sl_Stop Stops the SimpleLink device

Note

The target application can choose to use the preferred networks option (profiles) instead of using the
sl_WlanConnect command. This option allows the host application to completely offload the entire
management of the WLAN connection.

Introduction www.ti.com

16 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure 1-2 shows a more detailed block diagram of the networking subsystem.

WLAN

Networking Subsystem

 Host Interface

Secure FS

STA APP2P

IPv6

Network Stack

Network ApplicationsServices

Scan Policy

Programming

Secure Content Delivery

DHCP Client/Server

MDNS

HTTP Server

Transceiver / NS

Bypass
IPv4

ICMP IGMP

IPv6
ICMP/NDP MLD

Ping

DNS

TCP UDP

Rx Filter

RAW

BSD SSL

ARP

PM Policy

Provisioning

Host

SPI/UART

Secure FS

Time and Date

(RTC)

Crypto Util

6LPSOH/LQN��+RVW�'ULYHU

Interface(SPI/UART) Driver OS Adaptation Layer

Device Wlan NetApp NetCfg NetUtil FSSocket

Figure 1-2. Networking Subsystem Block Diagram

www.ti.com Introduction

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 17

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

1.4 Host Driver Overview
The SimpleLink™ Wi-Fi® Internet-on-a chip devices provide comprehensive networking functionality that offloads
networking activities from the host MCU. TI provides a user-friendly host-software driver to simplify the
integration and development of networking applications using the SimpleLink™ Wi-Fi® devices. This host driver
can easily be ported to most platforms and operating systems (OSs). The host driver is written in strict ANSI-C
(C89) and requires a minimal platform adaptation layer (porting layer).

The driver has a small memory footprint, and can run on 8-bit, 16-bit, or 32-bit MCUs with any clock speed (no
performance or real-time dependency). Using SPI, both big- and little-endian MCUs are seamlessly supported.
With UART, only little endian is supported.

The APIs of the SimpleLink™ host driver are arranged in several logical and simple modules (silos).

Table 1-2 provides a high-level description of these silos.

Table 1-2. Software Modules of the Host Driver
Silo Description

Device Provides interface to hardware and general functionality, such as start/stop or set and get configurations in the device level

WLAN Provides interface to WLAN 802.11 protocol-related functionality, such as mode (station, access point, or Wi-Fi Direct),
provisioning, connection profiles, and connection policy

Socket Provides interface to sockets and adheres to BSD sockets. BSD sockets are the most common interface today for internet
connectivity.

NetApp Provides interface to several networking services including the HTTP server service, DHCP server service, and MDNS client
\server service

NetCfg Provides interface to configure different networking parameters, such as setting the MAC address and IP address settings
(DHCP/Static)

NetUtil Provides interface to several network utilities, such as crypto utility, which provides a method for authenticating the device

FS Provides interface for storing and reading files through a secure file system managed on the serial flash component

1.4.1 Host Interface

The SimpleLink™ device supports two physical host interfaces: SPI and UART. The same host driver can work
with each of these interfaces by using an interface driver adaptation layer.

More information on the adaptation layer is in the host interface section, see Chapter 3 and Chapter 19.

1.4.2 OS versus Non-OS

The same driver can work on platforms running an OS, and platforms without an operating system (non-OS).

An OS adaptation layer is used for binding the host driver and the target OS. The driver already comes with a
built-in adaptation layer for platforms running without an OS. Other platforms require a simple OS adaptation
layer.

This adaptation layer must wrap two major objects:

• Sync object – Object intended to synchronize between different contexts and interrupt routines
• Lock object – Object intended to protect a shared resource

The driver pre-allocates all the required OS resources (dynamic or static according to the setting) on calling
sl_Start. The number of allocated objects is calculated according to the maximum concurrent actions required by
the user.

The SimpleLink™ host driver does not use its own processing context. To bind a context to the driver, the user
can implement a spawn mechanism, or use the built-in spawn mechanism provided by the driver. If the built-in
mechanism is used, the host application must create a context dedicated to the driver and call sl_Task from this
context. For platforms without an OS, the application must call the sl_Task function repeatedly from its main
loop.

Introduction www.ti.com

18 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

1.4.3 Quick Reference

Figure 1-3 shows a quick reference to the entire set of APIs provided by the host driver.

For more information on these APIs, see Appendix A.

Host Driver Quick APIs Reference

sl_Start

sl_Stop

sl_DeviceGet

sl_DeviceSet

sl_DeviceEventMaskGet

sl_DeviceEventMaskSet

sl_Task

sl_DeviceUartSetMode

sl_RegisterEventHandler

sl_WlanConnect

sl_WlanDisconnect

sl_WlanProfileAdd

sl_WlanProfileGet

sl_WlanProfileDel

sl_WlanProfileUpdate

sl_WlanSet

sl_WlanGet

sl_WlanPolicySet

sl_WlanPolicyGet

sl_WlanGetNetworkList

sl_WlanGetExtNetworkList

sl_WlanRxStatStart

sl_WlanRxStatStop

sl_WlanRxStatGet

sl_WlanSetMode

sl_WlanProvisioning

sl_WlanRxFilterAdd

sl_Socket

sl_Listen

sl_Accept

sl_Bind

sl_Close

sl_Connect

sl_Select

sl_Send

sl_SendTo

sl_Recv

sl_RecvFrom

sl_GetSockOpt

sl_SetSockOpt

sl_StartTLS

sl_NetCfgSet

sl_NetCfgGet

sl_NetUtilSet

sl_NetUtilGet

sl_NetUtilCmd

sl_FsOpen

sl_FsClose

sl_FsRead

sl_FsWrite

sl_FsGetInfo

sl_FsDel

sl_FsCtl

sl_FsProgram

sl_FsGetFileList

Device Wlan Socket

NetCfg NetUtil FS

SimpleLinkFatalErrorEventHandler

SimpleLinkGeneralEventHandler

SimpleLinkWlanEventHandler SimpleLinkSockEventHandler

SimpleLinkSocketTriggerEventHandler

sl_NetAppStart

sl_NetAppStop

sl_NetAppDnsGetHostByName

sl_NetAppDnsGetHostByService

sl_NetAppGetServiceList

sl_NetAppMDNSUnRegisterService

sl_NetAppMDNSRegisterService

sl_NetAppPing

sl_NetAppSet

sl_NetAppGet

sl_NetAppSend

sl_NetAppRecv

NetApp

SimpleLinkNetAppEventHandler

SimpleLinkHttpServerEventHandler

SimpleLinkNetAppRequestEventHandler

SimpleLinkNetAppRequestMemFreeEve

ntHandler

Legend

- API function

- API function supported by

- C323x/CC313x only

- Application Event Handler

Figure 1-3. Quick Host APIs Reference

www.ti.com Introduction

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 19

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

1.4.4 Porting to Different Platforms

To use the driver on different platforms, the host must implement a few adaptation modules. Figure 1-4 shows
these adaptation modules.

For more information about porting the driver to new platforms, see Chapter 19.

Platform Dependent

OS Adaptation Interface Driver

sl_SyncObjCreate

sl_SyncObjDelete

sl_SyncObjSignal

sl_SyncObjSignalFromIRQ

sl_SyncObjWait

sl_LockObjCreate

sl_LockObjDelete

sl_LockObjLock

sl_LockObjUnlock

sl_IfOpen

sl_IfClose

sl_IfRead

sl_IfWrite

sl_IfRegIntHdlr

Platform General

sl_DeviceEnable

sl_DeviceDisable

Optional

sl_Spawn

slcb_SetErrno

Optional

sl_IfMaskIntHdlr

sl_IfUnMaskIntHdlr

Optional

slcb_GetTimestamp

sl_Malloc

sl_Free

Figure 1-4. Host Driver Adaptation Modules (Platform-Dependent)

1.5 Acronyms and Terminologies
Table 1-3 lists the acronyms and terms used in this document.

Table 1-3. Acronyms and Terminologies
Acronym/Terminology Description
AP Wi-Fi® access point

FW Firmware software

GO Wi-Fi Direct® group owner

Host Host refers to an embedded MCU running the SimpleLink™ software driver and uses the SimpleLink™ device
as a networking peripheral

IE Information element

LAN Local area network

OS Operating system

OUI Organization unique identifier

P2P Wi-Fi Direct® or peer-to-peer (P2P)

STA Wi-Fi® station

WLAN Wireless local area network

Introduction www.ti.com

20 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

This chapter explains the software blocks needed to build robust networking applications, and provides basic
guidelines and considerations while designing these applications.

2.1 Introduction...22
2.2 Basic Examples.. 24

Chapter 2
Networking Application

www.ti.com Networking Application

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 21

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

2.1 Introduction
Programmers have complete flexibility for using the various software blocks, and should design their own
application according to their needs. A robust network application should consider the following aspects during
the design:

• Wi-Fi connectivity – What is the connectivity model of the system? Is it always connected or connected on-
demand? Wi-Fi connectivity can be used in a wide range of products with different use cases. Some products
may be connected through the local Wi-Fi network to the Internet, some may just be connected to the local
network or may function as access points, and some products may not be connected to a Wi-Fi network at all
(uses Wi-Fi as a radio transceiver).

• Wi-Fi provisioning – What are the possible methods to connect a new device to a Wi-Fi network in the
specific target application? Are there any graphical or other interfaces to the system?

• Traffic type – What kind of traffic is expected from the target system? Is it connection-oriented traffic or
connectionless-oriented traffic?

• Security – What are the major assets of the system? What kind of protection is needed?
• User experience – What are the major experience factors for the target users? Is it response time?

Availability? Or perhaps functionality?
• Power management – Is the system powered by batteries? What is the power budget?
• Data – What kind of data is kept on the system? What is the update frequency?

Note

TI highly recommends applying all needed configurations and settings by using the Image Creator tool
instead of using host application commands. For more information, refer to the UniFlash CC3120,
CC3220 SimpleLink™ Wi-Fi® and Internet-on-a chip™ Solution ImageCreator and Programming Tool
User's Guide.

This chapter discusses the considerations and trade-offs.

2.1.1 Wi-Fi Connectivity

Wi-Fi connectivity can be used in a wide range of products with different use cases and requirements. Figure 2-1
shows some of the available connectivity options and their considerations.

The SimpleLink Wi-Fi device supports different Wi-Fi modes, and the application can move from one mode to
another on demand. Moving from mode to mode requires the user to reset the SimpleLink Wi-Fi device. Trade-
offs to be considered follow:

• Power consumption
• Response time
• Availability

Networking Application www.ti.com

22 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/lit/pdf/swru469
http://www.ti.com/lit/pdf/swru469
http://www.ti.com/lit/pdf/swru469
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

x� Provisioning

x� Preferred networks

x� Always connected vs Connect on demand

x� Local connectivity vs Internet connectivity

x� Connection time

x� Power

x� Number of stations

x� Use for configuration vs. target

application

x� Group Owner vs Client

x� Preferred networks

x� Connect on demand

x� Transceiver

x� Promiscuous

x� Rx filters

x� Rates

x� Channels

����������;���-Fi®

Device

STA

W
iF

i D
ir

e
c

t

Disconnect mode
A

c
c

e
s

s
 P

o
in

t

Figure 2-1. Wi-Fi Connectivity

2.1.2 Traffic Types

Communication protocols are typically divided into two types: connection oriented and connectionless.
Connection-oriented protocols require establishing a connection between two entities before any data exchange.
The connection is maintained during the connection lifetime, and ensures data is delivered correctly and in order.
Connectionless protocols allow data exchanges between any entities, without the need for establishing a
connection; however, data integrity and order are not ensured. From a power consumption perspective,
connection-oriented protocols may consume more power due to the connection-establishing overhead and
connection maintenance.

The SimpleLink Wi-Fi devices support the following communication protocol types:

• Connection oriented –TCP and SSL/TLS
• Connectionless – UDP or RAW

When application designers choose the protocol, the power consumption, reliability, and latency should also be
considered. Connectionless protocols are less reliable by nature. However they are more efficient from a power
consumption and latency perspective.

www.ti.com Networking Application

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 23

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Generally, the connection type derives from the services used. For example, many cloud services are based on
HTTP or MQTT, which operate over a TCP connection.

2.1.3 Security

The importance of security for IoT devices is crucial due to the sensitive and private nature of the data. This data
might include passwords, keys credentials, configuration, and personal information.

The SimpleLink Wi-Fi devices handle the following security aspects:

• Wi-Fi: Secured local network is the first protection layer for the IoT device. SimpleLink Wi-Fi devices support
several Wi-Fi security methods, both personal and enterprise. When a SimpleLink device connects to an AP
through the profile method, the network encrypted password is stored in the SFLASH, and there is no access
to the password, which raises the protection of the local network and the device. More details are in the
WLAN chapters.

• Data: Data layer security is a basic requirement for secured local networks, especially when the device is
connected to the cloud. SimpleLink devices support the SSL (secured socket layer) standard for data
encryption and server verification. More details are in the secure-socket chapter.

• Files: Passwords, configurations, keys, and credentials are private information on the device which must be
secured. SimpleLink Wi-Fi devices support secure file systems on an external serial flash, providing a simple
API to organize and access the data. More details are in the secure-file system chapters.

2.1.4 User Experience

The IoT refers to a wide range of products with different characterizations. Some of these products must always
be available from the cloud with minimal delay (such as smart plugs or security cameras). Other products may
connect to a cloud server only on a state change (such as doorbell or fire alarm), and require fast connection
with minimal delay. An additional type of product which is not sensitive to delay (such as air conditioning) notifies
the time for treatment. The SimpleLink Wi-Fi devices are designed to allow IoT devices to support those
characterizations by optimizing power consumption, Wi-Fi connection time, IP acquired time, and more.

2.1.5 Power Consumption

Different applications have different power consumption requirements. Applications which are battery powered
are very sensitive to power consumption, because almost every design decision has an impact on total power
consumption. The following design decisions have major impacts on power consumption.

• Wi-Fi mode (STA or AP)
• On-demand connection or constant connection
• Traffic type (connection oriented or connectionless)
• Secured socket or not
• Regular socket operation or trigger mode (lets the host enter a deep sleep and is awakened by the

SimpleLink Wi-Fi device when data arrives)

More details are in Chapter 15.

2.1.6 Provisioning

Provisioning is the process of providing an IoT device with the information needed to connect to a wireless
network for the first time (network name, password, and so on). The provisioning process should be fast, easy to
use, and not require technical support. More details are in Chapter 16.

2.2 Basic Examples
2.2.1 Wi-Fi Doorbell
2.2.1.1 Description

Wireless doorbells may have not only a push-button, but also a microphone or a camera, therefore requiring
advanced connectivity options which can be supported by Wi-Fi technology. By using a button push, a
smartphone application lets users monitor visitors through video and voice from any location, using internet

Networking Application www.ti.com

24 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

connectivity. In addition, from time to time the doorbell connects to a server for software updates. The doorbell is
usually battery powered.

2.2.1.2 Design Considerations

Table 2-1 lists the design considerations for doorbell applications.

Table 2-1. Design Considerations for Doorbell Applications
Topic Consideration or Constraint Recommendations

Wi-Fi
connectivity

Wi-Fi connection with home access point, to allow
internet access

STA role

Configure profile with network name and password during the
provisioning process.

Traffic types Reliable UDP for streaming, SSL/TLS for updates

Security Must secure data:

Secure Wi-Fi password

Secure credentials

Secure user password of the application layer
(connect to the server)

Wi-Fi – profile and password are configured during the provisioning
process. The password is encrypted and cannot be accessed by the
application.

Data – encrypt and decrypt data using SSL

Credentials and server password – use the SimpleLink secured-file
system

Power
management

Sensitive, battery powered, or power harvesting Operation mode – hibernate mode, wakes up the SimpleLink device
by pressing a button, returns to hibernate mode quickly

Wi-Fi – profile with automatic and fast policies

IP – Decrease the number of DNS requests, resolve once and keep
the address, if TCP connection fails resolve again

User experience Connectivity must be fast, with minimal delay

Provisioning Easy setup Easy setup – Use the Smartphone application to perform the
provisioning and create the connection profile

2.2.2 Power Socket
2.2.2.1 Description

A power socket connects to the cloud, which lets users control products like air conditioners and boilers. The
power socket must be available for smartphone applications at any time with no delay, and are occasionally
connected to the server for software updates.

2.2.2.2 Design Constraints

Table 2-2 lists the design constraints for power socket applications.

Table 2-2. Design Considerations for Power Socket Application
Topic Consideration or Constraint Recommendations

Wi-Fi
connectivity

Wi-Fi connection with home access point, to allow
internet access at any time

STA role

Configure profile with network name and password by the
provisioning process.

Traffic types Reliable TCP, also data must be secured

Security Data must be secured

Secure Wi-Fi password

Secure credentials

Secure user password of application layer
(connected to server)

Wi-Fi – profile and password are configured by the provisioning
process, the password is encrypted and cannot be accessed by the
application.

Data – encrypt and decrypt data by SSL

Credentials and server password – use SimpleLink secured-file
system

Power
management

Connected to the power supply None

User experience Must be available on smartphone application at
any time with no delay

SimpleLink is always on, client TCP secured socket is always
connected to the server

www.ti.com Networking Application

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 25

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 2-2. Design Considerations for Power Socket Application (continued)
Topic Consideration or Constraint Recommendations

Provisioning Easy setup, without the need of technical support The provisioning process allows for easy and fast wireless network
configuration (network name and password)

2.2.3 Wi-Fi Tag
2.2.3.1 Description

A tag is a tiny device which attaches to expensive assets (such as hospital medical equipment or expensive lab
equipment). The tag device occasionally transmits, without being connected to the local network. The
transmission allows the central equipment to find the device using a smart-signal algorithm. A tag device can
also connect to an AP occasionally to get software updates or send statistical information.

2.2.3.2 Design Consideration

Table 2-3. Design Considerations for Tag Applications
Topic Consideration or Constraint Recommendations

Wi-Fi
connectivity

Mostly transmitting without being connected,
occasionally connect to AP for software updates,
periodic reports, and alerts/emergency triggers

Regular: transceiver mode – not connected

SW update: STA role

Traffic types SW update must be reliable Regular: Proprietary data over Wi-Fi frame

SW updates: TCP with SSL

Security Data must be secured:

Secure Wi-Fi password with enterprise support

Secure credentials

Secure user password of application layer
(connect to server)

Regular: None

For SW update:

Wi-Fi – profile and password are configured during the provisioning
process. The password is encrypted and cannot be accessed by the
application

Data – encrypt and decrypt data using SSL

Credentials and server password – use the SimpleLink secured-file
system

Power
management

Sensitive, battery powered Hibernate or shutdown mode, wakes up the SimpleLink when it is
time for tag transmitting or SW updates arrived, returns to hibernate
or shutdown quickly.

SW update:

Wi-Fi: profile with auto and fast policies

IP: Decrease the number of DNS requests, resolve once and keep
the address, only as a result of TCP connection failure, resolve again

User experience None None

Provisioning None None

Networking Application www.ti.com

26 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

3.1 Introduction...28
3.2 Key Features... 28
3.3 Start and Stop... 28
3.4 Host Interface..30
3.5 Version...33
3.6 Event Mask..34
3.7 Time and Date... 34
3.8 MAC Address.. 35
3.9 Device Name... 36
3.10 Domain Name..36
3.11 Device Status.. 37
3.12 Persistent Configuration..37
3.13 Device Statistics... 37
3.14 Errors...41

Chapter 3
Device

www.ti.com Device

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 27

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

3.1 Introduction
SimpleLink Wi-Fi devices support multiple internal-device configurations and settings such as device
initialization, communication interface settings, time and date settings, and more, using simple host-driver
commands.

In the following chapters, the word device describes the network subsystem.

3.2 Key Features
Table 3-1 lists the key features of the device.

Table 3-1. Key Features
Key Features Description

Calibration modes Different types of RF calibration modes to save power

SPI and UART SPI and UART communication interfaces support

Little- and big-endian auto-detect Automatic detection of the MCU endian state

Time and date Support time and date setting, and getting information

Stop time-out Stop the device with time-out, to allow TX completion

Get device version Get PHY\FW\NWP\Host versions

Mask asynchronous event Mask asynchronous events from the device

System-persistent configuration Set the entire system-persistent configuration

3.3 Start and Stop
3.3.1 Start

From a host perspective, steps to starting the SimpleLink Wi-Fi device include:
1. Setting the enable pin.
2. Opening the communication interface.
3. Waiting for the complete indication of the device initialization.

Depending on the hardware design, the enable pin of the device can be connected to the nReset or nHibernate
pins of the device. The major difference between these modes is that in hibernate mode, the device maintains
the value of the real-time clock (RTC), and exiting from this state is faster (more information follows). In both
modes when the device completes the initialization (INIT) process, it sends an internal asynchronous event (INIT
COMPLETE) to the host.

During the initialization process the host interface (UART or SPI) is determined, and RF calibrations may be
performed by the network processor subsystem. A few types of calibration modes are available, and the target
application must choose the most compatible mode for its requirements. The mode of the calibration can be
changed only by using the Image Creator tool, during the creation of the image. More information about
calibrations is in Chapter 4, and more information about the Image Creator tool is in the UniFlash CC3120,
CC3220 SimpleLink™ Wi-Fi® and Internet-on-a chip™ Solution ImageCreator and Programming Tool User's
Guide.

The sl_Start API of the host driver can accept a callback function as a parameter. If the callback function is
provided, then the function returns immediately, and the callback is called when the initialization process
completes. In this mode, any other APIs should not be called until the initialization completes. If the callback is
not provided, sl_Start is blocked until the device initialization completes. This API must be called before any
other SimpleLink API is used, or after sl_Stop is called to reinitialize the device and the driver.

The return value of sl_Start specifies the mode the device is currently running: ROLE_STA, ROLE_AP or
ROLE_P2P. Any other value indicates an error during the initialization process.

3.3.2 Stop

This function clears the enable pin of the device, and closes the communication interface. This function can
receive a time-out (in milliseconds) as a parameter. This parameter defines the amount of time the device allows

Device www.ti.com

28 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SWRU469
http://www.ti.com/lit/pdf/SWRU469
http://www.ti.com/lit/pdf/SWRU469
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

for finishing any packet ongoing transmission, reception, or disconnection gracefully before shutting down. This
time-out value determines the maximum time the device waits. The function returns when all the activities are
performed even before the time-out expires.

Example:

_i16 Status, Role;
Role = sl_Start(NULL, NULL, NULL);
if (ROLE_STA == Role)
{
 /* Main application */
}
Status = sl_Stop(100); /* 100 ms Timeout */if(Status)
{
 /* error */
}

3.3.3 Hibernate and Shutdown

Hibernate is the lowest-device power mode that keeps the RTC running. In this mode, the device is powered off,
except for the hibernate logic. In this state the volatile memory of the SimpleLink Wi-Fi device is not maintained,
but the RTC is maintained, which provides faster boot time and maintains the system date and time. The
SimpleLink Wi-Fi device goes into the hibernate state when the correct hardware (HW) lines are set (RESET /
HIB) on a call to sl_Stop.

Full shutdown is the lowest power state of the device. In this state both the volatile memory and the RTC are not
maintained. The initialization process from full shutdown takes longer compared to initializing from hibernate.
The SimpleLink device goes into full shutdown state when the correct HW lines are set on a call to sl_Stop.

3.3.4 Lock State

The device can enter a lock state due to one of the following conditions:

• The restore to factory defaults is currently in process. The device unlocks when the process is finished.
• The device INIT failed and an inaccurate error is sent with the INIT-complete error asynchronous event. The

device INIT-complete may fail due to calibration failure or integrity failure of the file-system data structure.
• The security alerts threshold was exceeded. The SimpleLink Wi-Fi device provides a software tampering

detection mechanism with a security-alert counter. This procedure detects integrity violation of the following:
file-system data, secure-authentication files, or system files. When the device reaches the security alerts
threshold (three by default or predefined with Image Creator), it locks.

• A critical security alert occurs.

In the lock state only a few commands are allowed. The list of the enabled commands follows:

• Program a new image
• Restore to factory defaults
• Get current version
• Get storage information (retrieves the number of security alerts and the storage properties)

Any other API issued in locked state returns one of the following error codes:

SL_RET_CODE_DEV_LOCKED (-2011L) //Device was found locked during its init, commands
are blocked by the driver
SL_ERROR_NOT_ALLOWED_NWP_LOCKED (-14343L) //Device is currently locked
Recovery from the lock state depends on the reason for the lock. If the lock is due to processing the restore to
factory function, then the device automatically unlocks when finished. In all other cases, to recover from the lock
state the device can be programed or restored to factory image.

3.3.5 Initialization Sequence

During the INIT sequence, the host driver runs the following key steps:

• Enables communication interface (SPI or UART) with the device

www.ti.com Device

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 29

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• Registers the asynchronous events handler
• Enables the SimpleLink Wi-Fi device
• Waits for a host IRQ
• Reads the INIT-complete event

The SimpleLink Wi-Fi device determines one active host interface during this phase (SPI or UART) and disables
the other.

3.4 Host Interface
The SimpleLink Wi-Fi device provides comprehensive networking functionality. To simplify the integration and
development of networking applications, a simpler, user-friendly host driver is provided. The SimpleLink Wi-Fi
host driver is responsible for the following:

• Provide a simple API to the user application
• Handle communication with the network processor
• Build and parse commands
• Handle asynchronous events
• Handle flow control for the data path
• Provide serialization of concurrent commands
• Work with the existing UART or SPI physical communication interface drivers
• Provide the ability to work with or without an OS
• Enable porting

The SimpleLink Wi-Fi host driver is written in strict ANSI C89 for full compatibility with most embedded platforms
and development environments.

The following information is relevant for the SimpleLink Wi-Fi CC31xx wireless network processor, which must
implement a communication interface with a selected MCU.

The device supports the SPI and UART standard communication interfaces. Binding the communication
interface to the host driver is done by defining the interface functions through the following defines in user.h:

• sl_IfOpen
• sl_IfClose
• sl_IfRead
• sl_IfWrite
• sl_IfRegIntHdlr

More information regarding these functions is in Chapter 19 and in Appendix D.

Device www.ti.com

30 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

3.4.1 SPI Interface

The SimpleLink Wi-Fi device runs as a SPI slave and supports a 4-wire SPI interface. Table 3-2 lists the required
SPI settings.

Table 3-2. SPI Configuration
Attribute Value

Clock rate Up to 20 MHz

Word length 8-bit, 16-bit, 32-bit

Mode 0 (CPOL=0, CPHA=0)

Other CS required, and cannot be tied to active state

Additional IRQ line required for indicating asynchronous events from
the device

In SPI, all communications on the bus are initiated by the SPI master (the host in this case). There is always a
single master on the bus. To allow the SimpleLink Wi-Fi device to trigger asynchronous events to the host, an
additional I/O must be connected (H.IRQ) between them. This line triggers the host to read a message from the
device.

Figure 3-1 shows a typical host setup of the CC31xx wireless network processor using SPI interface.

SimpleLinkTM

CC3120
 MCU

SPI

(Master)

GPO

CS

CLK

MOSI

MISO

H.IRQ

nHib

Figure 3-1. Typical CC31xx Setup (SPI)

For more details about the SPI interface, refer to Appendix D.

3.4.2 UART Interface

The SimpleLink Wi-Fi device supports a standard UART interface with a hardware flow control (RTS/CTS). The
default baud rate is 115,200 bps and can be increased to 3 Mbps. Table 3-3 lists the required UART settings.

Table 3-3. UART Settings
Attribute Value

Baud rate 115,200 bps

(can be increased to 3 Mbps)

Flow control CTS/RTS

Parity None

Data bits 8

Stop bit 1

Figure 3-2 shows a typical host setup of the SimpleLink Wi-Fi device using UART interface.

www.ti.com Device

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 31

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

 MCU
SimpleLinkTM

CC3120

 UART

GPIO

Tx

Rx

CTS

RTS

Tx

Rx

CTS

RTS

nHib

Figure 3-2. Typical CC31xx Setup (UART)

Working with the UART interface requires the use of hardware flow control to avoid data loss. UART hardware
flow control works because an entity that is ready to accept data keeps its RTS line asserted. Before the
transmission, the UART peripheral of the second side will read its CTS line, which is connected to the RTS of the
first side, to verify if it is allowed to send data over the line. The SimpleLink Wi-Fi device may request to stop
transmissions in some scenarios; and therefore, its RTS line must be respected. If the host is fast enough and
does not need to stop transmissions from the SimpleLink device at any time, the CTS line of the SimpleLink Wi-
Fi device might be tied to a pullup instead.

For UART mode only, the following define should be added in user.h: #define SL_IF_TYPE_UART

For more details about the UART interface, refer to Appendix D.

3.4.2.1 Change UART Baud Rate

The SimpleLink device does not support automatic baud rate detection; therefore this parameter should be set
after every reset. When calling to sl_start, the default baud rate (115,200) must be set as part of the API
parameters. If a different baud rate is needed, the host can set it after the initialization process completes by
using the API sl_DeviceUartSetMode. This setting is not persistent and must be repeated every time sl_Start is
called.

Supported baud rates:

• SL_DEVICE_BAUD_9600
• SL_DEVICE_BAUD_14400
• SL_DEVICE_BAUD_19200
• SL_DEVICE_BAUD_38400
• SL_DEVICE_BAUD_57600
• SL_DEVICE_BAUD_115200
• SL_DEVICE_BAUD_230400
• SL_DEVICE_BAUD_460800
• SL_DEVICE_BAUD_921600

Device www.ti.com

32 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Example:

_i16 Status;
_i16 Role;
SlDeviceUartIfParams_t params;
#define COMM_PORT_NUM 24 /* uart com port number */
params.BaudRate = SL_DEVICE_BAUD_115200; /*set default baud rate */
params.FlowControlEnable = 1;
params.CommPort = COMM_PORT_NUM;
Role = sl_Start(NULL, (signed char*)¶ms, NULL)
params.BaudRate = SL_DEVICE_BAUD_921600; /* set default baud rate 921600 */
Status = sl_DeviceUartSetMode((signed char*)¶ms);
if(Status)
{
 /* error */
}

3.5 Version
The SimpleLink Wi-Fi device offers users the ability to read the internal device version number.

Example:

_i16 Status;
SlDeviceVersion_t ver;
pConfigLen = sizeof(ver);
pConfigOpt = SL_DEVICE_GENERAL_VERSION;
Status = sl_DeviceGet(SL_DEVICE_GENERAL,&pConfigOpt,&pConfigLen,(_u8 *)(&ver));
if(Status)
{
 /* error */
}

Table 3-4 shows the possible values of the Chip ID field and the part number that this value represents.

Table 3-4. Possible Chip ID Values
Chip ID Part Number

0x31000000 CC3120

0x31100000 CC3135

0x31000011 CC3220R

0x31000018 CC3220S

0x31100018 CC3235S

0x31000019 CC3220SF

0x31100019 CC3235SF

0x31120000 CC3130

0x31120018 CC3230S

0x31120019 CC3230SF

www.ti.com Device

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 33

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

3.6 Event Mask
The SimpleLink Wi-Fi device lets users mask some of the asynchronous events. Masked events do not arrive to
the host driver. This setting should apply for each API silo separately and include only the events needed to be
masked. By default, none of the events are masked. This configuration is persistent according to the system-
persistent configuration.

Example:

_i16 Status;
/* Mask WLAN connect and disconnect events */
Status = sl_DeviceEventMaskSet(SL_DEVICE_EVENT_CLASS_WLAN,
(SL_DEVICE_EVENT_BIT(SL_WLAN_EVENT_CONNECT) | SL_DEVICE_EVENT_BIT(SL_WLAN_EVENT_DISCONNECT)));
if(Status)
{
 /* error */
}

3.7 Time and Date
The SimpleLink Wi-Fi device gives users the option to set, and get time and date configuration from the RTC on
the device. The RTC is a continuous counter which is active even during hibernation and resets only after
shutdown.

Example:

_i16 Status;
SlDateTime_t dateTime= {0};
dateTime.tm_day = (_u32)23; /* Day of month (DD format) range 1-31 */
dateTime.tm_mon = (_u32)6; /* Month (MM format) in the range of 1-12 */
dateTime.tm_year = (_u32)2014; /* Year (YYYY format) */
dateTime.tm_hour = (_u32)17; /* Hours in the range of 0-23 */
dateTime.tm_min = (_u32)55; /* Minutes in the range of 0-59 */
dateTime.tm_sec = (_u32)22; /* Seconds in the range of 0-59 */
Status = sl_DeviceSet(SL_DEVICE_GENERAL, SL_DEVICE_GENERAL_DATE_TIME, sizeof(SlDateTime_t), (_u8*)
(&dateTime));
if(Status)
{
 /* error */
}

Device www.ti.com

34 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

3.8 MAC Address
Each SimpleLink Wi-Fi device is manufactured with a unique MAC address. The user can overwrite this default
MAC address. The configuration is persistent with no dependency on the system-persistent configuration.
Setting a MAC address takes effect only after reset, and can be set by the Image Creator.

Note

When configuring a new MAC address, the original MAC address is still used for Image Creator
development mode. For more information, refer to the UniFlash CC3120, CC3220 SimpleLink™ Wi-
Fi® and Internet-on-a chip™ Solution ImageCreator and Programming Tool User's Guide.

Example:

_i16 Status;
_u8 MAC_Address[6];
_i16 Role;
MAC_Address[0] = 0x8;
MAC_Address[1] = 0x0;
MAC_Address[2] = 0x28;
MAC_Address[3] = 0x22;
MAC_Address[4] = 0x69;
MAC_Address[5] = 0x31;
Status = sl_NetCfgSet(SL_NETCFG_MAC_ADDRESS_SET,1,SL_MAC_ADDR_LEN,(_u8 *)MAC_Address);
if(Status)
{
 /* error */
}
Status = sl_Stop(0);
if(Status)
{
 /* error */
}
Role = sl_Start(NULL,NULL,NULL);

www.ti.com Device

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 35

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SWRU469
http://www.ti.com/lit/pdf/SWRU469
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

3.9 Device Name
The device name is used as the common URN name for the WPS, Wi-Fi Direct, MDNS, and DHCPv4 client. The
maximum length of the device name is 32 characters, and the following characters are allowed:
• a through z
• A through Z
• 0 through 9
• –

If no device URN name is set, the default name is mysimplelink. If setting the device name with length 0, the
device returns to the default name mysimplelink. This configuration is persistent according to the system-
persistent configuration.

Example:

/* set new device name */
_i16 Status;
_u8 *device_name = "MY-SIMPLELINK-DEV";

Status = sl_NetAppSet (SL_NETAPP_DEVICE_ID,SL_NETAPP_DEVICE_URN, strlen(device_name), (_u8 *)
device_name);
if(Status)
{
 /* error */
}

3.10 Domain Name
The domain name is used to access the SimpleLink Wi-Fi device by name, for example accessing the HTTP
server in AP mode. If no domain name is set, the default domain name is www.mysimplelink.net or
mysimplelink.net. This configuration is persistent according to system-persistent configuration.

Example:

/* set new domain name */
_i16 Status;
_u8 *domain_name = "www.myDomain.net";

Status = sl_NetAppSet(SL_NETAPP_DEVICE_ID,SL_NETAPP_DEVICE_DOMAIN,strlen(domain_name),(_u8 *)
domain_name);
if(Status)
{
 /* error */
}

Device www.ti.com

36 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

3.11 Device Status
The SimpleLink Wi-Fi device provides an option to read the device status according to the last event recorded in
the SimpleLink device per API silo. The status is cleared when on read.

This option has two main return values:

• Device status
• Asynchronous events

Example:

_i16 Status;
_u32 statusWlan;
_u8 pConfigOpt;
_u16 pConfigLen;
pConfigOpt = SL_DEVICE_EVENT_CLASS_WLAN;
pConfigLen = sizeof(_u32);
Status = sl_DeviceGet(SL_DEVICE_STATUS,&pConfigOpt,&pConfigLen,(_u8 *)(&statusWlan));
if (SL_DEVICE_STATUS_WLAN_STA_CONNECTED & statusWlan)
{
/* The device is connected */
}
if (SL_DEVICE_EVENT_DROPPED_WLAN_RX_FILTERS & statusWlan)
{
/* RX filer event dropped */
}

The full list of possible values for possible device status or asynchronous events can be found in the host driver.

3.12 Persistent Configuration
The SimpleLink Wi-Fi device lets users set the system-persistent configuration. By default, the mode of the
system-wide configuration persistence is set to true, and all APIs that follow the system configured persistence
maintain their configured settings after reset. If false, all calls to the APIs that follow the system-configured
persistence are volatile, and the configurations revert to default after reset.

Example:

_i16 Status;
_u8 persistent = 1;
Status = sl_DeviceSet(SL_DEVICE_GENERAL, SL_DEVICE_GENERAL_PERSISTENT, sizeof(_u8), (_u8*)
(&persistent));
if(Status)
{
 /* error */
}

For a full list of parameters and their persistent configuration, refer to Appendix B.

Note

If system-persistent configuration is enabled, any change in the system settings may result in a serial-
flash write operation, and its write endurance must be considered.

3.13 Device Statistics
The device statistics API gives the option to retrieve WLAN and device statistics.

Start collecting device or WLAN statistics (including RX statistics) for an unlimited time using sl_DeviceStatStart.
It must be followed with a call to sl_DeviceStatGet and the correct flag according to the requested statistics.
There are two kinds of statistics:
• Clear On Read
• Accumulated

On Clear On Read statistics, for each call to sl_DeviceStatGet, are stored in the device and are returned to the
user, then initialized to zero and counted again.

www.ti.com Device

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 37

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

However, the Accumulated statistics start collecting statistics from the device initialization, and do not stop or
reset. Using the sl_DeviceStatGet function does not re-initialize Accumulated type counters.

Example:

void CollectStatistics()
 {
 /* this struct is equivalent to SlWlanGetRxStatResponse_t */
 SlDeviceGetStat_t deviceRXStat;
 /* Power Management statistics (new statistics) */
 SlDeviceGetPmStat_t devicePMStat;
 int ret = 0;

 /* start statistics mode */
 ret = sl_DeviceStatStart(0);
 if (ret != 0)
 {
 //check ret error
 }
 sleep(1); // sleep for 1 sec/* this call is equivalent to sl_WlanRxStatGet(&rxStat,0) *//*
statistics has been cleared upon read */
 ret = sl_DeviceStatGet(SL_DEVICE_STAT_WLAN_RX, sizeof(SlDeviceGetStat_t), &deviceRXStat);
 if (ret != 0)
 {
 //check ret error
 }
 /* Use the statistics that has returned from the API, as store them on DB. *//* new
statistics *//* statistics has been cleared upon read */
 ret = sl_DeviceStatGet(SL_DEVICE_STAT_PM, sizeof(SlDeviceGetPmStat_t), &devicePMStat);
 if (ret != 0)
 {
 //check ret error
 }
 /* Use the statistics that has returned from the API. */
 ret = sl_DeviceStatStop(0);
 if (ret != 0)
 {
 //check ret error
 }
 }

Device www.ti.com

38 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

NWP initialized
(sl_start)

Start
statistics

Get
statistics

Accumulated types:
The variables that are defined as
"Accumulated", start counting.

Stop
statistics

For example:

This statistics structure contains both "C.O.R" and "Accumulated"

_u32 Reserved[4];
_u32

variables.
The "C.O.R" and the "Accumulated" variables are divided into two
separate internal structures.
PmClrOnRd structure is cleared upon read, however the other
structure, PmAcc, isn't cleared upon read, and continues counting.
typedef struct
{

StartTimeStamp;

SlDeviceGetPmStatClrOnRdTypes_t PmClrOnRd; // Clear on read
SlDeviceGetPmStatAcc_t PmAcc; // Accumulated

GetTimeStamp;_u32
}SlDeviceGetPmStat_t;

statistics

By using DeviceStatStart()
function the statistics
mechnism starts counting.

Get

By using DeviceStatGet()
function, the "C.O.R" and the
"Accumulated" statistics are
retrieved from the device, but
only the C.O.R variables are
zeroed.

Get
statistics

By using DeviceStatStop()
function the statistics mechnism
stops working and stops
counting.

Clear On Read types:
The variables that are defined as
"Clear On Read" (C.O.R) , start
counting only after
DeviceStatStart() is successfully
called.

As opposed to "Clear On Read",
the "Accumulated" variables are
not effected by DeviceStatStart().

Figure 3-3. Device Statistics Flow

www.ti.com Device

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 39

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Note

This API replaces and extends the existing API of sl_WlanRxStatStart.

sl_WlanRxStatStart, sl_WlanRxStatStop, and sl_WlanRxStatGet are deprecated and exist only for
backwards compatibility.

TI recommends only using the new sl_DeviceStatStart, sl_DeviceStatGet, and sl_DeviceStatStop
APIs.

The new APIs (sl_DeviceStatXXX) contain all the capabilities of the deprecated APIs
(sl_WlanRxStatXXX).

Note

When the user starts to work with one of the API's flow (sl_ WlanRxStatStart /sl_ DeviceStatStart), the
other flow cannot be called until the chosen flow is stopped (by using sl_WlanRxStatStop/sl_
DeviceStatStop). Thus, sl_WlanRxStat and sl_DeviceStat flows cannot run at the same time. This API
is part of the device statistics APIs.

Device www.ti.com

40 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

3.14 Errors
Errors are indicated by the return value of the API or by an asynchronous event. Asynchronous events can be
sent to the host at any time with a specific error indication, and may also include specific data for each event. To
listen to these events and conclude the needed information, a handler should be implemented in the user
application, and registered under the user.h header file. Each error code is unique. The following errors are
common and require user action (a full possible error list is under the file error.h in the host driver):

Table 3-5 lists common errors indicated by asynchronous events.

Table 3-5. Common Asynchronous Error Events
Error Handler Comments

SL_DEVICE_EVENT_ERROR slcb_DeviceGeneralEvtHdlr General error

SL_DEVICE_EVENT_FATAL_DEVICE_ABORT slcb_DeviceFatalErrorEvtHdlr Notifies fatal error. The SimpleLink device is
asserted. User must perform device restart (call
sl_Stop followed by sl_Start).

SL_DEVICE_EVENT_FATAL_DRIVER_ABORT slcb_DeviceFatalErrorEvtHdlr Notifies fatal error. The host driver is asserted.
User must perform device reset.

SL_DEVICE_EVENT_FATAL_NO_CMD_ACK slcb_DeviceFatalErrorEvtHdlr Notifies fatal error. The host driver did not receive
the ACK command from the device. User must
perform device restart (call sl_Stop followed by
sl_Start).

SL_DEVICE_EVENT_FATAL_SYNC_LOSS slcb_DeviceFatalErrorEvtHdlr Notifies fatal error. The host driver and SimpleLink
device are out of sync. User must perform device
restart (call sl_Stop followed by sl_Start).

SL_DEVICE_EVENT_FATAL_CMD_TIMEOUT slcb_DeviceFatalErrorEvtHdlr Notifies fatal error. The command time-out has
expired. User must perform device restart (call
sl_Stop followed by sl_Start).

Table 3-6 lists common errors statuses.

Table 3-6. Common Error Codes
Error Value Comments

SL_ERROR_ROLE_STA_ERR –4107 Initialization failure in the specified mode (sl_Start).

SL_ERROR_ROLE_AP_ERR –4108

SL_ERROR_ROLE_P2P_ERR –4108

SL_ERROR_CALIB_FAIL –4110 Calibrations failed.

SL_ERROR_FS_CORRUPTED_ERR –4111 File system is corrupted, restore to factory image or program
new image should be invoked (see sl_FsCtl, sl_FsProgram).

SL_ERROR_FS_ALERT_ERR –4112 Initialization failure due to exceeded number of security alerts
(sl_Start); device is locked, restore to factory image or
program new image should be invoked (see sl_FsCtl,
sl_FsProgram).

SL_ERROR_RET_TO_IMAGE_COMLETE –4113 Restore to factory image completed, perform reset.

SL_ERROR_INCOMPLETE_PROGRAMMING –4117 Error during programming. Program new image should be
invoked (see sl_FsProgram).

SL_ERROR_DEVICE_LOCKED_SECURITY_ALLERT –28674 Number of security alerts exceeded or system file integrity
error; device is locked.

www.ti.com Device

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 41

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Device www.ti.com

42 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

This page intentionally left blank.

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

4.1 Introduction...44
4.2 Key Features... 44
4.3 Station (STA)... 44
4.4 Access Point... 55
4.5 Wi-Fi Direct..63
4.6 WLAN Security..73
4.7 Scan... 77
4.8 Antenna Diversity... 79
4.9 Calibrations...81
4.10 BLE / 2.4-GHz Radio Coexistence...83

Chapter 4
WLAN

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 43

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

4.1 Introduction
The SimpleLink Wi-Fi device supports three WLAN modes: STA, AP, and Wi-Fi-Direct. The device can run one
mode at a time. Each mode has specific settings and capabilities which are detailed in the following sections.
Using the WLAN modes, connection, scanning networks, and data transmissions are possible. This chapter
describes the full set of capabilities of the WLAN system.

4.2 Key Features
Table 4-1 lists the key features and their descriptions.

Table 4-1. Key Features
Key Features Description

Wi-Fi Modes Wi-Fi Station, Wi-Fi Access Point (default), and Wi-Fi Direct

Wi-Fi
station

802.11 a/b/g/n Supports 802.11 a/b/g/n standards in station mode

802.11 power save Supports Wi-Fi station power save capability in different power policies

WFA IOT low power Supports IOT low power mode when the Access point supports this capability

Manual connection Supports manual connection to a network by SSID or SSID+BSSID

Preferred networks Supports up to 7 persistent preferred networks (profiles)

Secured connection WEP, WPA, WPA\WPA2, WPA2+PMF, WPA3 and WPS security connection types are
supported

Enterprise connection (802.1x) Multiple EAP methods are supported for enterprise connection

Connection policy Connection policy that allows automatic connection to a preferred network in different cases

RSSI Trigger Trigger that can be configured to be sent upon change in the connection quality based on
the RSSI measurements

Soft Roaming Ability to automatically disconnect from serving AP and connect to another in the stored
profile list based on RSSI measurements

Agile Multiband Allows the stations to roam to another AP when the serving AP requests

Triggered Roaming Ability to automatically disconnect from the serving AP and connect to another with the same
SSID or in a neighbor list sent from the serving AP based on RSSI measurements

Real time RSSI information Collect real time RSSI information on all received packets

Antenna diversity Ability to select the best antenna during a connection to an access point

Wi-Fi
access
point

802.11 a/b/g Supports 802.11 a/b/g standards in AP mode with up to 4 simultaneously connected
stations, built-in DHCP server and DNS server

Wi-Fi
Direct

Wi-Fi Direct GO or CLIENT Wi-Fi Direct connection with remote device acting as group owner or client

Scanning Support scan parameter configuration. Keep up to 30 networks, and the ability to read the
results.

BLE / 2.4 GHz radio Coexistence Supports coexistence with other 2.4-GHz radio on the same board including the ability to
share the same antenna

Note

Not all devices support all the key features in Table 4-1; refer to Table 1-1 for this information.

4.3 Station (STA)
4.3.1 General Description

Station (STA) is the primary mode of the SimpleLink Wi-Fi device operation. Operating the device in this mode
allows the device to establish a connection to an AP, obtain an IP address, transmit and receive data over the
network, and scan other network devices. The following sections specify the major settings and modes of
operation that are unique to STA mode.

WLAN www.ti.com

44 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

4.3.2 Configurations and Settings

STA configuration is done by using a host driver API while the SimpleLink Wi-Fi device is in STA mode. Some of
the configurations are also available through the internal ROM HTTP server (see Chapter 9 for details and the
configuration table).

There are several configurations for each specific use case. Some of the configurations are persistent according
to the system-persistent configuration, and some are nonpersistent as specified in each configuration
specification (more information is in Appendix B).

Table 4-2 lists the default parameters in station mode. The default configurations are not mandatory and can be
changed by the user.

Table 4-2. Default Parameters in Station Mode
Configuration Default Value

Interface IPv4

Address DHCP

STA TX power 0 (no back-off, maximum TX power)

Country code EU

Connection policy Auto and Auto Provisioning

Calibration mode Normal

Server enterprise authentication Enabled

Applications HTTP server and MDNS

4.3.2.1 Set Mode

STA mode is not the initialization mode by default, therefore it must be set by the application or during the image
creation. The following API should be called to set the device in STA mode. Switching to a new mode requires a
reset and is persistent with no dependency on the system-persistent configuration.

Example:

_i16 Role;
_i16 Status;
/* Set the device in STA mode */
Status = sl_WlanSetMode(ROLE_STA);
if(Status)
{
 /* Error setting mode */
}
/* Reset the device */
Status = sl_Stop(0);
Role = sl_Start(NULL,NULL,NULL);
if (ROLE_STA != Role)
{
 /* Role Error */
}

4.3.2.2 Set General STA Parameters

STA mode is activated with default configurations. Reconfiguring these settings is possible, but not mandatory.
The following configurations are available. These configurations require reset and are always persistent with no
dependency on the system-persistent configuration.

• STA Transmit (TX) Power

Sets the TX power which controls the transmission power level, and can increase or decrease the value,
relative to the maximum TX power. The value represents steps from 0 to 15 which reflect as dBm offsets from
maximum power (0 means maximum power) according to Figure 4-1.

Note

Tx Power can only be set on 2.4-GHz channels.

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 45

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure 4-1. Tx Output Power vs Tx Power Settings

Example:

_i16 Status;
_u8 StaPower = 3;
Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_OPT_STA_TX_POWER,1,(_u8
*)& StaPower);
if(Status)
{
 /* error */
}

• Set Country Code/Regulatory Domain

Sets the country code for STA mode. This setting enables scanning, and connection only to an AP which
operates on the chosen channel set.

Table 4-3 shows the basic supported country codes.

Table 4-3. Country Codes
Country

Code Supported Channels

US 1-11

EU 1-13

JP 1-13

The CC3135, CC3235S, and CC3235SF support a wider set of country codes due to the variety of channels
range between countries in the 5-GHz band. The full list of supported countries could be found in Appendix
C.

Example:

_i16 Status;
_u8 Str[] = "US";

WLAN www.ti.com

46 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_OPT_COUNTRY_CODE, 2, Str);
if(Status)
{
 /* error */
}

• Enable/Disable 5-GHz Channels

For CC3135, CC3235, and CC3235SF devices, this setting enables or disables 5-GHz channels in STA
mode. By default, 5-GHz channels are enabled in the system and the scanning time might be longer due to
the total number of enabled channels. In deployments that do not use these channels, disabling the channels
might improve the scan time and power consumption.

The mode can be changed by setting 0 to disable 5-GHz channels and 1 to enable.

Example:

_i16 Status;
_u8 Mode = 0; //0 disable 5GHz mode

Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, WLAN_GENERAL_PARAM_OPT_ENABLE_5G, 1, (_u8
*)&Mode);
if(Status)
{
 /* error */
}

• Enable/Disable "no PS Poll" mode

PS POLL is used in power save policy to pull buffered frames from the AP after a beacon with unicast traffic
is indicated. Using PS POLL is the standard way of power save operation.

1. Disable - (default mode) - station sends PS-Poll ctrl frame to receive buffered frames from the AP when
unicast traffic is indicated in the beacon.

2. Enable - Station transition from power save to Active (send NULL data frame) whenever unicast traffic is
indicated in the beacon (this mode is for interoperability issues with access points that doesn't fully support
PS-Poll).

Example:

SlWlanNoPSPollMode_t NoPsPollMode;
NoPsPollMode.Enable = 1; // enable no PS-Poll mode (work without PS-Poll frames)
sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID,
SL_WLAN_GENERAL_PARAM_OPT_NO_PS_POLL_MODE,sizeof(SlWlanNoPSPollMode_t),(_u8 *)& NoPsPollMode);

4.3.3 Connection

Connection to a WLAN network is one of the basic capabilities of the SimpleLink Wi-Fi device, and it is the first
step required before initializing socket communication. The SimpleLink Wi-Fi device supports two methods of
establishing a connection: manual connection and preferred networks.

Each of the following methods is combined with a predefined connection policy which instructs the SimpleLink
Wi-Fi device on how to act in different states. Indication of connection completion is provided to the application
through an asynchronous event (see Section 4.3.4).

4.3.3.1 Connection Policies

The device supports multiple connection policies. These policies define how the device initiates the connection,
and helps to maintain a specific connection configuration after reset, which is appropriate for the desired use
case. The WLAN connection policy supports four options for connecting the SimpleLink Wi-Fi device to a given
AP.

The four options for the connection policy:

• Auto – The device tries to connect to an AP from the stored profiles based on priority. Up to seven profiles
are supported. On the connection attempt, the device selects the highest priority profile. If several profiles are

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 47

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

within the same priority, the decision is made based on the security type (WPA3>WPA2+PMF>WPA
\WPA2>WEP>OPEN). If the security type is also the same, the selection is based on the received signal
strength.

Set the Auto policy with the following macro: SL_WLAN_CONNECTION_POLICY(1,0,0,0)
• Fast – The device tries to connect to the last connected AP. In this mode, the probe request is not transmitted

before the authentication request, as both the SSID and channel are known from previous successful
connection.
– If the Auto policy is also enabled (Auto and Fast), then a profile exists and previous successful connection

was performed to this profile. After reset, the device tries to connect to the same profile with no scan (no
probe request transmission). If this connection fails, the device starts scanning according to stored profile
priority.

– If the Fast policy is enabled independently and a previous successful connection exists, after reset the
device tries to connect to the same AP with no scan (no probe request transmission). If this connection
fails, no further scan is performed.

Set the Auto and Fast policy with the following macro: SL_WLAN_CONNECTION_POLICY(1,1,0,0)
– If Fast policy is enabled and the last connection was WPA2+PMF\WPA3, the device connects successfully

after reset only if the last connection terminated gracefully, meaning, sl_stop with timeout was called
before shutdown. This is because the AP expects to get an encrypted deauthentication message from the
device before leaving (sent during sl_stop with timeout), or it rejects the association after reset.

• AnyP2P – Relevant for Wi-Fi-Direct mode only. The device immediately tries to connect to the first Wi-Fi
direct device available, supporting push-button only.

Set the Auto and AnyP2P with the following macro: SL_WLAN_CONNECTION_POLICY(1,0,1,0)
• Auto Provisioning – The device automatically starts the provisioning process if 2 seconds have passed since

reset without receiving any command from the host, while no saved profiles exist. Or the device automatically
starts the provisioning process after 2 minutes of disconnection, while saved profiles exist (for more
information, refer to Section 9.4.6).

Set the Auto and Auto Provisioning with the following macro: SL_WLAN_CONNECTION_POLICY(1,0,0,1)

More than one connection policy can be set, for example Auto and Fast and Auto provisioning. The
connection policy enabled by default is Auto and Auto Provisioning. Setting the connection policy takes effect
immediately. For example, if setting the Auto policy and profiles exists, a connection attempt to the highest
priority profile is immediately triggered. This configuration is persistent according to the system-persistent
configuration, or can be non-persistent upon flag configuration (see example below).

Set persistent connection policy example:

_i16 Status;
Status = sl_WlanPolicySet(SL_WLAN_POLICY_CONNECTION,SL_WLAN_CONNECTION_POLICY(1,1,0,1),NULL,0);
if(Status)
{
/* error */
}

Set non-persistent connection policy example:

_i16 Status;
uint32_t flags = 0;
 flags |= SL_WLAN_CONN_POLICY_NON_PERSISTENT_FLAG;
 Status=
sl_WlanPolicySet(SL_WLAN_POLICY_CONNECTION,SL_WLAN_CONNECTION_POLICY(1,0,0,0),&flags,sizeof(flags)
);
if(Status)
{
/* error */
}

WLAN www.ti.com

48 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

4.3.3.2 Preferred Networks (Profiles)

The SimpleLink Wi-Fi device provides users the ability to store up to seven preferred networks. These preferred
networks, or profiles, can be used to establish connection automatically according to the connection policy
settings. The profiles are stored in the file system (nonvolatile memory), and therefore are preserved during
device reset. Profiles can be added, removed, or modified by using the host driver API or internal web server.
Each profile has a priority which defines how connection order occurs. This means the SimpleLink Wi-Fi device
tries to connect to the highest priority profile stored first (see Section 4.3.3.1).

Each profile includes the following information:

• SSID
• BSSID
• Security type
• Password
• EAP parameters (enterprise security type)
• Priority

On successful completion of the provisioning process or the WPS process, a new profile is added. Profiles can
be added, removed, edited, viewed, or temporarily suspended by using the following APIs:

• Add Profile

Add a profile to the next available index. The return value is the profile index with a value from 0 to 6.
Negative values indicate an error. This index identifies the profile, and should be used when deleting or
editing the profile.

The following are examples of adding a WPA2 secured profile with SSID and BSSID:

_u8 MacAddr[] = {0xAA,0xBB,0xCC,0xDD,0xEE,0xFF};
SlWlanSecParams_t SecParams;
_i16 Index;
SecParams.Type = SL_WLAN_SEC_TYPE_WPA_WPA2;
SecParams.Key = "123456789";
SecParams.KeyLen = strlen (SecParams.Key);
Index = sl_WlanProfileAdd("Test_AP", strlen("Test_AP"), MacAddr, &SecParams, NULL, 7 /*
Priority*/, 0);

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 49

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• Delete Profile

A specific profile can be deleted by its index. In addition, all profiles can be deleted at once by using the
following value as an index: SL_WLAN_DEL_ALL_PROFILES.

An example for deleting all profiles:

_i16 Status;
Status = sl_WlanProfileDel(SL_WLAN_DEL_ALL_PROFILES);
if(Status)
{
 /* error */
}

• Get Profile

The driver also lets the user read the information of a stored profile by its index. For security reasons, this
information includes only the public information of the profile. The password is not accessible from the host.

The following is an example for getting the information on a profile at index 2:

_i16 index, Status;
signed char Name[32];
_i16 NameLength;
unsigned char MacAddr[6];
SlWlanSecParams_t SecParams;
SlWlanGetSecParamsExt_t SecExtParams;
_u32 Priority;
Index = 2;
Status = sl_WlanProfileGet(Index, Name, &NameLength, MacAddr, &SecParams, &SecExtParams,
&Priority);
if(Status)
{
 /* error */
}

• Edit Profile

Adding a profile with an existing SSID, BSSID (if applicable), and security type updates the existing entry. If
one of these values is different, it is considered a new profile and is saved as a new entry.

• Update Profile

Update one or more of an existing profile's parameters. This API is important especially in order to update the
priority of a profile. In case there is no need to update one of the parameters, set it to
SL_WLAN_DONT_UPDATE.

If a profile was previously added with bssid, and the bssid must be removed (to connect to a different AP with
the same ssid and better rssi), it is possible to remove the bssid from the profile using profile update api with
the bssid set to: FF:FF:FF:FF:FF:FF.

Note

Updating the SSID of a profile requires to provide also the security parameters, including the
password, because it is considered as a different network.

Example of updating the priority of the profile in index 0:

SlWlanSecParams_t SecParams;
_u32 Priority;
_u32 index;
SecParams.Key = "";
SecParams.KeyLen = 0;
SecParams.Type = SL_WLAN_DONT_UPDATE;
Priority = 4;
index = 0;
Status = sl_WlanProfileUpdate(index, NULL,0,NULL,&SecParams ,NULL, Priority);
if(Status)
{
 /* error */
}

WLAN www.ti.com

50 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• Suspend Profiles

Specific profiles can be suspended without deletion. This setting is not persistent, and it is deleted after reset.

An example of suspending a profile with index 1, 4, 6 follows:

_u32 SuspendedProfilesMask;
_i16 Status;
SuspendedProfilesMask = INDEX1 | INDEX4 | INDEX 6 ; /* 0x29 */
Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_OPT_SUSPEND_PROFILES,
sizeof(suspendedProfilesMask),(_u8*)&suspendedProfilesMask);
if(Status)
{
 /* error */
}

• Enterprise Profile

Only one enterprise profile is supported. Before adding the profile, write certificate files to the following
system files:
– /sys/cert/ca.der - CA for the server authentication
– /sys/cert/client.der - Optional, if server requests client authentication
– /sys/cert/private.key - Optional, if server requests client authentication

An example of adding an enterprise profile follows:

SlWlanSecParams_t SecParams;
SlWlanSecParamsExt_t SecExtParams;
_i16 Index;
SecParams.Type = SL_WLAN_SEC_TYPE_WPA_ENT;
SecParams.Key = "123456789";
SecParams.KeyLen = strlen(SecParams.Key);
SecExtParams.User = "Ent_user";
SecExtParams.UserLen = strlen("Ent_user");
SecExtParams.EapMethod = SL_WLAN_ENT_EAP_METHOD_TTLS_TLS;
Index = sl_WlanProfileAdd("Test_Ent_AP",strlen("Test_Ent_AP"),0, &SecParams ,& SecExtParams,7 /*
Priority*/,0);

4.3.3.3 Manual Connection

Manual connection triggers an immediate connection scan, and tries to establish a connection to a specific AP.
The connection scan continues until a connection completes or a disconnect command is issued. Manual
connection is treated as higher priority than any other connection type. The connection can be established
according to SSID, or SSID and BSSID. The connection command can be applied only by the host driver and
returns immediately before the connection is established. The host application is notified that the connection is
successful through the connection asynchronous events as in all other connection methods.

Example:

SlWlanSecParams_t SecParams;
_i16 Status;
SecParams.Type = SL_WLAN_SEC_TYPE_WPA_WPA2;
SecParams.Key = "123456789";
SecParams.KeyLen = strlen(SecParams.Key);
Status = sl_WlanConnect("Test_Ent_AP",strlen("Test_Ent_AP"),0 ,&SecParams ,0,);
if(Status)
{
 /* error */
}

4.3.4 Events and Errors

The host can receive an indication of specific states through events or errors. All WLAN events are sent to the
handler mapped to slcb_WlanEvtHdlr().

Asynchronous events can be sent to the host at any given time with an indication of specific states and specific
data for each event. To listen to these events and determine the needed information, a handler must be
implemented in the user application and registered under the user.h header file. The following event may be
received in relation to a WLAN connection:

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 51

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• SL_WLAN_EVENT_CONNECT

Indicates the connection is successful and includes the following information:
– SSID
– SSID length
– BSSID
– channel

• SL_WLAN_EVENT_DISCONNECT

Indicates the disconnection is successful and includes the following information:
– SSID
– SSID length
– BSSID
– Disconnect reason code

Errors are indicated by the return value of the API. Each error code is unique. Table 4-4 lists common errors that
require user action (a complete list of errors is under the error.h file in the host driver).

Table 4-4. Common Errors
Error Value Comments

SL_ERROR_ROLE_STA_ERR –4107 Initialization failure in STA mode

SL_ERROR_WLAN_INVALID_ROLE –2050 Action applied does not match the current mode.

SL_ERROR_WLAN_KEY_ERROR –2049 One of the security parameters or SSID supplied is wrong
(invalid length or not supported).SL_ERROR_WLAN_INVALID_SECURITY_TYPE –2054

SL_ERROR_WLAN_PASSPHRASE_TOO_LONG –2055

SL_ERROR_WLAN_PASSWORD_ERROR –2058

SL_ERROR_WLAN_SSID_LEN_ERROR –2060

SL_ERROR_WLAN_ILLEGAL_WEP_KEY_INDEX –2064

SL_ERROR_WLAN_EAP_WRONG_METHOD –2057 One of the EAP security parameters supplied is wrong
(invalid length or not supported).SL_ERROR_WLAN_EAP_ANONYMOUS_LEN_ERROR –2059

SL_ERROR_WLAN_USER_ID_LEN_ERROR –2061

SL_ERROR_WLAN_PREFERRED_NETWORK_LIST_FULL –2062 No free profile

SL_ERROR_WLAN_INVALID_POLICY_TYPE –2066 Invalid policy type. Value is not supported.

SL_ERROR_WLAN_WIFI_ALREADY_DISCONNECTED –2071 Applying disconnect command when disconnected

SL_ERROR_WLAN_GET_NETWORK_LIST_EAGAIN –2073 Network list is unavailable because scan was not enabled.
A one-shot scan is immediately triggered, and the user
should fetch the scan results again.

SL_ERROR_WLAN_GET_PROFILE_INVALID_INDEX –2074 Profile index is too high or does not exist.

4.3.5 RSSI Trigger

This feature allows the host to define a trigger that can generate an asynchronous event when there is a change
in the conditions and quality level of the active connection. RSSI triggers are supported on all device types with
one exception, CC3120 and CC3220 parts support only a single index and CC3x3x parts support two indices. In
addition, CC3120 and CC3220 parts support RSSI trigger starting from service pack v3.10.0.5.

The trigger can be enabled or disabled when needed, and can be updated with new values at runtime.

Updating a trigger is done by setting the trigger with new attributes. The received event contains the value that
triggered the event.

For more information on device types, refer to Table 1-1.

WLAN www.ti.com

52 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Note

The soft-roaming feature is based on internal RSSI trigger and shares the same API and settings as
the RSSI trigger. The index of the RSSI trigger in the API is index 0.

The table below describes the attributes of the trigger and the constraints per each device type. The default
value of attributes that cannot be set under CC3x20 device type, are marked in brackets:

Table 4-5. Attributes of RSSI Trigger
Name Description CC3x20 (default) CC3x35 Values / Comment

Threshold Defines the threshold value in which the
event is triggered + + Units: dBm Range: (-100 ... 100)

Pacing Defines the minimum delay between
consecutive events + + Units: milliseconds; Range: (0 ..

60000)

Metric Defines how the quality condition is
measured - (0) + 0 - RSSI Beacon, 1 - RSSI Packet

Type

The type of the trigger

Edge: Event is sent once when the
threshold is crossed.

Level: Event is sent each time that the
threshold is crossed.

- (0) + 0 - Level, 1 – Edge

Direction The direction of the change the caused the
trigger - (0) + 0 - Low, 1 - High, 2 - Bidirectional

Hysteresis Margin relative to the threshold value + + Units: dB ; Threshold range: (0 ..
255)

TriggerId The index of the trigger - (0) + 0 - RSSI trigger, 1 - Soft-Roaming
trigger

Enable Enable/Disable a trigger + + 0 - Disable, 1 – Enable

4.3.6 Soft-Roaming

The soft-roaming feature lets the user enable the device to automatically switch from one network to another if
the estimated link quality of the second network is higher. Switching from one network to the other is performed
by disconnecting from the first network and only then connecting to the new network.

The soft-roaming feature is based on an internal RSSI trigger that initiates a background scan when needed.
The possible configuration of the soft-roaming feature is identical to the RSSI trigger attributes.The feature is
enabled when the Host defines an RSSI trigger with index 1. The device switches to the new network only after
the completion of the background scan, and only if the new network has higher RSSI.

Each trigger initiates a single background scan. If the user would like to run scan cycles until a better network is
found, the type of the trigger should be set to level, and in this case the pacing attribute defines the intervals
between scans.

The feature is supported only on part of the devices. For more information, refer to Table 1-1.

Example:

SlWlanRegisterLinkQualityEvents_t RegisterLinkQuality;
RegisterLinkQuality.Enable = 1;
/* trigger Id 1 is used for soft roaming trigger id 0 is for the host app usage.*/
RegisterLinkQuality.TriggerId = 1;
RegisterLinkQuality.Metric = SL_WLAN_METRIC_EVENT_RSSI_BEACON;
RegisterLinkQuality.Direction = SL_WLAN_RSSI_EVENT_DIR_LOW;
/* recommend for the Threshold -75 since in rssi -85 the device will disconnect */
RegisterLinkQuality.Threshold = -75;
/* defines the sensitivity of the trigger*/
RegisterLinkQuality.Hysteresis = 3;
/* type=level and pacing=15,000 means that when the threshold is crossed*/
/* the background scan will be held every 15 mili */
/* if the type is set to SL_WLAN_RX_QUALITY_EVENT_EDGE, background scan will held only once when the

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 53

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

threshold is crossed.*/
RegisterLinkQuality.Type = SL_WLAN_RX_QUALITY_EVENT_LEVEL;/* SL_WLAN_RX_QUALITY_EVENT_EDGE;*/
RegisterLinkQuality.Pacing = 15000;
return(sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_REGISTER_LINK_QUALITY_EVENT,
 sizeof(SlWlanRegisterLinkQualityEvents_t), (_u8 *)&RegisterLinkQuality));

Note

Soft roaming is enabled only if FAST connection policy is disabled.

4.3.7 Beacon Interval and DTIM Period

The SimpleLink Wi-Fi host driver retrieves the current beacon interval and DTIM period of the connected AP.
This feature is supported in STA mode only while the device is connected to AP; otherwise, it returns the
appropriate error.

Example:

int8_t ret = 0;
SlWlanExtConnectionInfo_t ExtConnectionInfo;
_u16 config_opt = SL_WLAN_GENERAL_PARAM_EXT_CONNECTION_INFO;
_u16 Len = sizeof(SlWlanExtConnectionInfo_t);

ret = sl_WlanGet(SL_WLAN_CFG_GENERAL_PARAM_ID,,
 & config_opt,
 &Len,
 (_u8*)&ExtConnectionInfo);

4.3.8 Agile Multiband

The Agile Multiband feature, when enabled, allows APs that support this feature to manage the network and
request the STA to roam to another AP in the same network. This allows the APs in the network to balance the
load on each AP and increase the stability of the network.

This feature is based on requests from the serving AP that can include information about one or more APs; this
information is used to connect to the highest priority AP without scanning for channels not in the list.

The feature is supported only on part of the devices. For more information, refer to Table 1-1.

Example:

SlWlanNetworkAssistedRoaming_t roamingTransitionEnable;
roamingTransitionEnable.Enable = 1;
sl_WlanSet(SL_WLAN_STA_NETWORK_ASSISTED_ROAMING, SL_WLAN_AP_TRANSITION_ENABLE,
sizeof(SlWlanNetworkAssistedRoaming_t), apTransitionEnable);

4.3.9 Triggered Roaming

The Triggered Roaming feature is similar to the soft-roaming feature. When enabled and the device is in station
mode, it allows the device to automatically disconnect from the serving AP and connect to an AP with a stronger
signal under certain conditions. The triggered roaming feature is based on an internal RSSI trigger that initiates a
background scan when needed.

The difference between Soft-Roaming and Triggered Roaming is that Triggered Roaming has two options for
determining which AP the device will roam to:
1. If the serving AP sends an STA neighbor list to the device, the device only roams to an AP from the list.
2. If the serving AP does not send the neighbor list, the device scans for the same SSID as used in the current

connection and tries to connect to another AP with that same SSID.

The possible configuration of the triggered roaming feature is identical to the RSSI trigger attributes. The device
switches to the new network only after the completion of the background scan and only if the new network has 9
dB higher RSSI.

Each trigger initiates a request for an AP neighbor list, which can reduce the channels that the device scans. If
this list does not exist, a single background scan runs where the device only looks for other APs with the same
SSID as the AP it is currently connected to.

WLAN www.ti.com

54 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

The feature is supported only on part of the devices. For more information, refer to Table 1-1.

Example:

SlWlanNetworkAssistedRoaming_t roamingTriggeringEnable;
roamingTriggeringEnable.Enable = 1;
roamingTriggeringEnable.rssiThreshold = -63;
sl_WlanSet(SL_WLAN_STA_NETWORK_ASSISTED_ROAMING, SL_WLAN_ROAMING_TRIGGERING_ENABLE,
sizeof(SlWlanNetworkAssistedRoaming_t), roamingTriggeringEnable);

4.4 Access Point
4.4.1 General Description

Access point (AP) is supported by the SimpleLink Wi-Fi device. This mode is used mostly to set the device
network configuration. In AP mode, the unprovisioned SimpleLink Wi-Fi device wakes up initially as an AP with
an SSID defined by the equipment manufacturer. Before trying to connect to the home network for the first time,
the unprovisioned device creates a network of its own, allowing a PC or a smartphone to connect to it directly
and facilitate its initial configuration. AP mode supports up to four connected stations and offers a secured
connection. Managing the station connection can be done by using host commands (distribute IP address, see
connected stations, disconnect stations, add or remove stations from the black list, and so on). Specific settings
and modes of operation are unique for AP mode.

4.4.2 Configurations and Settings

The SimpleLink Wi-Fi device AP configuration is done by using the host driver API. Several configurations exist
for each specific use case. Some of the configurations are persistent according to the system-persistent
configuration, and some are nonpersistent, as specified in each configuration specification (more information is
in annex 2 Persistency). Not all configurations are mandatory because the device has default values, according
to Table 4-6.

Table 4-6. AP Default Parameters
Configuration Default Value

Interface IPv4

Address Static with the following parameters:

IP 10.123.45.1, Subnet mask: 255.255.255.0

Default gateway: 10.123.45.1, DNS: 10.123.45.1

AP TX power 0 (no back-off, maximum TX power)

Country code EU, default channel is 6

Connection policy N/A

Calibration mode Normal

Applications DHCP server, HTTP server, MDNS, and DNS server

4.4.2.1 Set Mode

AP mode is the default initial mode of the device. AP configuration is not effective until the device enters into AP
mode. This configuration requires a reset, and is persistent with no dependency on the system-persistent
configuration. If the device gets set to a different mode, and the AP mode is required again, the following API
should be called.

_i16 Role;
_i16 Status;
Status = sl_WlanSetMode(ROLE_AP);
if(Status)
{
 /* error */
}
sl_Stop(0);
Role = sl_Start(NULL,NULL,NULL);
if (ROLE_AP != Role)
{

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 55

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

 /* Role Error */
}

4.4.2.2 Set General AP Parameters

AP mode is activated with default configuration, and reconfiguration is not mandatory, although this option exists.
The following settings are available, require reset, and are persistent with no dependency on the system-
persistent configuration.

• SSID

The SimpleLink Wi-Fi device default SSID is ‘mysimplelink-xxyyzz’ where ‘xxyyzz’ are the last six digits of the
device MAC address. Because the MAC address is unique, the SSID is also unique. Still, the SSID
configuration exists with a maximum length of 32 characters.

Example:

_i16 Status;
_u8 Ssid[] = "Test_AP";
Status=sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_OPT_SSID, strlen(Ssid), Ssid);
if(Status)
{
 /* error */
}

• Hidden SSID

The device can be configured to not broadcast the SSID inside the Beacon frame when in AP mode. This
configuration is disabled by default.

Example:

_i16 Status;
_u8 hidden = TRUE;
 Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_OPT_HIDDEN_SSID, 1, (_u8 *)& hidden);
if(Status)
{
 /* error */
}

• Set Country Code / Regulatory Domain

Set the country code for AP mode.

For CC3x20 and CC3x30: Table 4-7 shows the basic supported country codes.

Table 4-7. Country Codes
Country Code Supported Channels

US 1-11

EU 1-13

JP 1-13

The CC3135, CC3235S, and CC3235SF support a wider set of country codes due to different channels used
by different countries in the 5-GHz band. The full list of supported countries could be found in Appendix C.

Example:

_i16 Status;
_u8 Str[] = "US";

Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_OPT_COUNTRY_CODE, 2,
Str);
if(Status)
{
 /* error */
}

• Channel

WLAN www.ti.com

56 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Set the operational channel of the SimpleLink Wi-Fi device in access point mode.

The chosen channel must be valid in the selected regulatory domain. Table 4-8 shows the basic possible
values for the 2.4-GHz band.

Table 4-8. 2.4-GHz Supported Channels
Country Code Supported Channels

US 1-11

EU 1-13

JP 1-13

Table 4-8 covers the following part numbers: CC3x20 and CC3x30. The CC3135 and CC3235 allow a wider
range of channels, depending on the selected country code. For a full list of supported channels, refer to
Appendix C.

The default channel in AP mode is 6. If the chosen channel is, for some reason, not supported in the
regulatory domain, the system automatically switches to the default channel.

Example:

_i16 Status;
_u8 channel = 1;
Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_OPT_CHANNEL, 1, (_u8 *)& channel);
if(Status)
{
 /* error */
}

• Security Type

Set the SimpleLink Wi-Fi device AP network security mode configuration. Possible security types are OPEN,
WEP and WPA\WPA2. The default value is Open security.

Example:

_i16 Status;
_u8 val = SL_WLAN_SEC_TYPE_WPA_WPA2;
Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_OPT_SECURITY_TYPE, 1, (_u8 *)&val);
if(Status)
{
 /* error */
}

• Password

When the SimpleLink Wi-Fi device is configured as a secured AP, it uses a security password. This password
is used for all secured networks except OPEN. Setting the SimpleLink Wi-Fi device to use a WEP security
requires a password length of 5 or 10 characters in HEX format, and 13 or 26 characters in ASCII format. For
the WPA \ WPA2 security type, the password length must be between 8 and 64 characters. The default value
is not supplied, and when using a secured network the password must be set.

Example:

_i16 Status;
_u8 password[] = {"123456789"};
_u16 len = strlen(password);
Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_OPT_PASSWORD, len, (_u8 *)password);
if(Status)
{
 /* error */
}

• Maximum Stations Connected

The SimpleLink Wi-Fi device lets users configure the maximum number of simultaneously connected stations
allowed. The available range is from one to four stations. The default value is four stations.

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 57

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Example:

_i16 Status;
_u8 max_ap_stations = 3;
Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_OPT_MAX_STATIONS, sizeof(max_ap_stations), (_u8
*)&max_ap_stations);
if(Status)
{
 /* error */
}

• Station Aging Time

The SimpleLink Wi-Fi device lets users set the value of the maximum time before a station is considered
inactive. After this time expires, a null data frame is sent to the station. If this frame is not acknowledged and
no other frames are received, the station is disassociated. The default value is 60 seconds.

Example:

_i16 Status;
_u16 max_ap_sta_aging = 50;

Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_OPT_MAX_STA_AGING, sizeof(max_ap_sta_aging),
(_u8 *)&max_ap_sta_aging);
if(Status)
{
 /* error */
}

• AP TX Power

The SimpleLink Wi-Fi device lets users set the TX power level in AP mode. The value is from 0 to 15, as dB
offset from maximum power (0 is MAX power).

Note

Tx Power can only be set on 2.4-GHz channels.

Example:

_i16 Status;
_u8 ApPower = 3;
Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_OPT_AP_TX_POWER,1,(_u8
*)& ApPower);
if(Status)
{
 /* error */
}

• Set Info Elements

The SimpleLink Wi-Fi device lets users set up to four custom information (info) elements per mode, AP, or Wi-
Fi Direct GO. For AP mode, no more than 300 bytes (SL_INFO_ELEMENT_MAX_TOTAL_LENGTH_AP) can
be stored for all info elements (for example, 4 info elements of 75 bytes each). For Wi-Fi Direct GO mode, no
more than 160 byes (SL_INFO_ELEMENT_MAX_TOTAL_LENGTH_P2P_GO) can be stored for all info
elements (for example, 4 info elements of 40 bytes each). To delete an info element, use the relevant index
with length 0.

Example:

_i16 Status;
SlWlanSetInfoElement_t InfoEle;
InfoEle.Index = Index; /* Index of the info element. range: 0 -
SL_WLAN_MAX_PRIVATE_INFO_ELEMENTS_SUPPROTED */
InfoEle.Role = Role; /* SL_WLAN_INFO_ELEMENT_AP_ROLE (0) or
SL_WLAN_INFO_ELEMENT_P2P_GO_ROLE (1) */
InfoEle.IE.Id = Id; /* Info element ID. if
SL_WLAN_INFO_ELEMENT_DEFAULT_ID (0) is set, ID will be set to 221 *//* Organization unique ID. If
all 3 bytes are zero - it will be replaced with 08,00,28 */
InfoEle.IE.Oui[0] = Oui0; /* Organization unique ID first Byte */
InfoEle.IE.Oui[1] = Oui1; /* Organization unique ID second Byte */

WLAN www.ti.com

58 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

InfoEle.IE.Oui[2] = Oui2; /* Organization unique ID third Byte */
InfoEle.IE.Length = Len; /* Length of the info element. must be smaller than 253
bytes */
InfoEle (infoele.IE.Data, 0, SL_WLAN_INFO_ELEMENT_MAX_SIZE);

if (Len < = SL_WLAN_INFO_ELEMENT_MAX_SIZE)
{
 memcpy(InfoEle.IE.Data, IE, Len);
 Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_OPT_INFO_ELEMENT,
 sizeof(SlWlanSetInfoElement_t),(_u8*)&InfoEle);
 if(Status)
 {
 /* error */
 }
}

4.4.2.3 Get General AP Parameters

AP mode configuration can be retrieved by host commands. Each set parameter (discussed in the previous
section) can be retrieved with the following API, and the corresponding configuration ID and configuration option.

Example:

_i16 Status;
_i8 Ssid[33];
_u16 Len = 33;
_u16 Config_opt;
memset(ssid,0,33);
Config_opt = SL_WLAN_AP_OPT_SSID;
Status = sl_WlanGet(SL_WLAN_CFG_AP_ID, &config_opt , &len, (_u8*)ssid);
if(Status)
{
 /* error */
}

4.4.2.4 Black List

The black list lets users filter the stations which can connect to the AP according to their MAC address. The list
contains up to eight entries and is persistent. Adding or removing a station to and from the list results in a file
write to the external serial flash. Adding a station to the black list, which is currently connected to the AP, does
not disconnect this station from the AP. The host application can enable and disable the black list without erasing
the list of stations. By default, the black list is enabled. Removing a station from a list can be done by the MAC
address or by the index of the entry.

• Set Black List Mode

The SimpleLink Wi-Fi device allows enabling or disabling the black list mode.

Example:

_i16 Status;
_u8 access_list_mode = SL_WLAN_AP_ACCESS_LIST_MODE_DENY_LIST;
Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_ACCESS_LIST_MODE, sizeof(access_list_mode),
(_u8 *)&access_list_mode);
if(Status)
{
 /* error */
}

• Add MAC to the Black List

Add a station to the black list. Adding a station to the black list will not disconnect it.

Example:

_i16 Status;
_u8 sta_mac[6] = { 0x00, 0x22, 0x33, 0x44, 0x55, 0x66 };
Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_ACCESS_LIST_ADD_MAC, sizeof(sta_mac), (_u8 *)
&sta_mac);
if(Status)
{

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 59

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

 /* error */
}

• Remove MAC from the Black List

Removing a station from the black list can be done using the MAC address or entry index (retrieve the entry
index with Get Black option, which is specified as follows).

Examples of removing entry according to the MAC address:

_i16 Status;
_u8 sta_mac[6] = { 0x00, 0x22, 0x33, 0x44, 0x55, 0x66 };
Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_ACCESS_LIST_DEL_MAC, sizeof(sta_mac), (_u8 *)
&sta_mac);
if(Status)
{
 /* error */
}

Examples of removing entry according to the entry index:

_i16 Status;
_u8 sta_index = 0;
Status = sl_WlanSet(SL_WLAN_CFG_AP_ID, SL_WLAN_AP_ACCESS_LIST_DEL_IDX, sizeof(sta_index), (_u8
*)&sta_index);
if(Status)
{
 /* error */
}

• Get Number of Entries in the Black List

Get the number of denied stations in the current black list.

Example:

_i16 Status;
_u8 aclist_num_entries;
_u16 config_opt = SL_WLAN_AP_ACCESS_LIST_NUM_ENTRIES;
_u16 len = sizeof(aclist_num_entries);
Status = sl_WlanGet(SL_WLAN_CFG_AP_ID, &config_opt, &len, (_u8 *)&aclist_num_entries);
if(Status)
{
 /* error */
}

• Get the Black List

Get the AP black list starting from a specific index. The number of entries in the list can be determined from
the returned total length, divided by the address size.

Example:

_i16 Status;
_u8 aclist_mac[SL_WLAN_MAX_ACCESS_LIST_STATIONS][MAC_LEN];
unsigned char aclist_num_entries;
unsigned short config_opt;
unsigned short len;
int actual_aclist_num_entries;
unsigned short start_aclist_index;
unsigned short aclist_info_len;
int i;
start_aclist_index = 0;
aclist_info_len = 2*MAC_LEN;
Status = sl_WlanGet(SL_WLAN_CFG_AP_ACCESS_LIST_ID, &start_aclist_index, &aclist_info_len,
(_u8*)&aclist_mac[start_aclist_index]);
if(Status)
{
 /* error */
}
actual_aclist_num_entries = aclist_info_len / MAC_LEN; /* number of stations in the list */

WLAN www.ti.com

60 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

4.4.3 Set Network Configuration
4.4.3.1 Set AP IP Parameters

The SimpleLink Wi-Fi device lets users set the AP static IPv4 parameters (IPv6 is not supported in AP mode).
This configuration is persistent, and reset is required for changes to apply. The following parameters can be
configured:

• IP – IPv4 static address
• Subnet mask – IPv4 network mask address
• Default gateway – IPv4 default gateway address
• DNS server – IPv4 DNS server address

Example:

_i16 Status;
_i16 Role;
SlNetCfgIpV4Args_t ipV4;
ipV4.Ip = (_u32)SL_IPV4_VAL(10,1,1,201); /* IP address */
ipV4.IpMask = (_u32)SL_IPV4_VAL(255,255,255,0); /* Subnet mask */
ipV4.IpGateway = (_u32)SL_IPV4_VAL(10,1,1,1); /* Default gateway address */
ipV4.IpDnsServer = (_u32)SL_IPV4_VAL(8,16,32,64); /* _u32 DNS server address */
Status = sl_NetCfgSet(SL_NETCFG_IPV4_AP_ADDR_MODE,SL_NETCFG_ADDR_STATIC,sizeof(SlNetCfgIpV4Args_t),
(_u8 *)&ipV4);
if(Status)
{
 /* error */
}
/* restart the device */
Status = sl_Stop(0);
Role = sl_Start(NULL,NULL,NULL);

4.4.4 Station Management

The SimpleLink Wi-Fi device lets users manage the connected stations by using host commands. Users can
enable the device to view the connected stations and disconnect stations according to their MAC address.

4.4.4.1 Get Connected Stations

The SimpleLink Wi-Fi device lets users get the current number of connected stations and get the full list of
connected stations.

Example:

_i16 Status;
_u8 NumConnectedStations;
_u16 ValueLen = sizeof(_u8);
_u32 i;
SlNetCfgStaInfo_t ApStaList[4];
_u16 sta_info_len;
_u16 start_sta_index = 0;
_u16 actual_num_sta;
Status = sl_NetCfgGet(SL_NETCFG_AP_STATIONS_NUM_CONNECTED, NULL, &ValueLen, &NumConnectedStations);
if(Status)
{
 /* error */
}
/* get list of connected stations */
start_sta_index = 0; /* from index */
sta_info_len = sizeof(ApStaList); /* 4 stations to get */
Status = sl_NetCfgGet(SL_NETCFG_AP_STATIONS_INFO_LIST, &start_sta_index, &sta_info_len, (_u8
*)ApStaList);
if(Status)
{
 /* error */
}

/* extract actual stations in the response */
actual_num_sta = sta_info_len / sizeof(SlNetCfgStaInfo_t);

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 61

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

4.4.4.2 Disconnect a Station

In AP mode, the SimpleLink Wi-Fi device lets users force disconnect a station by using its MAC address.
Disconnecting a station does not add it to the black list, and the station can immediately connect again.

Example:

_i16 Status;
_u8 ap_sta_mac[6] = { 0x00, 0x22, 0x33, 0x44, 0x55, 0x66 };
Status = sl_NetCfgSet(SL_NETCFG_AP_STATION_DISCONNECT,1,SL_MAC_ADDR_LEN,(_u8 *)ap_sta_mac);
if(Status)
{
 /* error */
}

4.4.5 Events and Errors

The host can receive indication of specific states through events or errors. Asynchronous events can be sent to
the host at any time with indication of a specific state and specific data for each event. To listen to these events
and determine the needed information, a handler should be implemented in the user application, and registered
under the user.h to catch the following possible events:

• SL_WLAN_EVENT_STA_ADDED

Indicates connection is successfully completed and includes the following information: MAC address
• SL_WLAN_EVENT_STA_REMOVED

Indicates disconnection is successfully completed and includes the following information: MAC address
• SL_NETAPP_EVENT_IPV4_ACQUIRED

Indicates IP acquisition is successfully completed and includes the following information:
– IPv4 address
– Default Gateway address
– DNS address

Errors are indicated by the return value of the API. Each error code is unique.Table 4-9 lists common errors that
require user action (a complete list of possible errors is under the file error.h in the host driver).

Table 4-9. Common Errors
Error Value Comments

SL_ERROR_ROLE_AP_ERR –4108 Initialization failure in AP mode

SL_ERROR_WLAN_TX_POWER_OUT_OF_RANGE –2167 Configured TX power is out of range

SL_ERROR_WLAN_INVALID_ROLE –2050 Action applied does not match the current mode.

SL_ERROR_WLAN_CANNOT_CONFIG_SCAN_DURING_PR
OVISIONING

–2052 Illegal action occurred during provisioning.

SL_ERROR_WLAN_INVALID_COUNTRY_CODE –2464 Invalid country code

SL_ERROR_WLAN_INVALID_AP_PASSWORD_LENGTH –2168 Configured AP password has invalid length.

SL_ERROR_WLAN_AP_SCAN_INTERVAL_TOO_SHORT –2176 Scan in AP mode has a minimum interval of 10
seconds.

4.4.6 Limitations

A list of device limitations:

• A maximum of four stations can connect to the SimpleLink Wi-Fi device in AP mode.
• Only 802.11bg is supported.
• No power save support in AP mode.

WLAN www.ti.com

62 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

4.5 Wi-Fi Direct
4.5.1 General Description

The SimpleLink Wi-Fi device supports the Wi-Fi Direct standard, which enables the device to connect directly to
other devices without an AP. In this mode, one device functions as a GROUP OWNER (AP-like mode) and the
other functions as a CLIENT (STA-like mode) by inheriting the entire STA and AP attributes. This mode makes it
simple and convenient to establish a connection without joining a traditional home, office, or hotspot network.

4.5.2 Supported Features

A list of supported features follows:

• CLIENT and GROUP OWNER (GO) roles
• Configuring device name, type, listen and operation channels
• Device discovery (FULL/SOCIAL)
• Negotiation with all intents (0 to 15)
• Negotiation initiator policy – Active, Passive, Random Backoff
• WPS method Push-Button, Pin code (keypad and display)
• Join an existing Wi-Fi Direct group
• Device invites to reconnect persistent group (fast-connect)
• Group owner accepts join request
• Persistent group owner, responds to invite requests
• P2P Connect-Disconnect-Connect transition, also between different modes (for example, GO-CL-GO)
• P2P Client Legacy PS and NoA support
• Separate IP Configuration for P2P mode
• Separate Net Applications configuration on top of Wi-Fi Direct CL/GO mode

4.5.3 Configurations and Settings

The SimpleLink Wi-Fi device Wi-Fi Direct settings are configured by using the host driver API which controls the
device. Several configurations for each specific use case exist. Some of the configurations are persistent
according to the system-persistent configuration, and some are nonpersistent, as specified in each configuration
specification (more information is in Appendix B). Not all configurations must be manually set by the user
because the device has default values according to Table 4-10, which lists the Wi-Fi Direct default parameters.

Table 4-10. Wi-Fi Direct Default Parameters
Configuration Default Value

Interface IPv4

STA Tx power 0 (no backoff, maximum Tx power)

Country code EU

Connection policy Auto and Auto Provisioning

Calibration mode Normal

Applications HTTP server

Intent 3

Negotiator 2

CL address DHCP

GO address Static with the following parameters:

IP 10.123.45.1, Subnet mask: 255.255.255.0

Default gateway: 10.123.45.1, DNS: 10.123.45.1

Device name mysimplelink_XX (xx = Random 2 characters)

Device type 1-0050F204-1

listen channel Random channel between 1, 6, or 11

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 63

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 4-10. Wi-Fi Direct Default Parameters (continued)
Configuration Default Value

Operational channel Random channel between 1, 6, or 11

WLAN www.ti.com

64 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

4.5.3.1 Configuring Wi-Fi Direct General Parameters

• Set Mode

Wi-Fi Direct mode is not the initialization mode by default, therefore it must be set by the application. The
following API should be called to set the device in Wi-Fi Direct mode. Wi-Fi Direct configuration is not
effective until the device enters Wi-Fi Direct mode. This configuration requires a reset and is persistent with
no dependency on the system-persistent configuration.

Example:

_i16 Role;
_i16 Status;
Status = sl_WlanSetMode(ROLE_P2P);
if(Status)
{
/* error */
}
Status = sl_Stop(0);
Role = sl_Start(NULL,NULL,NULL);
if (ROLE_P2P != Role)
{
/* error */
}

• Set Network Configuration

The network configuration for Wi-Fi Direct mode is similar to the STA and AP modes. For CLIENT use STA
network configuration parameters, and for GO use AP network configuration parameters. Persistent:
– CL – This configuration is persistent according to the system-persistent configuration
– GO – This configuration is persistent regardless of the system-persistent configuration

To change the default configuration, the following settings are available:
• CLIENT – same network confirmation as the STA mode (static or DHCP address)
• GO – same network confirmation as the AP mode (static address)

An example of setting CLIENT static IPv4 address:

SlNetCfgIpV4Args_t ipV4;
 _i16 Status;
ipV4.Ip = (_u32)SL_IPV4_VAL(192,168,0,108); /* IP address */
ipV4.IpMask = (_u32)SL_IPV4_VAL(255,255,255,0); /* Subnet mask for this STA/P2P */
ipV4.IpGateway = (_u32)SL_IPV4_VAL(192,168,0,1); /* Default gateway address */
ipV4.IpDnsServer = (_u32)SL_IPV4_VAL(192,168,0,1); /* DNS server address */
Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE,
SL_NETCFG_ADDR_STATIC,sizeof(SlNetCfgIpV4Args_t) ,(_u8 *)&ipV4);
if(Status)
{
 /* error */
}

• Set Device Name

The device name must be unique because the Wi-Fi Direct connection is device-name based. The device
name is compound of the URN and two random characters. Users can set only the URN; the random
characters are internally generated. Default = mysimplelink_XX (xx = random two characters). This
configuration is persistent according to the system-persistent configuration.

Example:

_u8 device_name[] = "Simple_WiFi_Direct";
_i16 Status;
Status = sl_NetAppSet (SL_NETAPP_DEVICE_ID,SL_NETAPP_DEVICE_URN, strlen(device_name), (_u8 *)
device_name);
if(Status)
{
 /* error */
}

• Set Device Type

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 65

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

The following macro is used to set the Wi-Fi Direct device type. The device type is published under P2P I.E.
The device type is part of the Wi-Fi Direct discovery parameters, and is used to better recognize the device.
The maximum length is 17 characters. Default = 1-0050F204-1. This configuration is persistent according to
the system-persistent configuration.

Example:

_i16 Status;
_u8 str[17];
_u16 len = strlen(device_type);

memset(str, 0, 17);
memcpy(str, device_type, len);
Status = sl_WlanSet(SL_WLAN_CFG_P2P_PARAM_ID, SL_WLAN_P2P_OPT_DEV_TYPE, len, str);
if(Status)
{
 /* error */
}

• Set Listen and Operational Channels

The listen channel is used for the discovery state and the value can be 1, 6, or 11. The device stays in this
channel when waiting for Wi-Fi Direct probes requests. The operation channel is only used by the GO device.
The GO device moves to this channel after the negotiation phase. The default listen channel is randomly
assigned between channels 1, 6, or 11. This configuration is persistent according to the system-persistent
configuration. The regulatory domain class should be 81 in 2.4 G.

An example for setting the listen channel to 11 and the operational channel to 6 follows:

_u8 channels [4];
_i16 Status;
channels [0] = (unsigned char)11; /* listen channel */
channels [1] = (unsigned char)81; /* listen regulatory class */
channels [2] = (unsigned char)6; /* operational channel */
channels [3] = (unsigned char)81; /* operational regulatory class */
Status = sl_WlanSet(SL_WLAN_CFG_P2P_PARAM_ID, SL_WLAN_P2P_OPT_CHANNEL_N_REGS,4,channels);
if(Status)
{
 /* error */
}

4.5.3.2 Set Wi-Fi Direct Policy

The Wi-Fi Direct connection policy is divided into two major configurations:

• Wi-Fi Direct Intent Value

This value indicates in which Wi-Fi Direct mode the device acts (CLIENT, GO, or other). This configuration is
done by using the macro SL_WLAN_P2P_POLICY. Three defines can be used when setting the intent:
1. SL_WLAN_P2P_ROLE_CLIENT (intent 0): Indicates that the device is forced to be CLIENT.
2. SL_WLAN_P2P_ROLE_NEGOTIATE (intent 7): Indicates that the device can be either CLIENT or GO,

depending on the Wi-Fi Direct negotiation tie-breaker. This tie-breaker is the system default.
3. SL_WLAN_P2P_ROLE_GROUP_OWNER (intent 15): Indicates that the device is forced to be P2P GO.

Note

This configuration is persistent according to the system-persistent configuration.
• Negotiation Initiator

This value determines whether the SimpleLink Wi-Fi device first initiates the negotiation or passively waits for
the remote side to initiate the negotiation. This configuration must be used when working with two SimpleLink
Wi-Fi devices. In general, the user does not have a GUI to start the negotiation by pressing a button or by
entering a pin key. Therefore, this option is given to avoid starting the negotiation at the same time by both
devices after the discovery process.

WLAN www.ti.com

66 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

1. SL_WLAN_P2P_NEG_INITIATOR_ACTIVE: When the remote peer is found after the discovery process, the
device immediately sends the negotiation request to the peer device.

2. SL_WLAN_P2P_NEG_INITIATOR_PASSIVE: When the remote peer is found after the discovery process,
the device passively waits for the peer to start the negotiation, and only responds after.

3. SL_WLAN_P2P_NEG_INITIATOR_RAND_BACKOFF: When the remote peer is found after the discovery
process, the device triggers a random timer (1 to 6 seconds). During this period, the device passively waits
for the peer to start the negotiation. If the timer expires without negotiation, the device immediately sends the
negotiation request to the peer device. This is the system default, and also the recommendation for working
with two SimpleLink Wi-Fi devices out-of-the box, because no negotiation synchronization must be done.

Note

This configuration is persistent according to the system-persistent configuration.

Example:

_i16 Status;
Status = sl_WlanPolicySet(SL_WLAN_POLICY_P2P, SL_WLAN_P2P_POLICY(SL_WLAN_P2P_ROLE_NEGOTIATE,
 SL_WLAN_P2P_NEG_INITIATOR_RAND_BACKOFF) , NULL,0);
if(Status)
{
 /* error */
}

4.5.3.3 Configure Connection Policy

This policy is used for automatic connection. The system tries to connect to a peer automatically after reset, or
after disconnect operation by the remote peer. There is a general mechanism for the peer profile and peer profile
configuration which is not described in this section, though an example of how to add a profile is explained in a
later section. The mechanism described here explains how the device uses these profiles in relation to the Wi-Fi
Direct automatic connection. The same connection policy can also be configured in STA mode, use the same
setting parameters, and be applied in both modes, but it has slight differences.

The four connection policy options:

• Auto – This policy is similar to Auto connection in STA mode. The device starts the Wi-Fi Direct find process,
and searches for all Wi-Fi Direct profiles stored on the device, then tries to find the best candidate to start
negotiating. If at least one candidate is found, the connection attempt is triggered. If more than one device is
found, the best candidate according to profile parameters is chosen.

• Fast – In Wi-Fi Direct mode, this policy is the equivalent to the Wi-Fi Direct persistent group, but it has a
different meaning between GO and CLIENT. This option is very useful for making a fast connection after
reset, but it is dependent on the last connection state. This option is active only if there was a successful
connection before the device was reset, because the last connection parameters are saved and used by the
fast connection option. If the device was a CLIENT in its last connection (before reset or remote disconnect)
then following the reset, users must send the p2p_invite to the previously connected GO, to perform a fast
reconnection. If the device was the GO in its last connection (before reset or remote disconnect) then
following reset, users must reinvoke the p2p_group_owner, and wait for the previously connected peer to
reconnect to the device.

• AnyP2P policy – This policy creates a connection to any Wi-Fi Direct peer device found during discovery.
This option does not use any stored profiles and is relevant for negotiation with push-button only.

• Auto Provisioning – This policy is not relevant in Wi-Fi Direct mode.

Each option in this macro should be sent or set as true or false. Multiple options can be used. This configuration
is persistent according to the system-persistent configuration.

Example:

_i16 Status;
Status = sl_WlanPolicySet(SL_WLAN_POLICY_CONNECTION,SL_WLAN_CONNECTION_POLICY(1,1,0,1),NULL,0);
if(Status)
{

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 67

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

 /* error */
}

4.5.4 Connection

• Discovering Remote Wi-Fi Direct Peers

This section describes how to start a Wi-Fi Direct search or discovery, and how to view the discovered
remote Wi-Fi Direct devices. The scan policy must be set to start the Wi-Fi Direct find process, and to
discover remote Wi-Fi Direct peers. This process is done by setting a scan policy for Wi-Fi Direct mode.

Note
– Setting the scan policy should be done while the device is in Wi-Fi Direct mode.
– Wi-Fi Direct discovery is performed as a part of any connection, but it can be activated using

SCAN_POLICY as well.
– This configuration is not persistent.

Example:

_u32 intervalInSeconds = 20;
_i16 Status;
Status = sl_WlanPolicySet(SL_WLAN_POLICY_SCAN, SL_WLAN_SCAN_POLICY(1,1),
(_u8*)&intervalInSeconds,sizeof(intervalInSeconds));
if(Status)
{
 /* error */
}

• Retrieve Remote Wi-Fi Direct Peers

There are two ways to see and get Wi-Fi Direct remote devices that were discovered during the Wi-Fi Direct
find and search operation:
– Listening to the event SL_WLAN_EVENT_P2P_DEVFOUND:

This event is sent asynchronously to the host when a remote Wi-Fi Direct is found, and contains the MAC
address, device name, and length of the device name. By listening to this event, the user can immediately
find each remote Wi-Fi Direct device that exists in their neighborhood, and issue a connect or add profile
command.

– Calling sl_WlanGetNetworkList:

By calling this API, the user receives a list of remote peers that were found during the scan and saved in
the device cache memory. By receiving the network list, the user can immediately find any remote Wi-Fi
Direct device and issue a manual connection or add profile command.

Example:

SlWlanNetworkEntry_t netEntries[30];
_i16 resultsCount = sl_WlanGetNetworkList(0,30,&netEntries[0]);

• Wi-Fi Direct Remote Connection

Enabling the scan policy sets the device to be discoverable for other devices. The two following options are
available to complete the connection:
– Combine the scan policy first with the connection policy AnyP2P, and allow the remote device to find and

complete the connection without any action from the user side (PBC only).
– Listen to the SL_WLAN_EVENT_P2P_REQUEST event. This event holds information about the remote

device that initiated the connection such as the device name, name length, MAC address, and WPS
method. To complete the connection issue, connect or add profile command with the correct parameters.

• Negotiation Method

The following are two different Wi-Fi Direct negotiation methods which indicate the WPS phase that follows to
the negotiation:
– Push-button

WLAN www.ti.com

68 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Both sides negotiate with PBC method. Define: SL_WLAN_SEC_TYPE_P2P_PBC.
– Pin Code Connection

Divided to two options:
• PIN_DISPLAY – this side looks for this pin to be written by its remote peer. Define:

SL_WLAN_SEC_TYPE_P2P_PIN_DISPLAY
• PIN_KEYPAD – this side sends a pin code to its remote peer. Define:

SL_WLAN_SEC_TYPE_P2P_PIN_KEYPAD

These parameters influence the negotiation method and are supplied during the manual connection API
command that comes from the host or by setting the profile for automatic connection. The negotiation method is
performed by the device without a user interference.

Note

If no pin code is entered in the display side, the NWP auto-generates the pin code from the device
MAC using the following method:
1. Take the 7 LSB decimal digits in the device MAC address.
2. Add the checksum of the 7 LSB decimal digits to the LSB (8 digits total).

For example, if the MAC address is 03:4A:22:3B:FA:42, convert to it decimals (059:250:066); 7 LSB
decimal digits are: 9250066, and the WPS pin checksum digit is 2. The default pin code for this MAC
is 92500662.

Configure the negotiation method by setting the security type in the security structure when issuing a connect or
add profile command.
• Push Button: secParams.Type = SL_WLAN_SEC_TYPE_P2P_PBC
• Pin Code Keypad:

– secParams.Type = SL_WLAN_SEC_TYPE_PIN_KEYPAD
– secParams.Key = “12345670”

• Pin Code Display:
– secParams.Type = SL_WLAN_SEC_TYPE_PIN_ DISPLAY
– secParams.Key = “12345670”

• Manual Connection

After finding a remote Wi-Fi Direct device, the host can instruct the device to connect to it by issuing a simple
connect command. This command performs immediate Wi-Fi Direct discovery, and once the remote device is
found, the negotiation phase is started according to the negotiation initiator policy, method, and intent
selected.

Note
– The connection parameters are not saved to flash memory so in case of disconnection or reset

no reconnection will be done, unless fast-connect policy is on.
– This connection is treated as higher priority than connection through profiles. This indicates that

if there is already an existing Wi-Fi Direct connection in the system, the current connection will
be disconnected and the manual connection is carried out.

– At the beginning of the discovery phase, full scan cycle on all channels is performed to find
Autonomous GO which can operate on every channel.

Example:

_i16 Status;
SlWlanSecParams_t SecParams;
Status = sl_WlanConnect("my-tv-p2p-device", 16, NULL, &SecParams ,0);
if(Status)
{

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 69

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

 /* error */
}

• Manual Disconnection

The manual disconnect option lets the user disconnect from the remote peer by a host command. This
command performs Wi-Fi Direct group.

Example:

_i16 Status;
Status = sl_WlanDisconnect();
if(Status)
{
 /* error */
}

WLAN www.ti.com

70 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• Wi-Fi Direct Profiles

The purpose of profile configuration is to make an automatic Wi-Fi Direct connection after reset, or after
disconnection from the remote peer device. The add profile command stores the Wi-Fi Direct remote device
parameters in flash as a new profile, along with profile priority. These profiles are similar to the STA mode
profiles and have the same automatic connection behavior. The connection is dependent on the profile policy
configuration (see the connection policy section). If the Auto policy is on, a Wi-Fi Direct discovery is
performed, and if one or more of the found remote devices matches one of the profiles, a negotiation phase is
started according to the negotiation initiator policy, method, and intent selected. The chosen profile is the one
with the highest-priority profile.

Note

If a manual connection is sent during a profile connection, the profile connection is stopped, and
the manual connection is started.

Example:

_u8 val = 1;
_u8 policyVal;
_i16 Role, Status;
_u8 my_p2p_device[33];
_u8 remote_p2p_device[33];
_u8 bssidEmpty[6] = {0,0,0,0,0,0};
SlWlanSecParams_t SecParams;
Role = sl_Start(NULL, NULL, NULL);
if(Role != ROLE_P2P)
{
 /* Set P2P as active mode */
 Status = sl_WlanSetMode(ROLE_P2P);
}
/* Set Wi-Fi Direct client dhcp enable (assuming remote GO running DHCP server) */
Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE, SL_NETCFG_ADDR_DHCP,0,0);
if(Status)
{
 /* error */
}
/* Set Device Name */
strcpy(my_p2p_device,"sl_p2p_device");
Status = sl_NetAppSet (SL_NETAPP_DEVICE_ID, SL_NETAPP_DEVICE_URN, strlen(my_p2p_device), (_u8 *)
my_p2p_device);
if(Status)
{
 /* error */
}
/* set connection policy Auto-Connect and Fast*/
Status = sl_WlanPolicySet(SL_WLAN_POLICY_CONNECTION, SL_WLAN_CONNECTION_POLICY (1/*Auto*/,1/
Fast/, 0/*OpenAP*/,0/*AnyP2P*/,0/*auto provisioning*/), NULL, 0);
/* set P2P Policy - intent 0, random backoff */
Status = sl_WlanPolicySet(SL_WLAN_POLICY_P2P, SL_WLAN_P2P_POLICY(SL_WLAN_P2P_ROLE_CLIENT/*Intent
0 - Client*/,
SL_WLAN_P2P_NEG_INITIATOR_RAND_BACKOFF/*Negotiation initiator – random backoff*/),NULL,0);
SecParams.Type = SL_WLAN_SEC_TYPE_P2P_PBC;
SecParams.Key = "";
SecParams.KeyLen = 0;
strcpy(remote_p2p_device,"Remote_GO_Device_XX");
Status = sl_WlanProfileAdd(remote_p2p_device,
strlen(remote_p2p_device),bssidEmpty,&SecParams ,NULL ,7,0);
if(Status)
{
 /* error */
}
//restart the device
Status = sl_Stop(100);
if(Status)
{
 /* error */
}
Role = sl_Start(NULL, NULL, NULL);

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 71

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

4.5.5 Events and Errors

The host can receive indication of specific states through events or errors. Asynchronous events can be sent to
the host at any given time with indication of the specific state and specific data for each event. To listen to these
events and determine the needed information, a handler should be implemented in the user application, and
registered under the user.h file. The following events may be received:

• SL_WLAN_EVENT_P2P_CONNECT

Indicates that a Wi-Fi Direct connection was successfully completed. Occurs when the device is a Wi-Fi
Direct CLIENT and contains the remote device parameters:
– SSID
– SSID length
– BSSID
– Go device name
– Go device name length

• SL_WLAN_EVENT_P2P_DISCONNECT

Indicates that Wi-Fi Direct disconnect is successfully completed. Occurs when the device is a Wi-Fi Direct
CLIENT and contains the remote device parameters:
– SSID
– SSID length
– BSSID
– Go device name
– Go device name length

• SL_WLAN_EVENT_P2P_CLIENT_ADDED

Indicates that Wi-Fi Direct connection was successfully completed. Occurs when the device is a Wi-Fi Direct
GO and contains the remote device parameters:
– Client MAC address
– Client device name
– Client device name length
– Own device name
– Own device name length

• SL_WLAN_EVENT_P2P_CLIENT_REMOVED

Indicates that a Wi-Fi Direct client was disconnected successfully. Occurs when the device is a Wi-Fi Direct
GO and contains the remote device parameters:
– Client MAC address
– Client device name
– Client device name length
– Own device name
– Own device name length

• SL_WLAN_EVENT_P2P_DEVFOUND

Indicates that a Wi-Fi Direct device was found during the scan and it contains the remote device parameters:
– Device name
– Device name length
– Device MAC address
– WPS Method

• SL_WLAN_EVENT_P2P_REQUEST

Indicates that a negotiation request was received from a Wi-Fi Direct remote device and it contains the
remote device parameters:

WLAN www.ti.com

72 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

– Device name
– Device name length
– Device MAC address
– WPS Method

• SL_WLAN_EVENT_P2P_CONNECTFAIL

This event is sent if the connection failed with the failure reason.

Errors are indicated by the return value of the API. Each error code is unique. Table 4-11 lists common errors
that require user action (a complete list of possible errors is under the file error.h in the host driver).

Table 4-11. Common Errors
Error Value Comments

SL_ERROR_ROLE_P2P_ERR -4109 Initialization failure in Wi-Fi Direct mode

SL_ERROR_NET_APP_P2P_ROLE_IS_NOT_CONFI
GURED

-6210 Wi-Fi Direct mode is not configured yet, and should be CL or GO to
execute the command.

SL_ERROR_WLAN_INVALID_ROLE -2050 Action applied does not match the current mode.

SL_ERROR_WLAN_KEY_ERROR -2049 One of the security parameters or SSID supplied is wrong (invalid
length or not supported).SL_ERROR_WLAN_INVALID_SECURITY_TYPE -2054

SL_ERROR_WLAN_PASSPHRASE_TOO_LONG -2055

SL_ERROR_WLAN_PASSWORD_ERROR -2058

SL_ERROR_WLAN_SSID_LEN_ERROR -2060

SL_ERROR_WLAN_PREFERRED_NETWORK_LIST
_FULL

-2062 No free profile

SL_ERROR_WLAN_INVALID_POLICY_TYPE -2066 Invalid policy type. Value is not supported.

SL_ERROR_WLAN_WIFI_ALREADY_DISCONNECT
ED

-2071 Applying disconnect command when disconnected

SL_ERROR_WLAN_GET_NETWORK_LIST_EAGAIN -2073 Scan was not enabled, one-shot scan is immediately triggered, and
user should fetch the scan results again.

SL_ERROR_WLAN_GET_PROFILE_INVALID_INDEX -2074 Profile index is too high or does not exist

4.5.6 Limitations

• Service discovery is not supported.
• GO-NOA is not supported.
• No provisioning support for Wi-Fi Direct mode
• Autonomous group is not supported.
• P2P Group Owner mode supports single peer (client) connected.
• Connection search is infinite, meaning if the remote device is not found the device keeps searching for it.

4.6 WLAN Security
The SimpleLink Wi-Fi device supports a secured connection to the AP. A secured connection can be used when
establishing the connection manually or by profiles, and depends on the settings of the AP.

4.6.1 Personal Security

The SimpleLink Wi-Fi device supports all Wi-Fi security types, commonly known as AES, TKIP, and WEP. The
personal security type and personal security key are set both in manual connection API or profiles connection
API. Table 4-12 lists the supported security types.

Table 4-12. Supported Personal Security Types
Value Description Password Length Supported Mode

SL_WLAN_SEC_TYPE_OPEN No security STA, AP

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 73

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 4-12. Supported Personal Security Types (continued)
Value Description Password Length Supported Mode

SL_WLAN_SEC_TYPE_WEP WEP open security 5 or 10 characters in
HEX format

13 or 26 characters in
ASCII format

STA, AP

SL_WLAN_SEC_TYPE_WEP_SHARED WEP shared security 5 or 10 characters in
HEX format

13 or 26 characters in
ASCII format

STA

SL_WLAN_SEC_TYPE_WPA_WPA2 WPA \ PSK and WPA2 \ PSK security types, or
a mixed mode of WPA \ WPA2 PSK security
type (TKIP, AES, mixed mode)

8 to 63 characters STA, AP

SL_WLAN_SEC_TYPE_WPA2_PLUS Supports connection to networks with security
WPA3, WPA2+PMF (Protected Management
Frames) and WPA2 (CCMP only)

8 to 63 characters STA

SL_WLAN_SEC_TYPE_WPA3 Supports connection to WPA3 only networks 8 to 63 characters STA

SL_WLAN_SEC_TYPE_WPA_PMK Preprocessed PMK as key parameter 32 bytes binary buffer STA

SL_WLAN_SEC_TYPE_WPS_PBC WPS push-button security (for more
information refer to the WPS section)

STA

SL_WLAN_SEC_TYPE_WPS_PIN WPS pin code security (for more information
refer to the WPS section)

STA

SL_WLAN_SEC_TYPE_WPA_ENT Enterprise security (for more information refer
to the enterprise security section)

STA

SL_WLAN_SEC_TYPE_P2P_PBC Relevant for Wi-Fi Direct mode, push button
security (for more information refer to the Wi-Fi
Direct section)

Wi-Fi Direct

SL_WLAN_SEC_TYPE_P2P_PIN_KEYPAD Relevant for Wi-Fi Direct mode, pin code
keypad security (for more information refer to
the Wi-Fi Direct section)

Wi-Fi Direct

SL_WLAN_SEC_TYPE_P2P_PIN_DISPLAY Relevant for Wi-Fi Direct mode, pin code
display security (for more information refer to
the Wi-Fi Direct section)

Wi-Fi Direct

An example of adding a WPA2 secured profile:

SlWlanSecParams_t SecParams;
_i16 Index;
SecParams.Type = SL_WLAN_SEC_TYPE_WPA_WPA2;
SecParams.Key = SEC_SSID_KEY;
SecParams.KeyLen = strlen(SEC_SSID_KEY);
Index = sl_WlanProfileAdd((_i8*)SEC_SSID_NAME, strlen(SEC_SSID_NAME), 0, &secParams, 0, 7, 0);

4.6.2 Enterprise Security

The SimpleLink Wi-Fi device supports Wi-Fi enterprise connection according to 802.1x authentication process.
Enterprise connection requires an authentication of the STA by the radius server behind the AP. Enterprise
connection can be invoked from manual connection or a profile. Only one enterprise profile is supported. The
following authentication methods are supported:

• EAP-TLS
• EAP-TTLS with MSCHAP
• EAP-TTLS with TLS
• EAP-TTLS with PSK
• EAP-PEAP0 with TLS
• EAP-PEAP0 with MSCHAP
• EAP-PEAP0 with PSK

WLAN www.ti.com

74 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• EAP-PEAP1 with TLS
• EAP-PEAP1 with PSK
• EAP-FAST AUTH PROVISIONING
• EAP-FAST UNAUTH PROVISIONING
• EAP-FAST NO PROVISIONING)

When the station has been authenticated, the AP and the station negotiate with the WPA/WPA2 security. The
enterprise connection can require up to three files to complete the process (to authenticate the radius server and
client according to the device and server authentication settings).

• Client Authentication

If the server requires client authentication, the following files are required:
– Private Key – Station (client) RSA private key file in PEM format
– Client Certificate – Certificate of the client, given by the authenticating network (has the public key

matches to the private key) in PEM format
• Server Authentication

The SimpleLink Wi-Fi device requires server authentication by default and the following file is required:

Server Root CA file – This file must be in PEM format. The demand for server authentication can be canceled
through the WLAN setting. Canceling this authentication is valid for a single manual connection only.

Example:

_i16 Status;
_u8 param;
_u8 param = 0; /* 1 means disable the server authentication */
Status =
sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID,SL_WLAN_GENERAL_PARAM_DISABLE_ENT_SERVER_AUTH,1,¶m);
if(Status)
{
 /* error */
}

Those files must be programmed with the following names:

• Root CA – sys/cert/ca.der
• Client certificate – sys/cert/client.der
• Private key – sys/cert/private.key

Manual enterprise connection and preferred network enterprise connection both include the same security
information needed to complete enterprise connection.

The following information is required according to the server demands:

• User – Enterprise identity name. Maximum length is 64 bytes.
• Anonymous user – Anonymous EAP identity. Maximum length is 64 bytes.
• EAP method – defines the EAP methods.

Configure to one of the following values according to the target authentication method:
• SL_WLAN_ENT_EAP_METHOD_TLS
• SL_WLAN_ENT_EAP_METHOD_TTLS_TLS
• SL_WLAN_ENT_EAP_METHOD_TTLS_MSCHAPv2
• SL_WLAN_ENT_EAP_METHOD_TTLS_PSK
• SL_WLAN_ENT_EAP_METHOD_PEAP0_TLS
• SL_WLAN_ENT_EAP_METHOD_PEAP0_MSCHAPv2
• SL_WLAN_ENT_EAP_METHOD_PEAP0_PSK
• SL_WLAN_ENT_EAP_METHOD_PEAP1_TLS
• SL_WLAN_ENT_EAP_METHOD_PEAP1_PSK

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 75

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• SL_WLAN_ENT_EAP_METHOD_FAST_AUTH_PROVISIONING
• SL_WLAN_ENT_EAP_METHOD_FAST_UNAUTH_PROVISIONING
• SL_WLAN_ENT_EAP_METHOD_FAST_NO_PROVISIONING

The SimpleLink Wi-Fi supports only one enterprise profile and requires using the above-specified file names.

An example of manual connection to an enterprise network:

SlWlanSecParams_t SecParams;
SlWlanSecParamsExt_t SecExtParams;
_i16 Status;
SecParams.Type = SL_WLAN_SEC_TYPE_WPA_ENT;
SecParams.Key = KEY;
SecParams.KeyLen = strlen(KEY);
SecExtParams.User = IDENTITY;
SecExtParams.UserLen = strlen(IDENTITY);
SecExtParams.AnonUser = ANONYMOUS;
SecExtParams.AnonUserLen = strlen(ANONYMOUS);
SecExtParams.EapMethod = SL_WLAN_ENT_EAP_METHOD_PEAP0_MSCHAPv2;
Status = sl_WlanConnect((_i8*)SSID,strlen(SSID),0,&SecParams ,&SecExtParams);
if(Status)
{
 /* error */
}

4.6.3 WPS

The SimpleLink Wi-Fi device provides users the ability to create a secure connection by using Wi-Fi Protected
Setup (WPS). WPS a provisioning method which can be used to connect the device to the network (for more
information on provisioning, see Chapter 16). WPS allows an easy and secure method to provision devices
without knowing the network name and without typing long passwords. The standard defines two mandatory
methods for WPS-enabled APs. The SimpleLink device support both methods:

• Push-Button Connect (PBC) – Push the physical WPS button in the AP, or if the button is unavailable start
the WPS process using the GUI of the AP. The AP enters the WPS provisioning process for 2 minutes.
During this period, the SimpleLink device also enters the provisioning process by calling the sl_WlanConnect
API with WPS parameters. If the connection successfully completes, a profile with the network name and
security parameters is automatically added.

• Personal Identification Number (PIN) – Enter the PIN code generated by the host using the GUI of the AP.
The AP enters the WPS provisioning process for 2 minutes. During this period, the SimpleLink device also
enters the WPS provisioning process by calling the sl_WlanConnect API with WPS parameters. If the
connection successfully completes, a profile with the network name and security parameters is automatically
added.

When the WPS process successfully completes, a connection with the AP is established in the correct security
setting according to the configuration of the AP (WPA/WPA2). The connection parameters are saved as a profile.
After a reset, the device can reconnect to the AP using the saved profile, depending on the connection policy.

An example of initiating WPS with the PBC method:

_i16 Status;
SlWlanSecParams_t SecParams;
SecParams.Type = SL_WLAN_SEC_TYPE_WPS_PBC;
SecParams.KeyLen = 0;
SecParams.Key = "";
Status = sl_WlanConnect("WPS_AP",strlen("WPS_AP"),NULL,&SecParams ,NULL);
if(Status)
{
 /* error */
}

An example of initiating WPS with the PIN Code:

_i16 Status;
SlWlanSecParams_t SecParams;
SecParams.Type = SL_WLAN_SEC_TYPE_WPS_PIN;
SecParams.KeyLen = strlen("11361435");

WLAN www.ti.com

76 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

SecParams.Key = "11361435":
Status = sl_WlanConnect("WPS_AP",strlen("WPS_AP"),NULL, &SecParams ,NULL);
if(Status)
{
 /* error */
}

4.7 Scan
4.7.1 General Description

The SimpleLink device can be enabled to perform scans and discover remote devices. The device returns up to
30 scan results. The device performs three types of scan:

• Connection scan – This scan is performed when the device tries to connect to an AP by issuing a manual
connection command, or using stored profiles with the Auto connection policy enabled. The scan is an active
scan (sends broadcast probe requests).

• Scan policy – Setting the scan policy triggers an immediate active scan (with no connection purpose), and the
scan is performed on the enabled channels with a desired interval between scan cycles.

• One-shot scan – This single scan is performed on the enabled channels.

All of the previously mentioned scan types update the scan results and are supported in STA, AP, and P2P
modes. This section describes the scan policy and one-shot scan. The connection scan is not a user task, it is
activated internally when the connection attempt is performed.

4.7.2 Connection Scan

The connection scan is run before a connection attempt. The process starts by running a fast scan cycle.

Fast scan: the purpose of this scan is to scan select channels to find and connect to a proper AP without
scanning all 2.4G and 5G (and DFS) channels. Only select channels are scanned first, because a full scan could
be a very slow process (more than 3 seconds).

The first step in this process is to decide which channels will be scanned. This selection is done by a rank
algorithm which takes into account historical scan results, connection statues, link quality, and so forth.

After the Fast Scan completes, the system decides whether to connect to one of the candidates or to continue
with the regular connection scan.

The decision is based on attributes such as: Priority, Security settings, RSSI, channel, and whether the
candidate network was the last connected network. If a proper candidate was not found, the regular connection
scan will follow.

4.7.3 Configuration (AP/STA)

• Start Scan Policy

To enable or disable the scan policy, sl_WlanPolicySet should be called with enable or disable parameter and
a desired scan interval. The interval value is in seconds.

An example of setting a scan policy with a hidden SSID scan and an interval of 20 seconds:

_u32 intervalInSeconds = 20;
_i16 Status;
Status = sl_WlanPolicySet(SL_WLAN_POLICY_SCAN, SL_WLAN_SCAN_POLICY(1,1),
(_u8*)&intervalInSeconds,sizeof(intervalInSeconds));
if(Status)
{
 /* error */
}

• Setting Scan Parameters

The SimpleLink device lets users set the scan parameters. Two parameters must be configured before
activating the scan policy:
– RSSI threshold – Set the minimum RSSI threshold. Results with RSSI below this value are not presented.

The default value is –95 dBm

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 77

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

– Channel mask – Scan specific channels. Scans performed only on the desired channels and networks that
operate on this specific channel are presented. The default value is 0x1FFF (channel 1 to 13)

An example of setting the minimum RSSI to –70 dBm and scan channels 1, 6, and 11:

_i16 Status;
SlWlanScanParamCommand_t ScanParamConfig;
ScanParamConfig.RssiThershold = -70;
ScanParamConfig.ChannelsMask = 0x421; /* channels 1,6,11 */
Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, SL_WLAN_GENERAL_PARAM_OPT_SCAN_PARAMS,
sizeof(ScanParamConfig), (_u8*)& ScanParamConfig);
if(Status)
{
 /* error */
}

• Getting Scan Results

Scan results can be retrieved after setting the scan policy. Each scan cycle updates the results (added,
updated, or removed in case of aging). Scan results can include up to 30 entries. Each entry includes the
following parameters:
– SSID
– BSSID RSSI
– Security type and cipher (hidden is part of the type)
– Channel

sl_WlanGetNetworkList triggers a one-shot scan if there are no scan results in the system, or if the scan
results which exist are old (aging is defined as 20 seconds if the scan policy is disabled, or twice the scan
interval if the policy is enabled).

An example of getting scan results from index 0 to 29:

SlWlanNetworkEntry_t netEntries[30];
_i16 resultsCount = sl_WlanGetNetworkList(0,30,&netEntries[0]);

In CC313x/CC323x, there is support also to get extended scan results: sl_WlanGetExtNetworkList. This
command is similar to the legacy command (sl_WlanGetNetworkList) but the result includes more information
if published by the AP. This information includes the country code of the AP and the supported channels of
the AP (For both 2.4 GHz and 5 GHz).

Example of getting extended scan results from index 0 to 30:

SlWlanExtNetworkEntry_t netExtEntries[30];
_i16 resultsCount = sl_WlanGetExtNetworkList(0,30,&netExtEntries[0]);

4.7.4 Usage

Scan can be used to find nearby networks before issuing a connection command.

4.7.5 Miscellaneous

• Scan policy configuration is persistent according to the system-persistent configuration, except for Wi-Fi
Direct mode, where the scan policy cannot be persistent.

• In Wi-Fi Direct mode, setting the scan policy scans only Wi-Fi Direct devices.
• Scan runs regardless of the connection state (runs in disconnect mode as well).
• Scan results are being updated while reading them, so when trying to retrieve specific indexes, duplicates

and other problems may occur.
• The scan results are not used by the system, but they can be changed by some activities (for example, the

connect activity does not use existing results in the table before it starts a new scan, but the table is changed
during the connection process).

• If more than one network has the same SSID, but different BSSID, each BSSID is stored in a different entry.

WLAN www.ti.com

78 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• When the scan policy is enabled during the connection scan, the scan policy is activated only after the
connection scan is done (after a successful connection, disconnect command, connection policy change, or
profile deletion), because the connection scan has a higher priority.

4.8 Antenna Diversity
4.8.1 Overview

The Antenna Diversity feature lets the device select the best antenna for a specific connection. Choosing the
best antenna is applied according to the configured mode. There are four operational modes available according
to the device part. Table 4-13 illustrates the supported mode per the device type.

For more information on device types, refer to Table 1-1.

Table 4-13. Antenna Diversity Modes
Mode Description CC3120/CC3220 CC3x35/CC3x30

Antenna1 Use the first antenna only + +

Antenna2 Use the second antenna only + +

Automatic Automatic antenna selection during connection only - +

Manual Manual antenna selection while connected + -

Note

CC3120 and CC3220 parts support Antenna Diversity starting from service pack v3.10.0.5.

The automatic mode which is available only on CC3x35 and CC3x30 parts is active only during connection.
When connecting to an AP, a scan command is issued internally on both antennas and the best antenna is
chosen according to the RSSI level. This antenna is used for the entire connection with the selected AP
(meaning no dynamic switch between antennas is done during connection). The mode is configurable by the
user. By default, the feature is enabled.

While the feature is enabled:

• A scan is performed on both antennas, hence a scan cycle takes longer.
• Feature is supported in scans running in AP, STA and Smart Config modes. It is not supported in Wi-Fi Direct.
• During connection the feature is disabled.

The manual mode which is available only on CC3120 and CC3220 parts is active after a connection with an AP
is established. Unlike the automatic mode where the entire implementation is in the NWP, the manual mode is
controlled by the host processor application. This mode provides two additional APIs for setting and getting the
desired antenna. The host application makes the decision according to the best RSSI level.

In manual mode, there is additional optional API to set a user trigger based on RSSI level. This API is used in
case the user would like the host application to wake up only when the operational antenna is degraded below a
predefined value. This feature serves two advantages, the first is power saving when periodic host application
wake ups are not required, and the second is real time responsiveness so the host application is notified
immediately on degraded antenna link.

While manual mode is enabled:

• The host application is responsible to assess and choose the best antenna.
• The host application can either read the RSSI level or configure a user trigger RSSI threshold to get event on.
• Feature is supported in STA mode only.

4.8.2 Configuration

The configuration of this feature is possible through the Host APIs. The possible configuration includes the mode
of the feature and the antennas’ pad number ("pin mux"). This configuration is persistent. Reset is required to
apply the changes. The following attributes can be configured:

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 79

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• Mode
– Disable (SL_WLAN_ANT_SELECTION_DISABLED).
– Enable in AUTO mode (SL_WLAN_ANT_SELECTION_AUTO).
– Enable in manual mode (SL_WLAN_ANT_SELECTION_MANUAL).
– Fixed antenna (SL_WLAN_ANT_SELECTION_ANT1, SL_WLAN_ANT_SELECTION_ANT2).

• Ant1Pad and Ant2Pad - pad number (not to be confused with the pin number), the value could be up to 40,
inclusive. It is highly recommended to use the Antennas’ default pad setting (PAD26 and PAD27 in case of
CC3120 or CC3220). See section Section 4.8.3 for more details.

• Reserved and Options - should remain 0.

Example:

typedef enum
{
SL_WLAN_ANT_SELECTION_DISABLED,/* Antenna selection disabled */
SL_WLAN_ANT_SELECTION_ANT1,/* Antenna selection - statically select antenna 1 */
SL_WLAN_ANT_SELECTION_ANT2,/* Antenna selection - statically select antenna 2 */
SL_WLAN_ANT_SELECTION_AUTO, /* Antenna selection - automatic antenna selection during connection.
Applicable only for CC3x35\CC3x30 SL devices */
SL_WLAN_ANT_SELECTION_MANUAL /* Antenna selection - manual antenna selection while connected.
Applicable only for CC3x20 SL devices */
}SlWlanAntSelectionMode_e;
typedef struct
{
_u8 Mode; /* antenna selection mode - [disable = 0 | ant1 = 1 | ant2 = 2 | auto = 3 | manual = 4]
*/
_u8 Ant1Pad;/* antenna1 selection pad (not pin!) */
_u8 Ant2Pad;/* antenna2 selection pad (not pin!) */
_u8 Reserved;
_u32 Options;
} SlWlanAntSelectionConfig_t;
_i16 Role;
_i16 Status;
SlWlanAntSelectionConfig_t AntSelConfig;
AntSelConfig. Mode = SL_WLAN_ANT_SELECTION_AUTO;

Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, WLAN_GENERAL_PARAM_ANT_SELECTION_CONFIG,
 sizeof(SlWlanAntSelectionConfig_t), (_u8 *)&AntSelConfig);
if(Status)
{
 /* error */
}
/* restart the device */
Status = sl_Stop(0);
Role = sl_Start(NULL,NULL,NULL);

In manual mode case, there are two additional APIs for setting and getting the desired antenna.

typedef enum
{
SL_WLAN_ANT_IDX_1 = 1,/* Antenna index 1 */
SL_WLAN_ANT_IDX_2,/* Antenna index 2 */
SL_WLAN_ANT_TOGGLE,/* Antenna toggle */
SL_WLAN_ANT_NUM_OF_IDXS
}SlWlanAntIndex_e;
typedef struct SetAntennaCmd
{
SlWlanAntIndex_e AntIndex;/* antenna index - 1, 2 or toggle */
} SetAntennaIndex_t;

Example for antenna setting:

SetAntennaIndex_t param;
param.AntIndex = SL_WLAN_ANT_TOGGLE;
sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID,SL_WLAN_GENERAL_PARAM_ANT_SELECTION_SET,sizeof(SetAntennaInde
x_t), (_u8*)¶m);

WLAN www.ti.com

80 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Example for antenna getting:

_i16 RetVal = 0;
_u16 config_opt = SL_WLAN_GENERAL_PARAM_ANT_SELECTION_GET;
_u16 len = sizeof(SetAntennaIndex_t);
SetAntennaIndex_t param;
param.AntIndex = SL_WLAN_ANT_TOGGLE;
RetVal = sl_WlanGet(SL_WLAN_CFG_GENERAL_PARAM_ID, &config_opt, &len, (_u8*)¶m);

4.8.3 Pad Selection

To allow maximum flexibility for every platform configuration, there are multiple choices for assigning the antenna
selection on the device’s pins. These choices differ slightly based on device family type. Table 4-14 lists the
available pins that can be used in each one of the devices.

Table 4-14. Antenna Diversity Pad Configuration
PAD name Pin number CC3135 CC3235 CC31x0 CC32x0 Comment

PAD03 58 v v Default coexistence output on CC323x
LaunchPad

PAD04 59 v v v v

PAD05 60 v v v v

PAD06 61 v v

PAD08 63 v v v v

PAD09 64 v v v v Default coexistence input pin on cc313x
booster pack

PAD10 1 v v v v

PAD11 2 v v

PAD12 3 v v v v Default coexistence input pin on cc313x
booster pack

PAD13 4 v v v v

PAD14 5 v v

PAD15 6 v v

PAD16 7 v v

PAD17 8 v v

PAD22 15 v v

PAD25 21 v v v v Shared with SOP2

PAD26 29 v v Default for Antenna Selection on LaunchPad
and Booster pack

PAD27 30 v v Default for Antenna Selection on LaunchPad
and Booster pack

PAD40 18 v v v v

4.9 Calibrations
4.9.1 2.4-GHz Wi-Fi Calibration Modes

The SimpleLink device performs calibration of the Wi-Fi physical layer. The system supports three different
calibration modes to optimize this process for the required use case. The default calibration mode is triggered
calibration. Setting the calibration mode can be done only by the Image Creator tool during the creation of the
image.

• Normal calibration mode is used to achieve the best RF performance, or when the environment of the device
is prone to changes (temperature changes).

• Triggered calibration mode is used for lowest power consumption. Calibrations are done once on the first
boot, and kept for consecutive boots. Recalibration is done on TX power change, or during the restore-to-
factory process. Triggered mode can issue calibrations when updating to a new service pack that includes
radio changes, after any TX power level change, or if the calibration file in the serial flash is corrupted.

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 81

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• One-time calibration mode is similar to Triggered mode, but recalibration is never done under any
circumstances. One-time is used when the system power source is not able to handle the peak calibration
current. In this mode, user actions that trigger recalibration in Triggered mode are blocked.

Note

For low power applications, TI recommends choosing Triggered mode over One-Time calibration
mode, unless current peak limit is an absolute constraint. Triggered mode does not issue calibrations
unless absolutely necessary, or manually triggered.

Calibration failure:

When the device fails to calibrate, the device INIT complete fails, and the INIT complete async event has the
error: SL_ERROR_CALIB_FAIL.

• For a calibration error with Normal or Triggered calibration, power/hibernate cycle invokes recalibration.
• For One-Time calibration mode, the calibration is made once on the first power/hibernate cycle after the

device programming; the user should verify that on the first power/hibernate cycle of the network subsystem,
the INIT-complete succeeded. During a calibration failure the device should be reprogrammed.

Table 4-15 describes the differences between these modes.

Table 4-15. 2.4-GHz Wi-Fi Calibration Modes
First Time

INIT
Exit from Reset Exit from

Hibernate
TX Power Change Calibration

Assessment
Restore to

Factory Defaults
and Image

Normal Calibrate Calibrate No calibration Calibrate on next power/
hibernate cycle. Until the next
power cycle, the power change
is ignored.

Calibrate if
needed (subset
calibration, no
peak current)

Calibration data is
deleted. Calibrate
on next power/
hibernate cycle.

Triggered Calibrate No calibration No calibration Calibrate on next power/
hibernate cycle. Until the next
power cycle, the power change
is ignored.

No runtime
calibration

Calibration data is
deleted. Calibrate
on next power/
hibernate cycle.

One Time Calibrate No calibration.
Corrupted or
missing data leads
to INIT failure
(lock state) but no
re-calibration.

No calibration.
Corrupted or
missing data leads
to INIT failure
(lock state) but no
re-calibration.

Invalid operation. In this mode,
setting the TX power is allowed
only by the Image Creator tool.

No runtime
calibration

Calibration data is
kept – no re-
calibration

4.9.2 5-GHz Wi-Fi Calibration Modes
4.9.2.1 Serving Channel Calibrations

A serving channel is a channel that the system uses and might transmit in all rates. The device executes the
calibration when such a channel becomes active. The most common case in which such calibration is done is
upon connection of the SimpleLink Wi-Fi device in STA mode to a 5-GHz Wi-Fi AP.

The calibration data is stored in the file system when sl_Stop() is called from the host interface. The calibration
file contains the calibration data of the last serving channel (last used 5-GHz Wi-Fi channel). The calibration data
is kept only when sl_Stop is called to reduce the overall power consumption, however the host should provide
the system enough time during sl_Stop() to complete the process succeffuly.

Keeping the calibration data in the file system lets the device skip calibration when it exits hibernate, if the same
channel is used.

Re-calibration for the 5-GHz Wi-Fi serving channel will be invoked on the following cases:

• Power up (not from hibernate)
• The serving channel is switched from one channel to another channel
• Meaningful temperature change

WLAN www.ti.com

82 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• Low VBat

4.9.2.2 Non-Serving Channel Calibrations

Non-serving channels are channels that the system uses temporarily. For example, during scanning. On these
channels, the device performs a fast calibration. The fast calibration is initiated by the device upon need and the
calibration data is stored in the file system when sl_Stop() is called from the host interface (similar to the serving
channel). The data contained in these calibration contains calibrations of all channels.

Re-calibration for the 5 GHz Wi-Fi non-serving channels will be invoked on the following cases:

• Power up (not from hibernate)
• Meaningful temperature change
• Low VBat

4.9.2.3 Storing Calibration Data

As mentioned, the calibration data is kept during a call to sl_Stop(). Giving the system the necessary time to
store the data lets the system skip the calibration step if the data is still valid. This helps the overall power
consumption.

800 mSec should be enough time to store the data for most use cases, but it depends on several different
parameters, such as the working temperature and number of erase cycles done on the target page. The user
should take into account these values, according to the exact SFLASH part that is used.

4.9.2.4 Transceiver Socket

With a transceiver socket, the user can choose to use only low rates. Choosing to use only low rates allows for
the use of a non-serving channel with fast calibration, rather than full calibration on a serving channel.

Example:

sd = sl_Socket(SL_AF_RF, SL_SOCK_RAW, SL_WLAN_RAW_RF_SOCKET_CHANNEL(36,
TRANSCEIVER_5G_LOW_POWER_LOW_RATE));

4.10 BLE / 2.4-GHz Radio Coexistence
The 2.4-GHz band is used by many wireless communication standards and proprietary wireless
implementations. When two different entities use the same wireless band in close proximity, it is crucial to have
some coexistence mechanism to avoid significant degradation in performance. The BLE coexistence mechanism
simplifies the effort of designing a product that uses two 2.4-GHz wireless technologies on the same board. The
coexistence mechanism is supported on CC313x and CC323x devices only. Although the mechanism is
designed to effortlessly implement coexistence with any BLE / 2.4-Ghz radio capable of delimiting its RF activity
with a GPIO, the assumption and the design considers the BLE as a typical radio that might coexist with Wi-Fi
device. BLE and WLAN operate on the same frequencies and disturb each other’s transmissions and receptions
with no inherent way to avoid it. WLAN, however, is more inherently tolerant to time-domain disturbances. With
this in mind, the co-existence mechanism gives priority to the BLE entity over the WLAN, as the WLAN can often
delay its transmission or miss a reception without having any major noticeable effect apparent to the user (to
some extent). When configured, the coexistence mechanism works in transparent way to the host. For more
information, technical details, and guidelines on this feature, see the Application Note.

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 83

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

WLAN

CC31xx Coexisting

Device

RF switch
RF2 RF1

2.4GHz

Ant

GPIO (out)

2.4GHz ANT

port

2.4GHz ANT

port

GPIO (in)

GPIO (out)

Figure 4-2. BLE Coexistence

4.10.1 Key Features

Table 4-16. Key Features
Key Features Description
2.4-GHz coexistence Allows better bandwidth performance and power consumption when sharing the 2.4-GHz

radio with other devices.

Autonomous operation When enabled, no other action is required from the application.

Multiple antenna configurations Allows balancing BOM and RF performance.

Flexible pin assignment Coexistence signals can be assigned to various I/Os of the SimpleLink device.

4.10.2 Configuration and Settings

The coexistence feature requires assigning two GPIOs for correct operation (input from the coexisting device
and output to the RF switch). The pins can be selected from Table 4-17, depending on the device variant.

WLAN www.ti.com

84 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 4-17. Pin Numbers
PAD Name Pin Number CC3130 CC3135 CC3230 CC3235 Comment
PAD03 58 N N Y Y Output only. Default coexistence output on

LaunchPad.

PAD04 59 Y Y Y Y Output only

PAD05 60 Y Y Y Y

PAD06 61 N N Y Y

PAD08 63 Y Y Y Y

PAD09 64 Y Y Y Y

PAD10 1 Y Y Y Y

PAD11 2 N N Y Y Output only

PAD12 3 Y Y Y Y

PAD13 4 Y Y Y Y

PAD14 5 N N Y Y

PAD15 6 N N Y Y

PAD16 7 N N Y Y

PAD17 8 N N Y Y Output only

PAD22 15 N N Y Y

PAD25 21 Y Y Y Y Shared with SOP2, output only

PAD26 29 Y N Y N

PAD27 30 Y N Y N

PAD40 18 Y Y Y Y Default coexistence input on LaunchPad

The enabling and I/O selection of the coexistence feature is done through the WLAN Set API and requires
restarting the network subsystem (sl_Stop / sl_Start).

typedef struct
{
 UINT8 Mode;
 UINT8 InputPad;
 UINT8 OutputPad;
 UINT8 Reserved;
 UINT32 Options;
}SlWlanCoexConfig_t;
_i16 Status;
SlWlanCoexConfig_t CoexConfig;
CoexConfig.Mode = 1; /* 0-No coexistence, 1-Single antenna coexistence */
CoexConfig.InputPad = 03; /* PAD number for input signal from coexisting device */
CoexConfig.OutputPad = 08; /* PAD number for RF switch control output signal*/
CoexConfig.Options = 0; /* Must be zero */
Status = sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID, WLAN_GENERAL_PARAM_COEX_CONFIG,
sizeof(CoexConfig),
&CoexConfig);
if(Status)
{
/* error */
}
/* Reset device to apply configuration */
sl_Stop(200);
sl_Start(NULL, NULL, NULL);

The coexistence configuration is persistent and must be applied only if it is changed.

The coexistence configuration applies to all device roles (access point, station, and peer 2 peer).

The coexistence configuration can also be set using the Image Creator tool under System Settings > Device >
Radio Settings.

www.ti.com WLAN

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 85

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

4.10.3 Operation

The coexistence mechanism works by disabling the WLAN RF activity when the GPIO output from the
coexistence source is driven high, as seen in Figure 4-3.

This mechanism inherently makes the priority of coexisting device higher than that of WLAN, which is preferable
as WLAN is by nature more resistant to interference. This, however, dictates that it is the coexisting device’s task
to divide the bandwidth between the two devices and ensure WLAN has enough bandwidth for the application to
work properly. See the SimpleLink coexistence Application Report for more details.

Coexisting device RF Activity
(TX or RX)

S
y
s
te

m
 V

IO
 L

e
v
e

l > 100 µs

Coexisting device output GPIO Coexisting device output GPIO
>20 ms

Coexisting device RF Activity
(TX or RX)

> 100 µs

WLAN RF Activity
(TX or RX)

Figure 4-3. Coexistence Mechanism

4.10.3.1 Calibration

If coexistence is enabled when RF calibrations (see Section 4.9) are set to Normal, the application must ensure
that the coexisting device remains inactive (and its GPIO is driven low) during the start of the networking
subsystem (the execution of sl_Start API). Otherwise, excessive current might be drained due to calibrations
retries, and the network subsystem may fail to start.

WLAN www.ti.com

86 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

5.1 Introduction...88
5.2 Key Features... 88
5.3 Addressing..88
5.4 DHCPv4 Client...91
5.5 DHCPv4 Server... 93
5.6 DNS Server..94
5.7 Errors and Asynchronous Events.. 95

Chapter 5
Network Addresses

www.ti.com Network Addresses

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 87

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

5.1 Introduction
The SimpleLink Wi-Fi device has a built-in network stack that offloads network activities from the host MCU, and
decreases the code size and memory consumption of Wi-Fi applications. The network stack supports IPv4, IPv6,
TCP, UDP, SSL, TLS, and a suite of network applications that are required by IoT and internet-enabled devices.
This chapter provides the basic information and feature list of this network stack.

The host is required to integrate only a small software driver, which provides a simple and slim API set for the
networking activities. The traffic APIs performed by the socket layer adhere to the Linux variant of the Berkeley
Sockets (BSD). Chapter 6 describes this layer in more detail.

The SimpleLink device implements a dual network stack, which allows access to IPv4 and IPv6 networks
simultaneously. IPv4 is enabled by default in all Wi-Fi modes: STA, AP, and Wi-Fi Direct. IPv6 is supported only
in STA mode, disabled by default, and can be enabled if needed.

5.2 Key Features
Table 5-1 describes the major features of this network stack.

Table 5-1. Key Features
Key Features Description

IP protocols IPv4, IPv6

IP addressing LLA, DHCPv4, DHCPv6, static, stateless

Cross layer DAD, NDP, ARP, ICMPv4, ICMPv6

Application DNS server, DNS client, DHCP server

5.3 Addressing
The SimpleLink Wi-Fi device supports multiple IP address acquisition methods. For Wi-Fi station and Wi-Fi
Direct client modes, IP acquisition starts after a successful Wi-Fi connection. For AP and Wi-Fi Direct GO, the IP
address is static and predefined. Changing the addressing configuration requires a device reset, as shown in
Table 5-2.

Table 5-2. Addressing
Wi-Fi Station Wi-Fi AP Wi-Fi Direct

IPv4 Always enabled Static Client – Like station

Group Owner – Like APOne IP address:
• DHCP
• LLA
• Static

IPv6 Disabled (default) Not supported Not supported

Up to two IP addresses:
• Local (mandatory):

– Stateless – Link-Local Address (FE80::/64)
– Statefull (DHCPv6)
– Static

• Global (optionally):
– Stateless
– Statefull (DHCPv6)
– Static

Network Addresses www.ti.com

88 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Note
• IPv4 is always enabled. IPv6 can also be enabled, but it cannot work without IPv4.
• During a DHCP IPv4 failure, the SimpleLink device acquires the IPv4 address by using Local-Link

Address protocol (LLA).
• For power-sensitive systems, TI recommends disabling IPv6.
• All addressing configurations are persistent and available through the host interface.

5.3.1 IPv4 Addresses

The SimpleLink device allows the following IPv4 acquisition methods:

• Stateful (DHCPv4) with Stateless (LLA) Fallback – In this mode, the device starts by trying to acquire the
IPv4 address from a DHCP server. LLA is acquired only after a DHCPv4 client time-out expires. The default
time-out is 25 seconds, but it can be configured by the user.

Note
– LLA allows communicating with devices on the local network only.
– The LLA IP address range is from 169.254.1.0 to 169.254.254.255. The default gateway and

DNS address are not configured.

Example:

• _i16 Status;
_u32 LLATimeout = 60; // default is 25 seconds
Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE, SL_NETCFG_ADDR_DHCP_LLA, sizeof(_u32),
&LLATimeout);
if(Status)
{
// error
}

• Stateful (DHCPv4) Only – In this mode, the device tries to acquire the IPv4 address from a DHCP server
with no time-out.

Example:

_i16 Status;
Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE,SL_NETCFG_ADDR_DHCP,0,0);
if(Status)
{
// error
}

• Static – In this mode the IPv4 address of the device is preconfigured.

Example:

_i16 Status;
SlNetCfgIpV4Args_t ipV4;
ipV4.Ip = (_u32)SL_IPV4_VAL(10,1,1,201); // _u32 IP address
ipV4.IpMask = (_u32)SL_IPV4_VAL(255,255,255,0); // _u32 Subnet mask for this STA/P2P
ipV4.IpGateway = (_u32)SL_IPV4_VAL(10,1,1,1); // _u32 Default gateway address
ipV4.IpDnsServer = (_u32)SL_IPV4_VAL(8,8,8,8); // _u32 DNS server address
Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE,SL_NETCFG_ADDR_STATIC,sizeof(ipV4),
(_u8*)&ipV4);
if(Status)
{
// error
}

5.3.2 IPv6 Addresses

To enable IPv6, the host application must configure an IPv6 LLA. Configuration of an IPv6 global address is
optional.

www.ti.com Network Addresses

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 89

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Example:

_u32 IfBitmap = 0;
_i16 Status;
IfBitmap = SL_NETCFG_IF_IPV6_STA_LOCAL | SL_NETCFG_IF_IPV6_STA_GLOBAL;
Status = sl_NetCfgSet(SL_NETCFG_IF,SL_NETCFG_IF_STATE,sizeof(IfBitmap),&IfBitmap);
if(Status)
{
 // error
}

5.3.2.1 Local Link

IPv6 local link must consist of the following prefix: Fe80::/64. The following IPv6 link-local acquisition methods
are allowed:

• Stateless Auto Configuration – The least significant 64 bits are filled with the device MAC address in
EUI-64 format. The Duplicate Address Detection (DAD) algorithm is used to verify that the address is unique
on the local link. When a DAD failure occurs, this procedure continues with random numbers on the least
significant 64 bits.

Example:

_i16 Status;
Status = sl_NetCfgSet(SL_NETCFG_IPV6_ADDR_LOCAL,SL_NETCFG_ADDR_STATELESS,0,0);
if(Status)
{
 // error
}

• Stateful (DHCPv6) – IPv6 LLA is acquired from the DHCPv6 server. The DAD algorithm is used to verify that
the address is unique on the local link. When DAD failure occurs, stateless auto-configuration is used
instead.

Example:

_i16 Status;
Status = sl_NetCfgSet(SL_NETCFG_IPV6_ADDR_LOCAL,SL_NETCFG_ADDR_STATEFUL,0,0);
if(Status)
{
 // error
}

• Static – In this mode the IPv6 address of the device is preconfigured. The DAD algorithm is used to verify
that the address is unique on the local link. When DAD failure occurs, the address is not valid and a
notification is sent to the host.

Example:

_i16 Status;
SlNetCfgIpV6Args_t ipV6;
memset(&ipV6, 0, sizeof(ipV6));
ipV6.Ip[0] = 0xfe800000;
ipV6.Ip[1] = 0x00000000;
ipV6.Ip[2] = 0x00004040;
ipV6.Ip[3] = 0x0000ce65;
Status = sl_NetCfgSet(SL_NETCFG_IPV6_ADDR_LOCAL,SL_NETCFG_ADDR_STATIC,sizeof(ipV6),(_u8*)&ipV6);
if(Status)
{
 // error
}

5.3.2.2 Link-Global

The SimpleLink device allows the following IPv6 global address which must consist of the prefix 2000::/3. The
following acquisition methods are allowed:

• Stateless: The most significant 64 bits acquired from the RA messages (router advertisement message that
is sent periodically by an IPv6 router). The least significant 64 bits are filled with a MAC address in EUI-64

Network Addresses www.ti.com

90 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

format. The DAD algorithm is used to verify that the address is unique on the link. When DAD failure occurs,
the global address is invalid and the device cannot communicate outside the local network.

• Stateful (DHCPv6): The IPv6 global address is learned from the DHCPv6 server. The DAD algorithm is used
to verify that the address is unique on the link. When DAD failure occurs, the global address is invalid and the
device cannot communicate outside the local network.

• Static: The user configures the IPv6 global address and single IPv6 DNS server address. The DAD algorithm
is used to verify that the address is unique on the link. When DAD failure occurs, the global address is invalid
and the device cannot communicate outside the local network.

5.3.3 DNS Addresses

The SimpleLink device supports IPv4 and IPv6 protocols. Each interface can support up to two DNS servers:

• In DHCP mode, the SimpleLink device can receive up to two DNS server addresses. The host application
can temporarily overwrite the second address. However, this address is effective until the next IP acquire.

• In static address mode, the host application can configure two DNS server addresses. The first address is
persistent, and the second address is effective until the next IP acquire.

One DNS request is supported at a time. The default time-out is 18 seconds per DNS server, and can be
configured by the host.

5.4 DHCPv4 Client
5.4.1 Modes

The SimpleLink device supports some enhanced DHCP modes for IP acquisition after connection to a Wi-Fi
network:

• Full Renew Process – If the lease time of the acquired IP address has not expired, the device starts by
trying to renew this address. Failure to renew the last address invokes a full DHCP process. This mode is
enabled by default and occurs only if the lease time is greater than 1 hour (otherwise the full DHCP process
occurs).

Example:

_i16 Status;
Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE,SL_NETCFG_ADDR_FAST_RENEW_MODE_WAIT_ACK,0,0);
if(Status)
{
 // error
}

www.ti.com Network Addresses

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 91

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• Opportunistic Renew Process – This mode is similar to the full renew process mode, but the host is notified
on IP acquired immediately and the traffic is enabled even before the ACK has been received from the DHCP
server. In case of a renew failure, an IP loss event is triggered and the traffic is blocked until a new IP
address is acquired by a full DHCP process. This mode allows the host to communicate with devices faster
than other DHCP modes.

Example:

_i16 Status;
Status =
sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE,SL_NETCFG_ADDR_FAST_RENEW_MODE_NO_WAIT_ACK,0,0);
if(Status)
{
 // error
}

• Full DHCP Process – The entire DHCP sequence is processed with every connection to the network.

Example:

_i16 Status;
Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE, SL_NETCFG_ADDR_DISABLE_FAST_RENEW,0,0);
if(Status)
{
 // error
}

Figure 5-1 shows the differences between the modes.

DHCPv4

Server

DHCP DISCOVER

DHCP OFFER

DHCPv4

Client

DHCP REQUEST

DHCP ACK

Multiple servers can

reply to DHCP

discover message.

The client accepts

only one offer by

requesting this

address.

DHCP REQUEST

DHCP ACK

The renew

performed by

requests to continue

using the IP

address.

Wlan

Connect

IP Acquired

Full DHCP

process

IP Acquired

IP Acquired

Opportunistic

renew process
Full renew

process

Figure 5-1. DHCPv4 IP Acquisition Modes

Network Addresses www.ti.com

92 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

5.4.2 Address Release

By default the SimpleLink device does not release the DHCP address when a disconnection of the Wi-Fi is
requested by the host. However, in some use cases, the release is required even if the lease time is short due to
a limited address range at the DHCP server. The SimpleLink device enables a special mode that releases the IP
address as Wi-Fi disconnect commands are received from the host application. This mode is not enabled by
default.

Example:

_i16 Status;
Status = sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE,SL_NETCFG_IF_ENABLE_DHCP_RELEASE,0,0);
if(Status)
{
 // error
}

5.5 DHCPv4 Server
The SimpleLink device includes an internal DHCPv4 server which is supported in AP mode and Wi-Fi Direct
mode (group owner). The DHCPv4 server allocates IP addresses for connected stations. The range and lease
time of the IP address can be configured by the host driver APIs. The AP/GO IP and DHCP server addresses
range should have the same class C subnet. Station-leased IP address information is not persistent, and all
addresses are considered as available for lease after the SimpleLink device reset. Table 5-3 shows the DHCP
server defaults.

Table 5-3. DHCP Server Defaults
DHCP Server Default

Mode Enabled

Gateway IP address 10.123.45.1

IP range 10.123.45.2 to 10.123.45.254

Lease time 86,400 seconds

32 Address Maximum lease addresses

5.5.1 Enable and Disable the DHCP Server

The SimpleLink device lets users enable or disable the DHCP server. In AP mode, the DHCP server is enabled
by default. This configuration is persistent according to the system-persistent configuration.

An example of enabling the DHCP server:

_i16 Status;
Status = sl_NetAppStart(SL_NETAPP_DHCP_SERVER_ID); //enable the DHCP serverif(Status)
{
 // error
}

An example of disabling the DHCP server:

_i16 Status;
Status = sl_NetAppStop(SL_NETAPP_DHCP_SERVER_ID); //disable the DHCP serverif(Status)
{
 // error
}

www.ti.com Network Addresses

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 93

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

5.5.2 Set DHCP Server Parameters

The SimpleLink device lets users set the DHCP server parameters. The following parameters can be set:

• Address range – First and last IP address for addressed allocation. The following macro can be used:
SL_IPV4_VAL(192,168,1,10)

• Lease time – Lease time (in seconds) of the IP address.

The range of the DHCP server addresses must be in the subnet of the AP IP address. This configuration is
persistent. The configuration should be performed when the DHCP server is not running.

Example:

_i16 Status;
SlNetAppDhcpServerBasicOpt_t dhcpParams;
_u8 outLen = sizeof(SlNetAppDhcpServerBasicOpt_t);
dhcpParams.lease_time = 4096; // lease time (in seconds) of the IP
Address
dhcpParams.ipv4_addr_start = SL_IPV4_VAL(192,168,1,10); // first IP Address for allocation
dhcpParams.ipv4_addr_last = SL_IPV4_VAL(192,168,1,16); // last IP Address for allocation.
Status = sl_NetAppStop(SL_NETAPP_DHCP_SERVER_ID); // Stop DHCP server before
settingsif(Status)
{
 // error
}
Status = sl_NetAppSet(SL_NETAPP_DHCP_SERVER_ID, SL_NETAPP_DHCP_SRV_BASIC_OPT, outLen,
(_u8*)&dhcpParams);
if(Status)
{
 // error
}
Status = sl_NetAppStart(SL_NETAPP_DHCP_SERVER_ID); // Start DHCP server with new
settingsif(Status)
{
 // error
}

5.6 DNS Server
The SimpleLink device has an internal DNS server which runs in AP mode and Wi-Fi Direct mode (GO). The
DNS server is enabled by default and can be disabled. The DNS server resolves the SimpleLink device IPv4
address. The default domain name is mysimplelink and it can be configured (see Section 3.10).

Example:

_i16 Status;
Status = sl_NetAppStop(SL_NETAPP_DNS_SERVER_ID); // Stop DNS serverif(Status)
{
 // error
}

Network Addresses www.ti.com

94 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

5.7 Errors and Asynchronous Events
Table 5-4 summarizes the major asynchronous events which are part of the NetApp silo event handler
(slcb_NetAppEvtHdlr).

Table 5-4. Major Asynchronous Events in NetApp Silo
Event Description STA Role AP Role
SL_NETAPP_EVENT_IPV4_
ACQUIRED

IPv4 interface is available for traffic.
The event includes IPv4
parameters such as gateway mask
and DNS server address.

After Wi-Fi connection, two
options:
• Immediate event: static

configuration or DHCPv4
opportunistic renew
configuration.

• Delay between the
connection and the event:
DHCPv4, fast renew or
LLA.

Immediate

SL_NETAPP_EVENT_IPV6_
ACQUIRED

IPv6 local address or global
interface is available for traffic. The
event includes IPv6 parameters
such as IP address and DNS
server address.

After Wi-Fi connection and DAD
successfully complete

IPv6 is not supported

SL_NETAPP_EVENT_
DHCPV4_LEASED

A IPv4 DHCP client acquired IPv4
address from the internal DHCP
server. Event includes IPv4
address, lease time, and client
MAC address.

DHCPv4 server is not
supported

DHCPv4 server must be
enabled (default)

SL_NETAPP_EVENT_
DHCPV4_RELEASED

A client IPv4 address released.
Event includes IPv4 address, client
MAC address, and reason.

Not supported DHCPv4 server is enabled
(default)

SL_NETAPP_EVENT_IPV4_
LOST

The IPv4 address acquired by the
device is no longer available.

Supported Not supported

SL_NETAPP_EVENT_DHCP_
IPV4_ACQUIRE_TIMEOUT

Acquiring time for the IPv4 address
by DHCP took too long and is not
completed yet, acquiring by DHCP
still continues.

After Wi-Fi connection and
DHCP configuration

Not supported

SL_NETAPP_EVENT_IP_
COLLISION

IPv4 address conflict, two stations
connected, one station acquired
IPv4 address by the SimpleLink
DHCP server and the second
station has static IPv4 address with
the same IP address. Event
includes IPv4 address and two
MAC addresses.

DHCPv4 server is not
supported

DHCPv4 server is enabled
(default)

SL_NETAPP_EVENT_IPV6_
LOST

Global or Local acquired IPv6
address is no longer available.
Event includes IPv6 address.

Supported IPv6 is not supported

Table 5-5 summarizes the major asynchronous events that are part of the NetCfg silo event handler
(slcb_DeviceGeneralEvtHdlr).

Table 5-5. Major Asynchronous Events in NetCfg Silo
Event Description STA Role AP Role

SL_ERROR_STATIC_ADDR_
SUBNET_ERROR

Ipv4 static configuration. IPv4
address is not in the same subnet
of the gateway.

Supported Supported

www.ti.com Network Addresses

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 95

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 5-6 describes the major error codes that may be returned while calling sl_NetCfgSet.

Table 5-6. Major Errors While Calling sl_NetCfgSet
Event Description STA Role AP Role

SL_ERROR_INCORRECT_IPV6_
STATIC_LOCAL_ADDR

IPv6 local address static
configuration, address prefix is not
the local address prefix.

Supported IPv6 is not supported

SL_ERROR_INCORRECT_IPV6_
STATIC_GLOBAL_ADDR

IPv6 global address static
configuration, address prefix is not
the global address prefix.

Supported IPv6 is not supported

SL_ERROR_IPV6_LOCAL_
ADDR_SHOULD_BE_SET_FIRST

The local IPv6 address must be
enabled when the global IPv6
address is enabled.

Supported IPv6 is not supported

Note
• On the SL_NETAPP_EVENT_IPV4_LOST and SL_NETAPP_EVENT_IPV6_LOST events, TI

highly recommends closing the relevant sockets.
• On the SL_NETAPP_EVENT_IPV4_ACQUIRED or SL_NETAPP_EVENT_IPV6_ACQUIRED

events, if the new IP is different from the previous IP, TI highly recommends closing the relevant
sockets, and opening new sockets before any transmit and receive occurs.

Network Addresses www.ti.com

96 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

6.1 Introduction...98
6.2 Key Features... 98
6.3 Socket Types...98
6.4 BSD API... 99
6.5 Socket Working Flow... 100
6.6 DNS.. 109
6.7 Operation Modes...110
6.8 IP Fragmentation...115
6.9 Errors... 116

Chapter 6
Socket

www.ti.com Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 97

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

6.1 Introduction
Sockets allow communication between two or more peers in the network. The SimpleLink device complies with
the BSD, which is a common IP connection interface used in the industry. This chapter describes the socket
layer of the SimpleLink device. The socket layer provides a set of simple APIs for sending and receiving data.
The SimpleLink device implements a subset of the BSD API which complies with the Linux variant.

6.2 Key Features
Table 6-1 lists the key features of the socket.

Table 6-1. Key Features
Key Features Description

Max Sockets 16 sockets including up to 6 connected secured sockets for CC3120/CC320 and up to 16
connected secured sockets for CC313x/CC323x

Socket Types SL_SOCK_STREAM (TCP)

SL_SOCK_DGRAM (UDP)

SL_SOCK_RAW

SL_IPPROTO_TCP (TCP RAW socket)

SL_IPPROTO_UDP (UDP RAW socket)

SL_IPPROTO_RAW (IP RAW socket)

SL_SEC_SOCKET (secure socket – SSL/TLS)

Address Families SL_AF_INET (IPv4)

SL_AF_INET6 (IPv6)

SL_AF_RF (transceiver)

SL_AF_PACKET

Connection Types Client

Server

Modes Blocking

Non-blocking

Trigger

Dual Stack Mode IPv6 server allows IPv4 client connections.

UDP Packet Boundary Enable and disable (disable by default)

Select Select on receive, accept, and connect

GetHostByName Retrieve the IPv4/IPv6 address according to the host name.

Multicast Up to eight multicast sockets

6.3 Socket Types
The socket layer of the SimpleLink device supports the following socket types:

• UDP sockets provide users a basic transport service, with no guarantee of delivery and packet ordering. UDP
also allows more than two hosts to exchange data through a multicast group.

• TCP sockets enable two hosts to establish a connection and exchange streams of data with a guarantee of
delivery and packet ordering.

• RAW sockets provide users access to the underlying communication protocols with socket abstractions. RAW
sockets are datagram oriented (packet boundary). The SimpleLink device allows RAW sockets access to be
created at the following layers:
– Layer 1: Physical (available only if the device is not connected to a wireless network).
– Layer 2: Data Link (MAC)
– Layer 3: Network
– Layer 4: Transport

Socket www.ti.com

98 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• Secure sockets provide users the ability to establish encrypted data transport (SSL and TLS). For more
information, see Chapter 7.

6.4 BSD API
The SimpleLink driver provides two sets of socket APIs: the SimpleLink API and a BSD-compliant API. The
major differences are:

• The SimpleLink APIs return informative error codes instead of using the errno method.
• The BSD-compliant API is an additional socket layer which allows the user to use an errno mechanism

implemented by the operating system. This layer is provided as part of the SimpleLInk WiFi SDK. For more
information please refer to the docs folder under the installed SDK.

Table 6-2 describes a list of BSD socket APIs and their corresponding SimpleLink API.

Table 6-2. BSD APIs
BSD SimpleLink Server or

Client
TCP or UDP Description

socket() sl_Socket() Both Both Creates an endpoint for communication.

bind() sl_Bind() Both Both Assigns an IP address and a port to a socket. If the socket is
not bound, a port is chosen automatically.

listen() sl_Listen() Server TCP Listens for connections on a socket.

connect() sl_Connect() Client Both Initiates a connection on a socket.

accept() sl_Accept() Server TCP Accepts an incoming connection on a socket.

send(), recv() sl_Send(), sl_Recv() Both Both Writes and reads data. (On UDP, connect API which sets the
default address must be called before sl_Send.)

write(), read() Not supported

sendto(), recvfrom() sl_SendTo(),
sl_RecvFrom()

Both UDP Writes/reads data to/from a UDP socket.

close() sl_Close() Both Both Causes the system to release resources allocated to a
socket. In case of TCP, the connection is terminated.

select() sl_Select() Both Both Select allows a program to monitor multiple sockets, waiting
until one or more sockets become ready.

SimpleLink supports:
• Readfds: On data socket: data arrived. On listen socket:

indicating new client connected
• Writefds: only on TCP connect, must configure

nonblocking socket
• Exceptfds: not supported

gethostbyname() sl_NetAppDnsGet
HostByName()

None None This is not a socket operation. It is preliminary to a socket
operation, to retrieve host IP information corresponding to a
host name.

poll() Not supported

getsockopt() sl_SockOpt() Both Both Retrieves the current value of a particular socket option for
the specified socket.

setsockopt() sl_SetSockOpt() Both Both Sets a particular socket option for the specified socket.

htons(), ntohs() sl_Htons(), sl_Ntohs() Both Both Reorders the bytes of a 16-bit unsigned value from processor
order to network order.

htonl(), ntohl() sl_Htonl(), sl_Ntohl() Both Both Reorders the bytes of a 32-bit unsigned value from processor
order to network order.

inet_ntop(),
inet_pton()

- Both Both Converts IP address from string representation to binary
representation and vice versa.

www.ti.com Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 99

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

The following examples demonstrate the differences between these APIs:

/* Send using BSD API and checking errno value */if (send(sock, pBuff, sizeof(pBuff), 0) == -1)
{
 int errsv = errno;
 printf("send() failed\n");
 if (errsv == ...) { ... }
}

/* Send using SimpleLink API and checking the return value */
Status = sl_Send(sock, pBuff, sizeof(pBuff), 0);
if (Status < 0)
{
 printf("send() failed\n");
 if (Status == ...) { ... }
}

6.5 Socket Working Flow
Two main categories of sockets exist: datagram sockets (connectionless) and stream sockets (connection
oriented). Datagram sockets or connectionless sockets allow for data exchange between entities without
establishing a connection before any data delivery. In this category the data integrity and packet order are not
ensured.

Stream sockets or connection-oriented sockets require establishing a connection between the two entities before
any data exchange. While the connection is maintained, data integrity and the order are ensured. Programmers
should choose between connection-oriented transport protocol and connectionless transport protocol according
to the requirements of their applications. For example, VoIP applications, which are sensitive to delays, may
require the connectionless transport protocols. File transfer applications may require connection-oriented
transport protocol due to the guaranty of data integrity and packet ordering.

6.5.1 TCP

TCP is a connection-oriented transport protocol. The TCP client initiates the connection to a TCP server, and
after establishing the connection successfully, the socket provides a bidirectional tunnel between the client and
the server.

Figure 6-1 describes the general flow of TCP between a server and a client.

Socket www.ti.com

100 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

TCP Client

TCP

Server

4. Data Exchange

sl_Socket

sl_Bind

sl_Listen

sl_Accept

sl_Recv

sl_Send

sl_Recv

sl_Socket

sl_Connect

sl_Send

sl_Recv

sl_Close

Connection Establishment

sl_Close

exit with error

Connection Termination

1. Open a socket

3. Initiate connection

5. Initiate close

1. Open a socket

2. Bind port for

accepting new

connections

3. Listen on the server

socket

4. Accept a client

connection on the

server socket

5. Data Exchange on

the client socket

6. Close the client

socket

sl_Bind

2. Bind the source

port � bind is optional

in client sockets and

not used in most

applications

Figure 6-1. TCP Socket Flow

6.5.1.1 Client Side

1. Open the TCP socket. Use family type: SL_AF_INET for IPv4, and SL_AF_INET6 for IPv6.
2. Bind the source port. This step is optional for the client socket. If the sl_Bind API is not called, the SimpleLink

device internally binds a random source port. Binding the port is performed in the same way a server socket
binds a port (see the following example).

3. Initiate a connection to the server. The TCP IPv6 client can also connect to the IPv4 server. In this case,
when the IPv6 socket is connecting to the IPv4 server, the IPv4 destination address is mapped to IPv6 format
(for example, ::00:ffff:ipv4).

4. Send and receive the data.
5. Close the socket. By default the sl_Close API returns immediately and the close process is done internally.

There are two ways to confirm that all the data was transmitted and the socket closed gracefully:
• By default: the sl_Close API returns immediately, while the close process is done internally. The socket is

closed only after all queued packets successfully transmit. If the device failed to transmit all queued
packets, the host application is notified through an asynchronous error event
(SL_SOCKET_TX_FAILED_EVENT).

www.ti.com Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 101

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• The common option in BSD: use the SO_LINGER option. When a socket is set as linger, the sl_Close API
does not return until all queued packets successfully transmit, or earlier if the linger configured time-out
expires with an appropriate error indication.

Example:

_i16 Status;
_i16 Sd;
SlSockAddrIn_t Addr;
_i8 SendBuf[] = "Hello World !!!";
_i8 RecvBuf[1460];
Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(5001);
Addr.sin_addr.s_addr = sl_Htonl(SL_IPV4_VAL(192,168,1,31));

Sd = sl_Socket(SL_AF_INET, SL_SOCK_STREAM, 0);
if(0 > Sd)
{
// error
}
Status = sl_Connect(Sd, (SlSockAddr_t *)&Addr, sizeof(SlSockAddrIn_t));
if(Status)
{
// error
}
Status = sl_Send(Sd, SendBuf, strlen(SendBuf), 0);
if(strlen(SendBuf) != Status)
{
// error
}
Status = sl_Recv(Sd, RecvBuf, 1460, 0);
if(0 > Status)
{
// error
}
Status = sl_Close(Sd);
if(Status)
{
// error
}

6.5.1.2 Server Side

1. Open the TCP socket. Use family type: SL_AF_INET for IPv4, and SL_AF_INET6 for IPv6. The socket is the
public socket of the server.

2. Bind the public port of the server. The host application must set a specific port for the server to allow clients to
connect.

3. Listen. This stage marks the socket as a server socket. When listen is called, an additional socket is allocated
for this specific server socket to reserve a socket for the next client connection (from this point the server
socket is ready to accept new connections even if the host still did not call to sl_Accept).

4. Accept a client connection. This step extracts a connection request from the queue of pending connections
on the server socket, and creates a new connected socket for data exchange between the server and the
client side. The original public socket is not affected by this call, and an additional accept could be called on
the public socket to accept additional clients. Each newly created client decreases the number of available
sockets in the system by one. IPv6 server sockets bound to any interface, can accept IPv6 and IPv4 clients.
When accepting IPv4 clients, the returned client IP address is IPv4 mapped to IPv6 format (for
example, :00:ffff:ipv4).

5. Send and receive the data. Use the master socket descriptor to send and receive data. This step is done in
the same way as in a secondary socket.

6. Close the data socket. To close a connection with a specific client, the close operation should be called with
the client socket. The close is performed in a similar way to closing a client socket. For more information
regarding linger, see the close section of client socket.

7. Close the server socket. When there is no need to accept any new client connections, call the close API on
the server socket. The client sockets are not affected by closing the public socket, and only new connections

Socket www.ti.com

102 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

cannot be accepted. If the host application is required to close the clients and the server, TI recommends
closing the client sockets first.

6.5.1.3 TCP Keep Alive

The keep-alive option is relevant for TCP connections only and is enabled by default. If there were no messages
between the client and the server during the time-out period, a keep-alive message is sent. This option can be
disabled by calling sl_SetSockOpt with the option SL_SO_KEEPALIVE. The keep-alive time-out is also
configurable using the option SL_SO_KEEPALIVETIME. The default keep-alive time-out of a new socket is 5
minutes. The value is set in seconds.

An example of disabling the keep-alive command:

_i16 Status;
SlSockKeepalive_t enableOption;
enableOption.KeepaliveEnabled = 0;
Status = sl_SetSockOpt(Sd, SL_SOL_SOCKET, SL_SO_KEEPALIVE, (_u8
*)&enableOption,sizeof(enableOption));
 if(Status)
{
// error
}

An example of setting the keep-alive time-out:

_i16 Status;
_u32 TimeOut = 120;
Status = sl_SetSockOpt(Sd, SL_SOL_SOCKET, SL_SO_KEEPALIVETIME,(_u8*) &TimeOut, sizeof(TimeOut));
 if(Status)
{
// error
}

Example:

_i16 Status;
SlSockAddrIn_t Addr;
_i16 ClientSd;
SlSockAddrIn_t Addr;
_i16 AddrSize = sizeof(SlSockAddrIn_t);

Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(6000);
Addr.sin_addr.s_addr = SL_INADDR_ANY;

Status = sl_Bind(Sd, (SlSockAddr_t *)&Addr, sizeof(SlSockAddrIn_t));
if(Status)
{
 // error
}
Status = sl_Listen(Sd, 1);
if(Status)
{
// error
}
ClientSd = sl_Accept(Sd, (SlSockAddr_t *)&Addr, &AddrSize);
if(0 > ClientSd)
{
 // error
}

6.5.2 UDP

UDP is a connectionless transport protocol. It does not require establishing a connection with a peer socket, and
each packet is individually managed. However, the SimpleLink device lets the host application use UDP either as
a connectionless or a connection-oriented protocol. In the connection-oriented mode, received packets with a
different source than the connect source are dropped. In UDP there are no client and server sides. Both sides
can initiate data exchange or wait for reception of data. In most applications one side waits for data reception
and one side initiates the data exchange. The side that waits for data reception is considered as a server and
the side that initiates the data exchange is considered as a client.

www.ti.com Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 103

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure 6-2 shows these two methods:

UDP

Server

sl_Socket

sl_Bind

sl_RecvFrom

sl_SendTo

sl_SendTo

sl_RecvFrom

sl_Closesl_Close

1. Open a socket

2. Bind port

3. Data Exchange

4. Close the socket

UDP

Client

3. Connection-like

Data Exchange

sl_Socket

sl_Send

sl_Recv

1. Open a socket

4. Close the socket

Sl_Connect

sl_Bind

2. Bind the source

port ± bind is

optional in client

sockets and not

used in most

applications

3. Connectionless

Data Exchange

Figure 6-2. UDP Socket Flow

1. Open the UDP socket. Use family type: SL_AF_INET for IPv4, use SL_AF_INET6 for IPv6.
2. Bind the source port. This step is optional. If sl_Bind is not called, the SimpleLink device automatically binds

a random source port. In practice, the server side must bind the port to define the destination port to the other
side.

3. Data Exchange
• Connectionless

– Send Data – The host application must provide the destination address and port. To send data from an
IPv6 socket to an IPv4 socket, the IPV4 destination address in sl_SendTo must be mapped to IPv6
format (for example, ::00:ffff:ipv4).

– Receive Data – The host application must provide the source address and port. The IPv6 socket can
receive data from the IPv4 socket, by mapping the source address to IPv6 format (for
example, ::00:ffff:ipv4).

• Connection-Oriented
– Connect – Calling the API sl_Connect for UDP sockets defines the destination address. By calling to

sl_Send (in connection-oriented mode the host application calls sl_Send instead of sl_SendTo), the
address of the remote peer is defined and datagrams from other addresses are dropped.

– Send Data – Send a datagram to the address that was defined during the connect process.
– Receive Data – Receive a datagram from the address that was defined during the connect process.

4. Close the socket. The close API returns immediately. LINGER has no meaning for connectionless sockets.

Example:

_i16 Sd;
_i16 Status;

Socket www.ti.com

104 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

SlSockAddrIn_t Addr;
_i8 SendBuf[] = "Hello World !!!";
_i8 RecvBuf[1460];
Sd = sl_Socket(SL_AF_INET, SL_SOCK_DGRAM, 0);
if(0 > Sd)
{
 // error
}
Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(5001);
Addr.sin_addr.s_addr = SL_INADDR_ANY;

Status = sl_Bind(Sd, (SlSockAddr_t *)&Addr, sizeof(SlSockAddrIn_t));
if(Status)
{
// error
}
Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(5001);
Addr.sin_addr.s_addr = sl_Htonl(SL_IPV4_VAL(192,168,1,31));
Status = sl_SendTo(Sd, SendBuf, strlen(SendBuf), 0, (SlSockAddr_t*)&Addr,sizeof(SlSockAddr_t));
if(strlen(SendBuf) != Status)
{
 // error
}
AddrSize = sizeof(SlSockAddrIn_t);
Status = sl_RecvFrom(Sd, RecvBuf, 1460, 0, (SlSockAddr_t *)&Addr, &AddrSize);
if(0 > Status)
{
 // error
}
Status = sl_Close(Sd);
if(Status)
{
 // error
}

6.5.2.1 Multicast

IPv4 and IPv6 multicasts allow for one-to-many communication over an IP network. If a device is interested in
receiving multicasts which are sent to a specific group of devices, it may join or leave the group by sending join
or leave messages. The UDP socket that joined a group receives group multicast packets in addition to the
regular unicast packets. Television is a good example of multicasting, where each channel is transmitted on a
different multicast group. When a user changes the channel, the UDP socket leaves the multicast group and
joins another multicast group.

The SimpleLink device supports IPv4 IGMPv2 and IPv6 MLDv1 protocols for joining and leaving groups. Users
can support up to eight IPv4 multicast groups and up to eight IPv6 multicast groups. Two UDP sockets which join
the same group decrease the available multicast groups only by one.

To join or leave a group, use sl_SetSockOpt with the options listed in Table 6-3.

Table 6-3. Multicast
SL_IP_ADD_MEMBERSHIP Join IPv4 group

SL_IP_DROP_MEMBERSHIP Leave IPv4 group

SL_IPV6_ADD_MEMBERSHIP Join IPv6 group

SL_IPV6_DROP_MEMBERSHIP Leave IPv6 group

An example of joining the IPv4 multicast group:

_i16 Status;
SlSockIpMreq_t MulticastIp;
MulticastIp.imr_multiaddr.s_addr = sl_Htonl(SL_IPV4_VAL(224,0,1,200));
MulticastIp.imr_interface.s_addr = SL_INADDR_ANY;
Status = sl_SetSockOpt(Sd, SL_IPPROTO_IP, SL_IP_ADD_MEMBERSHIP,(char*) &MulticastIp,
sizeof(MulticastIp));
if(Status)
{

www.ti.com Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 105

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

// error
}

An example of leaving the IPv4 multicast group:

_i16 Status;
SlSockIpMreq_t MulticastIp;
MulticastIp.imr_multiaddr.s_addr = sl_Htonl(SL_IPV4_VAL(224,0,1,200));
MulticastIp.imr_interface.s_addr = SL_INADDR_ANY;
Status = sl_SetSockOpt(Sd, SL_IPPROTO_IP, SL_IP_DROP_MEMBERSHIP,(char*) &MulticastIp,
sizeof(MulticastIp));
if(Status)
{
// error
}

6.5.2.2 Packet Boundary

By default the Rx boundary is kept. When the host application reads only a part of the data, the rest is dropped.
The host application can disable the Rx boundary by using sl_SetSockOpt with
SL_SO_RX_NO_IP_BOUNDARY. When the Rx boundary is disabled, reading only a part of the data does not
drop the rest of the data. This is a proprietary option for UDP sockets only, which enables the host to read data
in small chunks with limited buffering resources.

Example:

_i16 Status;
SlSockRxNoIpBoundary_t enableOption;
enableOption.RxIpNoBoundaryEnabled = 1;
Status = sl_SetSockOpt(Sd, SL_SOL_SOCKET, SL_SO_RX_NO_IP_BOUNDARY,
(_u8*)&enableOption ,sizeof(enableOption));
 if(Status)
{
// error
}

Socket www.ti.com

106 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

6.5.3 RAW

RAW sockets provide access to the underlying communication protocols with socket abstractions. The working
flow is very similar to a connectionless socket (UDP).

6.5.3.1 Layer 4: Transport

RAW sockets in layer 4 let the host application send and receive packets, which include the IP header. Opening
a RAW socket with TCP or UDP protocol means that all packets are forwarded directly to the RAW socket. If any
other TCP/UDP socket is open, it does not receive any packets. RAW sockets can work with any desired
protocol, which should be specified when opening the socket.

By default all received packets include the IP header. If the IP header of the packet is not needed, it can be
removed by calling the API sl_SetSockOpt with the option SL_IP_RAW_RX_NO_HEADER.

Example:

#define MY_PROTOCOL 90
_i16 Sd, Protocol = MY_PROTOCOL;

Sd = sl_Socket(SL_AF_INET /* SL_AF_INET6 */, SL_SOCK_RAW, Protocol);
if(0 > Sd)
{
 // error
}

6.5.3.2 Layer 3: Network

RAW sockets in layer 3 let the host application send and receive packets, which include the network header.
When opening a RAW socket with UDP/TCP protocol, TCP/UDP packets are forwarded directly to the RAW
socket, and any other UDP/TCP sockets are useless. Calling sl_SetSockOpt with the option SL_IP_HDRINCL
must contain an IP header. IPv4 checksum is calculated and set by the SimpleLink device. The received packet
includes the IP header. This socket type is not supported for IPv6.

Example:

#define MY_PROTOCOL 90
_i16 Sd, protocol = MY_PROTOCOL , Status;
_u32 IncludeIpHeader = 1;

Sd = sl_Socket(SL_AF_INET, SL_SOCK_RAW, protocol);
if(0 > Sd)
{
// error
}
Status = sl_SetSockOpt(Sd, SL_IPPROTO_IP, SL_IP_HDRINCL, & IncludeIpHeader, sizeof(IncludeIpHeader));
if(Status)
{
// error
}

6.5.3.3 Layer 2: Data Link (Transceiver Mode, Not Connected)

The SimpleLink transceiver mode lets the host transmit Wi-Fi frames in disconnected mode only. The SimpleLink
network stack can be bypassed by using the layer 2 RAW socket. Layer 2 lets hosts implement their own
network stack and applications. For more information, see Chapter 12.

Example:

i16 Sd;
Sd = sl_Socket(SL_AF_RF, SL_SOCK_DGRAM, Channel);
if(0 > Sd)
{
// error
}

The SimpleLink transceiver mode lets the host transmit Wi-Fi frames in disconnected mode only. For more
detailed information, see Chapter 13.

www.ti.com Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 107

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Example:

_i16 Sd, Channel = 11;
Sd = sl_Socket(SL_AF_RF, SL_SOCK_RAW, Channel);
if(0 > Sd)
{
 // error
}

6.5.4 Network Bypass Mode

Network bypass mode lets the user bypass the internal network stack to use their own. In this mode, all
protocols above the MAC layer (such as ARP, IP, TCP/UDP, ICMP, HTTP, and so forth) are disabled and the user
must implement the protocols they wish to use on the host MCU. These higher level protocols running on the
host must be sent in Ethernet format.

When operating in network bypass mode, all packets are exchanged between the host and NWP as Ethernet
packets. The host can send and receive Ethernet packets of up to 1514 bytes (14 bytes for headers). The host is
responsible for ensuring these headers are correct because the NWP does not check. The NWP maintains the
Wi-Fi connectivity, replaces Ethernet header with Wi-Fi header on transmit, and Wi-Fi header with Ethernet
header on receiving. As shown in Figure 6-3, the host should include the destination MAC, source MAC, and
Ethernet type as Ethernet headers plus payload.

Note

QoS is not supported on the NWP. All packets are treated as best effort packets (for example,
AC_BE).

Wi-Fi

(Tx/Rx)

Network Stack

Network

Application

Wi-Fi Internet-on-a-chip device

Host

Driver

(SPI/

UART)

Network

Stock

Host

Applications

sl_Send

sl_Recv

Frame

Control

Duration

ID
Address

1

Address

2

Address

3

Sequence

Control

Address

4
IP

TCP/U

DP
Data

Destination

MAC
Eth type

Source

MAC
IP

TCP/U

DP
Data

Wi-Fi Frame

Ethernet Frame

Figure 6-3. NWP-Host Packet Format

The example below shows how to set up network bypass mode. A command is sent to the NWP to set a static IP
address of 0.0.0.0, which is used to notify the NWP of network bypass mode. The internal network applications
should be disabled to prevent the NWP from generating packets which could cause inconsistent behavior.
Disabling the RX filter causes the NWP to forward all packets to the host. For power sensitive applications, the
user should use an RX filter to prevent the host from waking up for irrelevant packets. For more information on
RX filters, see Chapter 11.

Socket www.ti.com

108 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

int rc;
SlNetCfgIpV4Args_t ipAddr = {0};
SlWlanRxFilterIdMask_t FilterIdMask;
_u16 len = sizeof(SlWlanRxFilterIdMask_t);
_i16 RawPacketSD;
SlWlanSecParams_t secParams;
memset(&ipAddr, 0, sizeof(SlNetCfgIpV4Args_t));
sl_NetCfgSet(SL_NETCFG_IPV4_STA_ADDR_MODE, SL_NETCFG_ADDR_STATIC, sizeof(SlNetCfgIpV4Args_t), (_u8
*)&ipAddr)
if(rc < 0){
// error setting IP address to 0.0.0.0
}
// disable network applications
rc = sl_NetAppStop(SL_NETAPP_HTTP_SERVER_ID | SL_NETAPP_DHCP_SERVER_ID | SL_NETAPP_MDNS_ID);
if(rc < 0){
// error disabling application protocols
}
// restart NWP by calling stop then start to init with static IP 0.0.0.0
rc = sl_Stop(1000);
if(rc < 0){
// error stopping NWP
}
rc = sl_Start(NULL, NULL, NULL);
if(rc < 0){
// error starting NWP
}
memset(FilterIdMask,0,sizeof(FilterIdMask));
rc = sl_WlanSet(SL_WLAN_RX_FILTERS_ID, SL_WLAN_RX_FILTER_STATE , len, (_u8*)FilterIdMask);
if(rc < 0){
// error disabling internal filter
}
// open RAW socket
RawPacketSD = sl_Socket(SL_AF_PACKET,SL_SOCK_RAW, 0);
if(RawPacketSD < 0){
// error opening raw socket
}

6.6 DNS
Hosts are mostly identified by their name and not their IP address, because the IP address might change, but
the host name remains the same. Even in cases where the IP address is reserved permanently, it is common to
remember names, and not IP addresses. For example, the IP address of Google® is not familiar to users even
though it is reserved permanently. On the contrary, socket APIs use IP addresses, not names, and
sl_NetAppDnsGetHostByName() APIs are designed to bridge that gap. If successful,
sl_NetAppDnsGetHostByName() resolves the IP address. To resolve an IP address,
sl_NetAppDnsGetHostByName() sends the UDP DNS request several times, and with every retry the time-out
increases. The number of retries and time-out parameters are configurable. The command
sl_NetAppDnsGetHostByName() is a blocking command, so if failure occurs it may take some time to return.

An example of the host application setting sl_NetAppDnsGetHostByName() parameters:

www.ti.com Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 109

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

_i16 Status;
SlNetAppDnsClientTime_t Time;
Time.MaxResponseTime = 2000; // Max DNS retry timeout, DNS request timeout changed every retry,
start with 100Ms up to MaxResponseTime Ms
Time.NumOfRetries = 30; // number DNS retries before sl_NetAppDnsGetHostByName failed
Status = sl_NetAppSet(SL_NETAPP_DNS_CLIENT_ID, SL_NETAPP_DNS_CLIENT_TIME, sizeof(Time), (_u8
*)&Time);
if(Status)
{
// error
}

An example of resolving the IPv4 address:

_i16 Status;
_u32 Ipv4Addr = 0;
Status = sl_NetAppDnsGetHostByName("www.google.com", strlen("www.google.com"), &Ipv4Addr,
SL_AF_INET);
if(Status)
{
 // error
}

An example of resolving the IPv6 address:

 _i16 Status;
_u32 Ipv6Addr[4] = {0};
Status = sl_NetAppDnsGetHostByName("www.facebook.com", strlen("www.facebook.com"), Ipv6Addr,
SL_AF_INET6);
if(Status)
{
 // error
}

6.7 Operation Modes
By default, network bound APIs are blocking (network-bound APIs are APIs that trigger networking transactions
and wait for their completion). For some implementations, especially on non-OS platforms, nonblocking
operations are essential to allow other activities during these periods. For these use cases, the SimpleLink
device supports the standard nonblocking method of BSD sockets, and also a proprietary mode (trigger mode).
In nonblocking mode, it is the responsibility of the application to poll the relevant API until the operation is
completed. However, in trigger mode, instead of polling the API, the host receives an event when the operation
is completed, and only then should call the API again.

Table 6-4 describes the different modes of the relevant APIs.

Socket www.ti.com

110 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 6-4. Operational Modes
API TCP, UDP,

RAW
Blocking Mode Non-Blocking Mode Trigger Mode

sl_Connect TCP Blocked until connect success, or
connect time-out.

Supported. SL_ERROR_BSD_EALREADY
error code means not connected yet; poll
again.

Not supported

sl_Recv/
sl_RecvFrom

TCP Blocked until data arrives. Recv
Time-out can be set by
sl_SetSockOpt.

Supported. SL_ERROR_BSD_EAGAIN error
code means data has not arrived; poll again.

Not supported

UDP

RAW

sl_Send/
sl_SendTo

TCP Blocked until the internal buffer is
available.

Supported. SL_ERROR_BSD_EAGAIN error
code means no internal buffer available; try to
send again.

Not supported

UDP

RAW

sl_Accept TCP Blocked until client connects. Supported. SL_ERROR_BSD_EAGAIN error
code means no client connection; try to accept
again.

Not supported

sl_Select TCP Blocked until one or more
registered sockets become ready.

Supported Supported

UDP

RAW

6.7.1 Nonblocking Mode

In nonblocking mode, operations return immediately even if the data does not exist, or a connection is not
established yet. It is the responsibility of the application to poll the operation until completion. When a server
socket is configured as nonblocking, the accepted private socket inherits the nonblocking attribute. If there are
several nonblocking sockets, TI recommends using sl_Select with time-out 0, instead of polling each socket
separately.

The commands sl_Recv/ and sl_RecvFrom are unique, and allow nonblocking operation although the socket is
in blocking mode. Two options are available for this mode.

• A single call to sl_Recv or sl_RecvFrom in nonblocking mode by using the SL_MSG_DONTWAIT flag. The
API returns immediately with data if it exists or with the error SL_ERROR_BSD_EAGAIN. This action does
not affect any socket settings or the following calls to sl_Recv/ and sl_RecvFrom.

• Setting a receive time-out. This setting applies for all subsequent calls to sl_Recv/ and sl_RecvFrom. When
time-out expires, sl_Recv and sl_RecvFrom returns with SL_ERROR_BSD_EAGAIN, or earlier if the data
arrives.

www.ti.com Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 111

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

An example of setting the socket as non-blocking:

_i16 Status;
SlSockNonblocking_t BlockingOption;
BlockingOption.NonBlockingEnabled = 1;
// Enable or disable non-blocking mode
Status = sl_SetSockOpt(Sd,SL_SOL_SOCKET,SL_SO_NONBLOCKING,
(_u8*)&BlockingOption,sizeof(BlockingOption));
if(Status)
{
 // error
}

An example of a non-blocking TCP connect:

_i16 Status;
SlSockAddrIn_t Addr;
Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(5001);
Addr.sin_addr.s_addr = sl_Htonl(SL_IPV4_VAL(192,168,1,31));
Status = SL_ERROR_BSD_EALREADY;
while(0 > Status)
{
Status = sl_Connect(Sd, (SlSockAddr_t *)&Addr, sizeof(SlSockAddr_t));
if(0 > Status)
{
if(SL_ERROR_BSD_EALREADY != Status)
{
// errorbreak;
}
}
}

An example of receiving data with no wait flag:

_i16 Status;
_i8 RecvBuf[1460];
 Status = sl_Recv(Sd, RecvBuf, 1460, SL_MSG_DONTWAIT);
if((0 > Status) && (SL_ERROR_BSD_EAGAIN != Status))
{
// error
}

An example of setting the receive data timeout:

_i16 Status;
struct SlTimeval_t TimeVal;
TimeVal.tv_sec = 5; // Seconds
TimeVal.tv_usec = 0; // Microseconds. 10000 microseconds resolution
Status = sl_SetSockOpt(Sd,SL_SOL_SOCKET,SL_SO_RCVTIMEO, (_u8 *)&TimeVal, sizeof(TimeVal)); //
Enable receive timeoutif(Status)
{
// error
}

Socket www.ti.com

112 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

6.7.2 Trigger Mode

The trigger mode enables host applications to be triggered by the SimpleLink device when network activity is
detected, without using the blocking mode or polling the socket. This mode is useful when the power
consumption is extremely sensitive and the host processor is able to enter a deep sleep, recover fast, and retain
memory. The trigger mode is implemented by calling sl_Select. The host enters a deep sleep and wakes up due
to an event, when one or more sockets become ready. After the host wakes up, sl_Select must be called again
to identify the network activity. All blocking socket operations can be monitored by sl_Select, called with time-out
values set to 0 (sec and µs), which allow application flexibility to implement many communication use cases.
Only one select operation is supported at a time.

To define the host application in trigger mode follow these steps:

• Define host IRQ as the host wake up source.
• Ensure slcb_SocketTriggerEventHandler is registered under user.h and handle the trigger asynchronous

event SL_SOCKET_TRIGGER_EVENT_SELECT.
• Detecting select events should notify the main task trigger event of arrival, call select again.

Figure 6-4 describes a general flow of using trigger mode for accept on a server socket.

Figure 6-4. Trigger Mode Flow

An example of select trigger event handle:

void SimpleLinkSocketTriggerEventHandler(SlSockTriggerEvent_t*pSlTriggerEvent)
{
 switch (pSlTriggerEvent ->Id)
 {
 case SL_SOCKET_TRIGGER_EVENT_SELECT:

www.ti.com Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 113

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

 {
 //Notify main task trigger event arrive, wake up and call select againbreak;
 }
 default:
 break;
 }
}

6.7.2.1 Trigger Mode for Accept

1. Open the TCP Server Socket and call sl_Select on the following socket.

_i16 Status,Sd,LocalSd;
_u16 nfds;
SlSockAddrIn_t LocalAddr,Addr;
SlTimeval_t timeVal;
SlFdSet_t rxSet;
LocalAddr.sin_family = SL_AF_INET;
LocalAddr.sin_port = sl_Htons(5001);
LocalAddr.sin_addr.s_addr = 0;
timeVal.tv_sec = 0;
timeVal.tv_usec = 0;
//Open TCP server socket
Sd = sl_Socket(SL_AF_INET,SL_SOCK_STREAM, 0);
if(Status)
{
// error
}
//Bind the server socket
Status = sl_Bind(Sd, (SlSockAddr_t *)&LocalAddr, sizeof(SlSockAddrIn_t));
if(Status)
{
// error
}
//Listen
Status = sl_Listen(Sd, 0);
if(Status)
{
// error
}
nfds = Sd + 1;
SL_SOCKET_FD_ZERO(&rxSet);
SL_SOCKET_FD_SET(Sd, &rxSet);
Status = sl_Select(nfds, &rxSet, NULL, NULL, &timeVal);
if(Status)
{
// error
}

2. The host now can enter deep sleep until triggered by the select event.
3. After the SL_SOCKET_TRIGGER_EVENT_SELECT event is received, the host wakes up and calls sl_Select

to identify which socket has network activity.

//Call select again since the trigger event has arrived (see handler example above)
SL_SOCKET_FD_ZERO(&rxSet);
SL_SOCKET_FD_SET(Sd,& rxSet);
Status = sl_Select(nfds, &rxSet, NULL, NULL, &timeVal);
int AddrSize = sizeof(SlSockAddrIn_t);
if (SL_SOCKET_FD_ISSET(Sd, &rxSet))
{
 //socket is marked, call accept
 LocalSD = sl_Accept(SockID, (SlSockAddr_t*)&Addr, (SlSocklen_t*) &AddrSize);
}

6.7.2.2 Trigger Mode for Data Reception

1. Open the TCP client socket and call sl_Select on the following socket.

_i16 Status, Sd;
_u16 nfds;
SlSockAddrIn_t Addr;
SlTimeval_t timeVal;
SlFdSet_t rxSet;

Socket www.ti.com

114 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

_i8 RecvBuf[1460];
timeVal.tv_sec = 0;
timeVal.tv_usec = 0;
//Open TCP client socket
Sd = sl_Socket(SL_AF_INET,SL_SOCK_STREAM, 0);
if(Status)
{
// error
}
Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(5001);
Addr.sin_addr.s_addr = sl_Htonl(SL_IPV4_VAL(192,168,1,31));;
Status = sl_Connect(Sd, (SlSockAddr_t *)&Addr, sizeof(SlSockAddr_t));
if(Status)
{
// error
}
Status = sl_Select(nfds, NULL, &rxSet, NULL, &timeVal);
//Sleep until triggered by the select event

2. The host can now enter deep sleep until triggered by the select event
3. After the SL_SOCKET_TRIGGER_EVENT_SELECT event is received, the host wakes up and calls sl_Select

to identify which socket has network activity.

//Call select again since the trigger event has arrived
SL_SOCKET_FD_ZERO(&rxSet);
SL_SOCKET_FD_SET(Sd, &rxSet);
Status = sl_Select(nfds, NULL, &rxSet, NULL, &timeVal);
if (SL_SOCKET_FD_ISSET(Sd, &rxSet))
{
//socket is marked, call receive
Status = sl_Recv(Sd, RecvBuf, 1460, 0);
if(Status)
 {
// error
 }
}

6.7.3 Multiple Select

Select allows a program to monitor multiple sockets until one or more sockets are ready. The SimpleLink Wi-Fi
host driver allows multiple threads in multi-threaded environment to call sl_select(), each with a different set of
sockets. When a socket is ready, the correct thread is triggered. A socket can be monitored from multiple
threads, and both are triggered once ready. Other socket actions (such as recv) might be blocked for one thread
only.

Limitations:
• Using sl_Select for multiple sockets reduces the maximum allowed sockets in the system by 1.
• Multiple select is allowed only in a multi-threaded environment (SL_PLATFORM_MULTI_THREADED is

defined).
• Multiple select is allowed only when trigger mode is not in use (slcb_SocketTriggerEventHandler is not

defined).

6.8 IP Fragmentation
IP fragmentation is a method of breaking the IP packet into smaller messages compatible with the Maximum
Transmission Unit (MTU) size, and reassembling them on the receive side. IPv4 routers fragment packets
according to the MTU of the link. IPv6 routers do not fragment, and it is the responsibility of the device to
fragment the packets. When receiving data, the SimpleLink device supports reassembling of the received IP
fragmented packets for both IPv4 and IPv6. When the host application sends data which is bigger than the MTU
size, the SimpleLink device splits this data into packets compliant with the MTU size without using IP
fragmentation. For TCP, the size has no effect because TCP ensures byte ordering. However, for UDP the size
may cause packet reordering, therefore, TI recommends that the host applications send UDP data up to the
MTU size (1472 bytes for IPv4 and 1452 bytes for IPv6), or verify data integrity in higher layers.

www.ti.com Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 115

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

The SimpleLink device response to a fragmented ping, the maximum ping packet payload is 19,232 bytes for
Ipv4 and 27,976 bytes for IPv6.

6.9 Errors
One of the main differences between the implementation of BSD sockets and SimpleLink sockets is that error
codes are returned directly when using SimpleLink sockets, and not through the errno method (as in Linux).
Errors are indicated by the return value of the API, or by asynchronous events. Asynchronous events can be
sent to the host at any given time with a specific error indication and include specific data for each event. To
listen to these events and conclude the needed information, a handler should be implemented in the user
application and registered under the user.h header file. Each error code is unique. The following errors are
common and require user action (full possible error list is under the file error.h in the host driver).

Table 6-5 lists errors indicated by asynchronous events.

Table 6-5. Asynchronous Error Events
Error Handler Comments

SL_SOCKET_TX_FAILED_EVENT slcb_SockEvtHdlr Socket error – include the parameters status
(specified in Table 6-6 and socket ID)

Table 6-6 lists common errors status codes.

Table 6-6. Common Error Status Codes
Error Value Comments

SL_ERROR_BSD_SOC_ERROR –1 General socket error

SL_ERROR_BSD_INEXE –8 Socket command in execution

SL_ERROR_BSD_EBADF –9 Bad file number

SL_ERROR_BSD_ENSOCK –10 The system limit on the total number of open sockets has been reached.

SL_ERROR_BSD_EAGAIN –11 Try again

SL_ERROR_BSD_ECLOSE –15 Close socket operation failed to transmit all queued packets.

SL_ERROR_BSD_EINVAL –22 Invalid argument

SL_ERROR_BSD_EPROTOTYPE –91 Protocol wrong type for socket

SL_ERROR_BSD_EADDRINUSE –98 Address is already in use

SL_ERROR_BSD_ENETUNREACH –101 Network is unreachable

SL_ERROR_BSD_ETIMEDOUT –110 Connection timed out

SL_ERROR_BSD_ECONNREFUSED –111 Connection refused

SL_ERROR_BSD_EALREADY –114 Nonblocking connect in progress, try again

Socket www.ti.com

116 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

7.1 Introduction...118
7.2 Key Features... 118
7.3 Opening a Secure Socket...118
7.4 Trusted Root-Certificate Catalog...119
7.5 Options and Features Use... 119
7.6 Supported Cryptographic Algorithms.. 125
7.7 Common Errors and Asynchronous Events..126

Chapter 7
Secure Socket

www.ti.com Secure Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 117

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

7.1 Introduction
The SimpleLink device provides a secured socket layer using the SSL and TLS protocols, which are
cryptographic protocols designed to provide communications security over a TCP connection. In other
networking systems, the TLS is a layer on top of the transport layer. To simplify the use, the TLS is embedded
into the BSD layer in the SimpleLink device. TLS operations are easily done by using the BSD commands with
unique parameters and options. The SimpleLink device supports up to 6 simultaneously connected TLS sockets
in the CC312x and CC322x, and up to 16 connected TLS sockets in the CC313x and CC323x. The TLS uses a
separate execution environment by design, to better secure the keys and flows in the SimpleLink device.
Hardware accelerators are used to offload the MCU in arithmetic calculation of cryptography algorithms.

7.2 Key Features
Table 7-1 lists the key features of the secure socket.

Table 7-1. Key Features
Key Features Description Client Server

TLS server Open TLS servers and accept up to 16 peers for CC313x/CC323x and
6 peers for CC3120/CC3220 (the maximum TLS connections depends
on how many clients are connected).

TLS client Open TLS client and connect up to 16 peers for CC313x/CC323x and
6 peers for CC3120/CC3220 (the maximum TLS connections depends
on how many servers are connected).

Certificates Support certificates and root CAs according to x509 standard. √ √

BSD commands The TLS layer is embedded into the BSD commands to ease the
usage. √ √

Server verification Support full chain of trust verification while the SimpleLink device is in
client mode. √ N/A

Domain verification Support domain verification in client mode, to help against MITM
attack. √ X

Client verification Support client authentication, both in server mode to authenticate a
client that is trying to connect to the server, and in client mode, when a
remote server is asking for client certificate.

N/A √

Time and Date verification Support time and date verification of server/client cert according to the
time and date configured in the SimpleLink device. √ X

Cryptography Support the following cryptographic algorithms – RC4,AES|GCM|
CBC,CHACHA20,SHA1|256|384|
512,MD5,POLY1305,RSA,DHE,ECDSA,ECDHE.

√ √

STARTTLS Start TLS handshake on a regular TCP socket. Usually used for SMTP
on port 587. √ √

ALPN Support Application Layer Protocol Names List; this is a limited list with
HTTP1.1 and H2 drafts. √ X

DER/PEM file formats Certificate files and keys can be programmed to the file system in
either DER or PEM formats. Certificate chain must be in PEM format.
Certificate chain is only available in server mode.

√ √

Trusted root-certificate catalog Mechanism to determine if a root CA is known and trusted by TI or if a
certificate is revoked. √ X

Server name indication (SNI) Setting a domain name verification enables the SNI extension in the
client hello message, according to RFC 6066. √ X

OCSP extension (CC313x and
CC323x only)

Use OCSP protocol during the SSL handshake to check the certificate
chain for revoked certificates. supports OCSP, OCSP stapling and
stapling v2.

√ X

7.3 Opening a Secure Socket
This section provides information on how to establish a secured socket session with BSD API. A secured socket
is a TCP socket, which encrypts and decrypts data. The BSD flow is the same as regular TCP socket BSD,
excluding specific secured socket options.

Secure Socket www.ti.com

118 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

There are two ways to open secured socket:
• sl_Socket(SL_AF_INET, SL_SOCK_STREAM, SL_SEC_SOCKET) – This command opens a secured

socket. The first two parameters are typical TCP socket parameters, and the last parameter enables the
security. After the socket has been created, it is possible to use the standard BSD commands (sl_Close,
sl_Listen, sl_Accept, sl_Bind, sl_SetSockOpt, and so forth).

• Use STARTTLS to upgrade a regular connected TCP socket to a secured one (used mainly for SMTP port
587), according to the following flow:
1. sl_Socket(SL_AF_INET, SL_SOCK_STREAM,0) – Opens a regular TCP socket.
2. Use sl_Accept (in server mode) or sl_Connect to establish a connection.
3. May transfer unsecured data using sl_Send and sl_Recv.
4. Upgrade a socket to STARTTLS using sl_SetSockOpt with the SL_SO_STARTTLS option.

When the connection is established, it is possible to use sl_Recv and sl_Send to transact data between the
peers, exactly like in an unsecured TCP socket.

Note

Some dedicated TLS configurations (performed by calling sl_SetSockOpt) must be applied after
opening the socket, and not after sl_Connect in client mode or sl_Listen in server mode, as described
in Section 7.5.

7.4 Trusted Root-Certificate Catalog
The trusted root-certificate catalog is a file, provided by TI, containing a list of known and trusted root CAs by TI.
The certificate store holds the common trusted root CAs in the market, such as VeriSign, GoDaddy, GeoTrust,
and so forth.

The trusted root-certificate catalog also holds a list of revoked certificates known to TI. The trusted root-
certificate catalog is used only in client mode. Servers use a proprietary root CA to authenticate clients, and
therefore cannot use the certificate store. The trusted root-certificate catalog gives the user the confidence that
the CA is trusted and known when a SimpleLink client connects to a server. When a root CA does not exist in the
catalog, the sl_Connect command returns the error SL_ERROR_BSD_ESECUNKNOWNROOTCA, which
means the connection is successfully done, but the root CA used to verify the server chain of trust is unknown.
When a revoked certificate is received during the TLS connection (all of the certificate chain is checked) or if the
root CA set by the user is revoked, the handshake fails, and the error
SL_ERROR_BSD_ESECCERTIFICATEREVOKED returns from the sl_Connect command.

7.5 Options and Features Use
Options are used to enable or disable features, or to set some configurations to the TLS socket. To change the
options, use the BSD sl_SetSockOpt with unique options.

If no options were set, the following defaults take effect:
• All TLS versions are enabled (handshake starts with the highest – TLS1.2, but the server could peek lower

versions).
• All cipher suites are enabled.
• Files which are required for the TLS connection (in server mode, some of the files are mandatory to complete

the handshake) remain blank.
• Trusted root-certificate catalog is used by default.

The socket settings (specified in Section 7.5.1) must be called before the sl_Connect or sl_Listen commands to
take effect. In server mode, those settings are inherited by the child socket, and cannot be applied directly on the
child socket.

Note

Setting the server certificate and private key are mandatory when opening an TLS server.

www.ti.com Secure Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 119

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

7.5.1 Set TLS Version

Set specific TLS versions for the socket. This should be called before sl_Connect or sl_Listen.
• SL_SO_SEC_METHOD_SSLV3
• SL_SO_SEC_METHOD_TLSV1
• SL_SO_SEC_METHOD_TLSV1_1
• SL_SO_SEC_METHOD_TLSV1_2
• SL_SO_SEC_METHOD_SSLv3_TLSV1_2 – all enabled

Example:

SlSockSecureMethod_t method;
_i6 status;
method.SecureMethod = SL_SO_SEC_METHOD_TLSV1 | SL_SO_SEC_METHOD_TLSV1_2;
status = sl_SetSockOpt(sd,SL_SOL_SOCKET,SL_SO_SECMETHOD,&method,sizeof(SlSockSecureMethod_t));

7.5.2 Set Cipher Suites

Set the socket to use specific cipher suites. This should be called before sl_Connect, or sl_Listen.
• SL_SEC_MASK_SSL_RSA_WITH_RC4_128_SHA
• SL_SEC_MASK_SSL_RSA_WITH_RC4_128_MD5
• SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA
• SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_256_CBC_SHA
• SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
• SL_SEC_MASK_TLS_ECDHE_RSA_WITH_RC4_128_SHA
• SL_SEC_MASK_TLS_RSA_WITH_AES_128_CBC_SHA256
• SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA256
• SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
• SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
• SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
• SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
• SL_SEC_MASK_TLS_RSA_WITH_AES_128_GCM_SHA256
• SL_SEC_MASK_TLS_RSA_WITH_AES_256_GCM_SHA384
• SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
• SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
• SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
• SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
• SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
• SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
• SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
• SL_SEC_MASK_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
• SL_SEC_MASK_TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256

Example:

SlSockSecureMask_t mask;
_i16 status;
mask.SecureMask = SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA |
SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA;
status = sl_SetSockOpt(sd,SL_SOL_SOCKET,SL_SO_SECURE_MASK,&mask,sizeof(SlSockSecureMask_t));

7.5.3 Set Certificates, Root CA, Private Key, and DH Files

Set filenames to be used during the TLS handshake. The files must be programmed to the NWP file system. The
files should be in PEM or DER format. The client can successfully connect to a server that does not require client
authentication without any files (the server would not be verified, because no root CA is programmed). The

Secure Socket www.ti.com

120 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

server must provide a server certificate during the TLS handshake, and therefore the sl_SetSockOpt command
must be used to provide the certificate and private key of the server.

DH files are Diffie Hellman parameters files. These parameter files contain parameters for generating a DH key
when using DHE cipher suites in server mode.

In server mode; if there is no DH file, the DH cipher suites are not available, even if a secured mask is used to
peek certain cipher suites with DH. If an ECDSA signature is used in the server certificate, the RSA ciphers are
not available and vice versa.

Table 7-2. Related Files
File Client Server

Root CA file
Format: PEM/DER.
The self-signed certificate that signed the
other peer chain

Validates the remote peer (the remote
server)
If file does not exist, connection success
with error
SL_ERROR_BSD_ESECSNOVERIFY

Enables client verification when programmed (not
mandatory).
If programmed and peer did not send its certificate, a
socket asynchronous event is raised with error
SL_ERROR_BSD_ESEC_NO_PEER_CERT.

Cert
Format: PEM/DER.
A certificate issued to this peer side.

Client Cert or certificate chain if server
requires client authentication. Chain can
only be programmed in a PEM format,
where the client certificate is the first,
followed by all the intermediate CAs.
If file does not exist, and the server
requires client authentication, the server
returns ALERT of peer verify error in the
sl_Connect command.
The user must program private key with
this file, or else connection fails with
SL_ERROR_BSD_ESECBADPRIVATEFI
LE.

Server certificate or certificate chain.
Chain could only be programmed in PEM format.
The server cert should be the first in the list.
The file must be configured. If not configured, error
SL_ERROR_BSD_ESECBADCERTFILE occurs.

Private Key
Format: PEM/DER.
RSA or ECDSA key.

Client private key if server requires client
auth.
The user must program cert with this file,
or else connection fails with
SL_ERROR_BSD_ESECBADCERTFILE.

The private key of the server.
Must be configured. If not configured, error
SL_ERROR_BSD_ESECBADPRIVATEFILE is
raised.

DH (server) or PEER Cert (client)
Format: PEM/DER.
Other side certificate or DH parameters.

Configuring this file enables the domain
verification by full server cert comparison.
This file is the server expected cert. This
is being compared to the server certificate
that was received from the server during
the handshake phase, to validate that this
is truly the domain to connect to (stronger
than the domain name verification).

DH file –Diffie Hellman parameters file. Contains
parameters for generating DH key when using DHE
cipher suites in server mode.
Enables the DH ciphers.

Binding a file to a socket is done using sl_SetSockOpt, before the sl_Connect or sl_Listen commands.
• SL_SO_SECURE_FILES_PRIVATE_KEY_FILE_NAME
• SL_SO_SECURE_FILES_CERTIFICATE_FILE_NAME
• SL_SO_SECURE_FILES_CA_FILE_NAME
• SL_SO_SECURE_FILES_PEER_CERT_OR_DH_KEY_FILE_NAME

Example:

_i16 status;
status = sl_SetSockOpt(sd,SL_SOL_SOCKET,SL_SO_SECURE_FILES_CA_FILE_NAME,"ca.der",strlen("ca.der"));

www.ti.com Secure Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 121

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Note

For unique device authentication it is possible to create a unique device key pair with the crypto utils
(see Chapter 17) and use the keys to either create a CSR for external certificate signing or create a
self signed certificate. The unique device key is stored on the device's file system as system file and
cannot be accessed from the application processor. The unique key path and the certificate path of
the created key could be used as the input values for the private key of one of the value in the table
above.

7.5.4 Disable the Use of the Trusted Root-Certificate Catalog

The user can disable the use of the trusted root-certificate catalog if a personal unknown root CA is used. This is
done by using this sl_SetSockOpt, before the sl_Connect or sl_Listen commands.

Example:

_u32 dummyVal;
_i16 status;
status = sl_SetSockOpt(SockID,SL_SOL_SOCKET, SL_SO_SECURE_DISABLE_CERTIFICATE_STORE,

&dummyVal,sizeof(dummyVal));

7.5.5 Set ALPN List
7.5.5.1 ALPN Fixed List

ALPN is a list of application protocols negotiated in the handshake. The client sends the desired ALPN list, and
the server picks one and notifies the client.

The supported protocols are:
• SL_SECURE_ALPN_H1 – http 1.1
• SL_SECURE_ALPN_H2 – http 2
• SL_SECURE_ALPN_H2C – http 2 draft c
• SL_SECURE_ALPN_H2_14 – http 2 draft 14
• SL_SECURE_ALPN_H2_16 – http 2 draft 16
• SL_SECURE_ALPN_FULL_LIST

This list is only available in client mode. The list is not set by default if this option is not used. To retrieve the
selected protocol after the handshake, use sl_GetSockOpt with the SL_SO_SSL_CONNECTION_PARAMS
option. This option should be called before sl_Connect or sl_Listen.

Example:

SlSockSecureALPN_t alpn;
_i16 status;
alpn.SecureALPN = SL_SECURE_ALPN_H1 | SL_SECURE_ALPN_H2_16;
status = sl_SetSockOpt(SockID,SL_SOL_SOCKET,SL_SO_SECURE_ALPN,&alpn,sizeof(SlSockSecureALPN_t));

7.5.5.2 ALPN Generic

Set one free text protocol name – can be used alone to add the ALPN extension to the client hello message, and
can be combined with the list of fixed ALPN protocol names if used along with SL_SO_SECURE_ALPN option.
This option is available only in client mode.

Errors that could return from usage of this API:
• SL_ERROR_BSD_ESOCKTNOSUPPORT – Used on non-tcp socket or server accept socket
• SL_ERROR_BSD_ESECNOTALLOWEDWHENLISTENING – Cannot be used on listener socket
• SL_ERROR_BSD_EINVAL – Length of ALPN name must be less than 256 bytes

To retrieve the result from the server after connection (indicate if this protocol been selected or not), use
getsockopt with this opt ID. If the SL_SO_SECURE_ALPN is also used, issue a getsockopt with the
SL_SO_SECURE_ALPN, to indicate if the server picked one of the fixed protocol names.

Secure Socket www.ti.com

122 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Example:

sl_SetSockOpt(sd,SL_SOL_SOCKET,SL_SO_SECURE_ALPN_GENERAL,"h2",strlen("h2"));
sl_Connect(sd, (SlSockAddr_t *)&addr, addrSize);
length = 10;
sl_GetSockOpt(sd,SL_SOL_SOCKET,SL_SO_SECURE_ALPN_GENERAL,buf,&length);
if(length == 0)
{
//this protocol was not selected by the server
}
else if(memcmp(buf,"h2",length) == 0)
{
//the protocol that was set was picked by the server
}

7.5.6 Set Domain Name for Verification and SNI

Set the domain name to verify the desired domain during the TLS handshake. The domain verification is used to
help against "man in the middle" attacks, where a third party could buy a fake certificate from the same root CA
that signed the certificate of the server, and redirect the traffic to their server. Besides the full chain verification,
TI recommends checking the domain name as well. This option is only available for client mode. This option
should be called before sl_Connect or sl_Listen. Setting a domain name also enables the SNI extension in the
client hello message, according to RFC 6066.

Example:

_i16 status;
Status = sl_SetSockOpt(SockID, SL_SOL_SOCKET,_SL_SO_SECURE_DOMAIN_NAME_VERIFICATION,
"www.google.com",strlen("www.google.com"));

7.5.7 Enable OCSP Check

Enable the OCSP check during the SSL connection. Supports legacy, stapling and stapling v2 OCSP modes.
The modes are automatically selected according to the server's capabilities. The whole certificate chain is
checked for revocation. This feature is disabled by default, and enabled on a socket basis.

Example:

_u32 dummyVal;
_i16 status;
dummyVal = 1; //1 enable, 0 disable
status = sl_SetSockOpt(SockID,SL_SOL_SOCKET, SL_SO_SECURE_ENABLE_OCSP, &dummyVal,sizeof(dummyVal));

The OCSP is supported on the CC313x and CC323x only.

7.5.8 Upgrade Nonsecured Socket to Secured

When connecting a regular TCP socket to a peer, the TCP socket can be upgraded to a TLS socket by using the
STARTTLS option, depending on the application layer of the other peer. To use STARTTLS, the other peer also
must support such an upgrade. The upgrade is basically the initialization of a TLS handshake between the
peers, while in a connected session.

The most common use case is the SMTP protocol, on port 587. The client connects to an SMTP server, several
packets may transact unencrypted, and then the client initiates a STARTTLS request to the server (each
application protocol has its own STARTTLS byte string, and therefore it should be sent by the host application).
At this point the handshake starts with a GO AHEAD message sent by the server, responded to by a HELLO
message from the client.

Calling sl_SetSockOpt with the STARTTLS option triggers the NWP, in client mode, to send the client HELLO
message, and in server mode to wait until the client HELLO message is received. When the handshake is
finished, the user gets a socket asynchronous event which indicates success or failure, and in case of failure, a
specific error code.

Example:

void slcbSockEvtHdlr(SlSockEvent_t* pSlSockEvent)
{

www.ti.com Secure Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 123

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

 char *CAname;
 if(SL_SOCKET_ASYNC_EVENT == pSlSockEvent->Event)
 {
 /* debug print "an event received on socket %d\n",
 pSlSockEvent->SocketAsyncEvent.SockAsyncData.Sd */switch(pSlSockEvent-
>SocketAsyncEvent.SockAsyncData.Type)
 {
 case SL_SSL_NOTIFICATION_CONNECTED_SECURED:
 /* indicate handshake successful ok */break;
 case SL_SSL_NOTIFICATION_HANDSHAKE_FAILED:
 /* retrieve an error from pSlSockEvent->SocketAsyncEvent.SockAsyncData.Val; */break;
 default:
 break;
 }
 }
}
void ClientSTARTTLSExample()
{
 SlSockAddrIn_t Addr;
 SlSockSecureMethod_t method;
 _i32 sd,len,dummyVar;
 _i16 status;
 _u32 DestinationIP = SL_IPV4_VAL(192,168,1,31); /* An SMTP server's IP */
 _i16 AddrSize;
 _i8 buf[100];
 Addr.sin_family = SL_AF_INET;
 Addr.sin_port = sl_Htons(587);
 Addr.sin_addr.s_addr = sl_Htonl(DestinationIP);
 AddrSize = sizeof(SlSockAddrIn_t);
 /* Open TLS socket */
 sd = sl_Socket(SL_AF_INET,SL_SOCK_STREAM,0);
 if(sd < 0)
 {
 /* error... */
 }
 method.SecureMethod = SL_SO_SEC_METHOD_SSLv3_TLSV1_2;
 status = sl_SetSockOpt(sd,SL_SOL_SOCKET,SL_SO_SECMETHOD,&method,sizeof(SlSockSecureMethod_t));
 if(status < 0)
 {
 /* error... */
 }
 /* set a CA filename to be used to verify the SMTP server
 certificate when the handshake will take place */
 status = sl_SetSockOpt(sd,SL_SOL_SOCKET,SL_SO_SECURE_FILES_CA_FILE_NAME,
 "smtpCa.der",strlen("smtpCa.der"));
 if(status < 0)
 {
 /* error... */
 }
 status = sl_Connect(sd, (SlSockAddr_t *)&Addr, AddrSize);
 if(status < 0)
 {
 /* error... */
 }
 /* unsecured transaction */
 len = sl_Recv(sd,buf,100,0);
 if(len < 0)
 {
 /* error... */
 }
 len = sl_Send(sd,"Hello server",strlen("HELLO server"),0);
 if(len < 0)
 {
 /* error... */
 }
 /*...
 ...
 ... */
 len = sl_Send(sd,"STARTTLS",strlen("STARTTLS"),0);
 if(len < 0)
 {
 /* error... */
 }
 len = sl_Recv(sd,buf,100,0);
 if(len < 0)
 {
 /* error... */

Secure Socket www.ti.com

124 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

 }
 if(strcmp(buf,"GO AHEAD") == 0)
 {
 /* we got a green light, we can start the TLS handshake */
 status = sl_SetSockOpt(sd,SL_SOL_SOCKET,SL_SO_STARTTLS,&dummyVar,sizeof(dummyVar));
 if(status < 0)
 {
 /* error... */
 }
 /* wait for the flag to update from slcbSockEvtHdlr async event
 and handle it, if an error occurs
 ...
 ...
 ... */
 }
 /*...
 ...
 ... */
 status = sl_Close(sd);
 if(status < 0)
 {
 /* error... */
 }
}

7.5.9 Get Connection Parameters

Get the connection parameters after a successful handshake completes. The received parameters include
server certificate parameters, chosen SSL version and cipher suite, and more.

Only 16 bytes of the issuer and subject common name are kept, to limit the amount of memory consumed by
storing these parameters. The XORed hash of those names, plus the 16-byte name strings, are helpful in
verifying a wanted name.

Example:

SlSockSSLConnectionParams_t conPa;
_i16 status;
SlSocklen_t len = sizeof(SlSockSSLConnectionParams_t);
status = sl_GetSockOpt(SockID,SL_SOL_SOCKET,SL_SO_SSL_CONNECTION_PARAMS,&conPa,&len);

7.6 Supported Cryptographic Algorithms
Table 7-3 lists the supported cryptographic algorithms.

Table 7-3. Cryptographic Algorithms
Algorithm Hardware or Software Usage Key Length

ECDSA Software Signature algorithm Dynamically generated
Named curves – secp160r1
secp192r1
secp224r1
secp256r1
secp384r1
secp521r1

ECDHE Software Key exchange Dynamically generated
Uses the same named curves as
ECDSA

DH Software Key exchange Dynamically generated

RSA Key < 4096 Hardware Signature algorithm/Key
exchange

128, 256

RSA Key > 4096 Software Signature algorithm/Key
exchange

512,1024

SHA1 Hardware Signature algorithm/Message
authentication code

20

SHA256 Hardware Signature algorithm/Message
authentication code

32

SHA384 Software Signature algorithm 48

www.ti.com Secure Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 125

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 7-3. Cryptographic Algorithms (continued)
Algorithm Hardware or Software Usage Key Length

SHA512 Software Signature algorithm 64

MD5 Hardware Signature algorithm/Message
authentication code

16

POLY1305 Software Message authentication code 16

AES CBC Hardware Data encryption 16, 32

AES GCM Hardware Data encryption/Message
authentication code

16, 32

RC4 Software Data encryption 16

CHACHA20 Software Data encryption 16

TRNG Hardware Random numbers

7.7 Common Errors and Asynchronous Events
In most cases, the socket API returns the error code as a return value of the API. In other cases, where the error
occurs during a live process, the error or notification returns in a socket asynchronous event.

7.7.1 Using Socket Asynchronous Events in TLS

TLS asynchronous events which provide information about the connection:
• SL_OTHER_SIDE_CLOSE_SSL_DATA_NOT_ENCRYPTED – The remote side closed the SSL layer, and

the socket is not secured anymore; data can still transfer but is not encrypted.
• SL_SSL_ACCEPT – An error occurred during an SSL accepting, but the socket is ready to accept again with

no need to call accept again. A good example of that is a time-out during the handshake.
• SL_SSL_NOTIFICATION_WRONG_ROOT_CA – This event is only available in client mode, and it goes

along with the SL_ERROR_BSD_ESEC_ASN_NO_SIGNER_E error received during the sl_Connect
command. This event indicates that a certificate in the certificate chain could not be verified because the CA
programmed to the file system is not the right CA that signed the chain. This event gives the CommonName
of the CA root expected to verify the certificate.

Example:

void slcbSockEvtHdlr(SlSockEvent_t* pSlSockEvent)
{
char *CAname;
if(SL_SOCKET_ASYNC_EVENT == pSlSockEvent->Event)
 {
/* debug print "an event received on socket %d\n",pSlSockEvent->SocketAsyncEvent.SockAsyncData.Sd */
switch(pSlSockEvent->SocketAsyncEvent.SockAsyncData.Type)
 {
 case SL_SSL_NOTIFICATION_CONNECTED_SECURED:
 break;
 case SL_SSL_NOTIFICATION_HANDSHAKE_FAILED:
 break;
 case SL_SSL_ACCEPT:
 break;
 case SL_OTHER_SIDE_CLOSE_SSL_DATA_NOT_ENCRYPTED:
 break;
 case SL_SSL_NOTIFICATION_WRONG_ROOT_CA:
 break;
 default:
 break;
 }
 }
}

7.7.2 Common Errors

Table 7-4 lists the common errors.

Secure Socket www.ti.com

126 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 7-4. Common Errors
Error Client Server

SL_ERROR_BSD_ESECSNOVERIFY Connected without verifying the peer.
Use sl_SetSockOpt to set the CA to verify
the peer.

N/A

SL_ERROR_BSD_ESECNOCAFILE The CA filename used in the
sl_SetSockOpt is not in the file system.
Use the correct filename, or program the
file in the name desired.

The CA filename used in the
sl_SetSockOpt is not in the file system.
Use the correct filename, or program the
file in the name desired.

SL_ERROR_BSD_ESECBADCAFILE
SL_ERROR_BSD_ESECBADCERTFILE
SL_ERROR_BSD_ESECBADPRIVATEFILE
SL_ERROR_BSD_ESECBADDHFILE

The file is not valid.
Check if it is a valid DER/PEM CA file.

The file is not valid.
Check if it is a valid DER/PEM CA file.

SL_ERROR_BSD_ESECT00MANYSSLOPENED Exceed maximum SSL connections.
CC3x20x Wi-Fi device supports only six
connected TLS sockets.

Exceed maximum TLS connections.
CC3x20x Wi-Fi device supports only six
connected TLS sockets.

SL_ERROR_BSD_ESECDATEERROR Connected but with error verifying time
and date on the certificates of the server.
Set the time and date on the device or
check the certificate date of the other
side.

N/A

SL_ERROR_BSD_ESEC_SOCKET_ERROR TCP socket was disconnected during the
TLS handshake.
This usually occurs when the other side
closed the connection. Investigate the
peer.

TCP socket was disconnected during the
TLS handshake.
This usually occurs when the other side
closed the connection. Investigate the
peer.

SL_ERROR_BSD_ESEC_ASN_NO_SIGNER Could not verify one of the certificates in
the peer’s cert.
This usually occurs when using a wrong
CA to verify the peer. Use the
SL_SSL_NOTIFICATION_WRONG_ROO
T_CA to get the desired CA
CommonName.

Could not verify one of the certificates in
the peer’s cert.

SL_ERROR_BSD_ESECUNKNOWNROOTCA Connected but the root CA used to verify
the peer is unknown to TI. That means it
does not appear in the trusted root-
certificate catalog.

N/A

www.ti.com Secure Socket

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 127

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Secure Socket www.ti.com

128 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

This page intentionally left blank.

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.1 Introduction...130
8.2 Key Features... 130
8.3 File System Characteristics...130
8.4 Write a File...132
8.5 Read a File...138
8.6 Delete a File...140
8.7 Rename a File... 141
8.8 File System Helper Functions... 141
8.9 Bundle Protection...143
8.10 File Commit Feature... 146
8.11 File Rollback Process...147
8.12 Programming.. 147
8.13 Restore to Factory..149
8.14 Security Alerts.. 151
8.15 Design Consideration...152

Chapter 8
File System

www.ti.com File System

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 129

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.1 Introduction
This chapter describes the capabilities of the file system and the host interface, and provides usage
recommendation.

The SimpleLink Wi-Fi device maintains a nonvolatile file system in which the data is stored on an external serial
flash (through SPI). The file system provides the ability to organize data and access resources using a simple
host interface.

The SimpleLink Wi-Fi networking subsystem uses the file system to store the system configuration files and for
storing the service pack. In CC32xx devices, the storage is also used to store the host application.

The file system provides features to protect the stored files from manipulation by unknown or malicious users,
such that the files cannot be read or modified freely by third parties.

In addition, the SimpleLink Wi-Fi device supports cloning protection; moving or cloning a SFLASH that was
written by one device to other does not work. One device cannot use a file system or read secure files created
by another device.

File integrity monitoring is an internal process that performs the act of validating the integrity of the file system
and stored files, using a verification method between the current file state and the known, good baseline. This
comparison method involves calculating a known cryptographic checksum of the original baseline of the file, and
comparing it with the calculated checksum of the current state of the file.

The SimpleLink internal process for software tamper detection monitors the use of the file and detects attempts
to tamper the file system; it detects operations such as accessing the file without the correct credentials, or the
writing of the file by an unauthenticated user.

The SimpleLink Wi-Fi device also provides a recovery mechanism; it enables to rollback the system
configuration to the factory settings.

8.2 Key Features
Table 8-1 lists the key security features.

Table 8-1. Key Features
Feature Description

Maximum number of files 240 (50 files should be reserved for system files)

Maximum file size Unlimited

Maximum file name length 180 bytes

Maximum SFLASH size 16 MB

Type of files Regular, secure, secure + authenticate

File functions Create, open for write, open for read, rename a file, get file information

Get a files list Retrieves the file list and attributes

Get storage usage Retrieve general information regarding the storage status: free space, allocated space,
number of security alerts.

File commit/rollback Methods for downloading a single file and in case of failure rollback to the former file image

Bundle commit/rollback Methods for downloading a group of files and in case of failure rollback all the files (as single
transaction) to the former files image

Programming The method to first install the device with the required configuration and files.

Programming by third party SFLASH can be programmed prior to assembly with the SimpleLink device.

Restore to factory image/defaults Return to original image and default configurations set during production.

Security alerts

Development/production format Option to create a development image which can run on specific MAC.

8.3 File System Characteristics
The following list describes the file system characteristics:

File System www.ti.com

130 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• Supported number of files is 240, including system files.
• The maximum number of system files is 50 files; however, most of the system files are created only if they

are required by the application.
• File size is unlimited.
• Filename can be up to 180 bytes. Choose short names due to the limited allocated size for filenames.

Filenames are kept on a best-effort basis; the size allocated for filenames is 3136 bytes. If the total length of
the filenames (calculated without the null terminator) exceeds the allocated size, the file name is not kept.
That is, the name is displayed in the file list as “name not kept”. Files where names were not kept have all of
file system functions working correctly, can open files, read and write, close, and so forth.

• There are no actual directories, such as in a common file system. All filenames are "flat," such that every "/" is
part of the filename and is exhibited only for a logical description of the file.

• File can be opened for either a read or a write; file cannot be read and written, simultaneously.
• During the programming or restore to factory process, no file operation can be executed; when trying to read

or write a file, an error of SL_ERROR_FS_PROGRAMMING_IN_PROCESS is received. In this case, the file
system function can be re-invoked after the programming process is finished.

• Trying to invoke a file system function when the file system is not yet formatted results in the error
SL_ERROR_FS_NO_DEVICE_IS_LOADED.

• Some of the file system functionality is only available for secure devices. Table 8-2 describes the different
functionality between secure and nonsecure devices.

Table 8-2. Secure Files
CC31xx, CC32xxS, and CC32xxSF CC3220R

Create encrypt programming image + –

Setting alarms threshold + –

Store the CC32xx host app as secure + –

Write secure user files + Only certificate files and private keys can be
created secure. These files could not be
read by the host.

Read secure user files + –

Secure programming + –

• The common way to create the service pack and the trusted root-certificate catalog is by the UniFlash Image
Creator tool. The Image Creator tool supports the functionality of setting the correct creation attributes for the
system files. If the following files are first created by the host, the described creation attributes should be
used:
– Trusted root-certificate catalog, name: /sys/certstore.lst ,maxsize : 7000 bytes. Creation flags:

SL_FS_CREATE_SECURE |SL_FS_CREATE_PUBLIC_WRITE| SL_FS_CREATE_FAILSAFE
– Service pack, name: /sys/servicepack.ucf ,maxsize : 131072 bytes. Creation flags:

SL_FS_CREATE_SECURE |SL_FS_CREATE_PUBLIC_WRITE| SL_FS_CREATE_FAILSAFE

Note

When closing (after open for write) the service pack file or the trusted root-certificate catalog
file, a signature must be supplied with a null certificate.

www.ti.com File System

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 131

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.4 Write a File
8.4.1 Introduction

To write a file, the file must first be opened for write; at the end it should be closed. The following is a description
of the writing procedure:
1. Open the file for create or write, function sl_FsOpen().
2. Write the file, function sl_FsWrite (); can be called several times.
3. Close the file, function sl_FsClose().

The next subsections provide detailed descriptions of the functions involved in the write file process.

8.4.2 Create a File versus Open for Write

The host provides different functions for creating a new file, or open for write an existing file. The following is a
list of open file methods.
1. Open-Create-Write: By default, if the file does not exist, the device creates a new file and opens it for write;

otherwise the device opens the file for write.

Example:

_i32 FileHdl;
unsigned char DeviceFileName[180];
_u32 MaxSize, MasterToken;
FileHdl = sl_FsOpen(unsigned char *)DeviceFileName,
SL_FS_CREATE|SL_FS_CREATE_SECURE |SL_FS_OVERWRITE |
SL_FS_CREATE_NOSIGNATURE | SL_FS_CREATE_MAX_SIZE(MaxSize),
&MasterToken);
if(FileHdl < 0)
{
 /*error */
}

2. Open-Create: Creates a new file; the open function returns an error if a file with the same name already
exists.

Example:

_i32 FileHdl;
unsigned char DeviceFileName[180];
_u32 MaxSize, MasterToken;
FileHdl = sl_FsOpen(unsigned char *)DeviceFileName,
 SL_FS_CREATE|SL_FS_CREATE_SECURE |
 SL_FS_CREATE_NOSIGNATURE | SL_FS_CREATE_MAX_SIZE(MaxSize),
 &MasterToken);
if(FileHdl < 0)
{
 /*error */
}

3. Open-Write: Opens an existing file for write; the open function returns an error if the file does not exist.

Example:

_i32 FileHdl;
unsigned char DeviceFileName[180];
_u32 MaxSize, MasterToken;
FileHdl = sl_FsOpen(unsigned char *)DeviceFileName,
 SL_FS_OVERWRITE | SL_FS_CREATE_SECURE |
 SL_FS_CREATE_NOSIGNATURE | SL_FS_CREATE_MAX_SIZE(MaxSize),
 &MasterToken);
if(FileHdl < 0)
{
 /* error */
}

File System www.ti.com

132 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.4.3 Create a File

The open-create or open-create-write creates a new file, and as part of the function the device allocates the
storage for the file. The size of the allocated storage is determined by the maximum size parameter. The close
function makes the opened file valid.

A file created but not closed has allocated storage (according its maximum size), but does not have a valid copy.

Because the process of creating a file involves updating the file allocation table on the SFLASH, TI recommends
minimizing the creation of files. If it is required to update the file content, open the file for write rather than delete
and recreate it.

For a secure file, the default behavior of the file creation function is to generate the file tokens (including the
master): the master token is returned as the function output, and all other tokens can be retrieved using the
sl_FsGetInfo() function. Further information regarding the file tokens can be found in the CC3x20, CC3x35, and
CC3x30 SimpleLink™ Wi-Fi® Internet-on-a chip™ Solution Built-In Security Application Report.

The sl_FsOpen() function tests that the file storage can be allocated, that the file does not exist, and that the
creation flags are valid. The smallest memory hole that fits the requested size is allocated (as fragmentation is
not supported). If an error occurs while attempting to open a file, the function returns a negative value which
represents the error number; Table 8-3 shows a partial list of errors that might be returned by the creation
function.

Table 8-3. Creation Function Errors
Error Description

SL_ERROR_FS_NOT_ENOUGH_STORAGE_SPACE No available storage for the file.

SL_ERROR_FS_FILE_ALREADY_EXISTS File with the same name already exists.

SL_ERROR_FS_NO_AVAILABLE_NV_INDEX Number of opened files exceeded.

SL_ERROR_FS_FILE_INVALID_FILE_SIZE The maximum file size is set to 0.

The create file input parameters are:
• Filename: The filename is a string of up to 180 bytes; TI recommends using short filenames (explained in

Section 8.3); the file name is not case-sensitive.
• Maximum file size

– When creating a file, the storage for the file is allocated according the requested maximum file size. For an
existing file, the maximum file size cannot be changed; thus, when defining the maximum size of a file, the
future growth of the file should be considered.

– Creating a file with the FAILSAFE flag creates the file with a copy, thus the allocated storage size for the
file is doubled.

– Because the smallest erase unit of a SFLASH is 4096 bytes, the file system allocates storage size, which
is aligned to 4096 bytes.

• File tokens: The token is the key for accessing a secure file; for a nonsecure file, it is set to zero. The file
creation function returns the file token. By default, the device generates the file master token and returns it to
the host. The default behavior of the token creation can be overridden by special creation flags.

• Creation flags: The creation flags are set during the file creation and cannot be changed afterward. The
following is a list of creation flags:
– SL_FS_CREATE_FAILSAFE: A file opened with failsafe has double copies, but only one copy is

considered to be active at a time. Each time the file is opened for write, the file storage is erased. If the
system is powered off while writing a file with no failsafe, the file content is lost. If the system is powered
off while writing a file with failsafe, the old content becomes the active one. Using the FAILSAFE doubles
the file allocated storage. If the bundle feature (used for OTA) is used with the file, this flag is mandatory.

– SL_FS_CREATE_SECURE: A file created as secure has its content encrypted on the SFLASH. Access to
the file is limited, and requires a file token. See the security application notes file for more information
about secure files.

www.ti.com File System

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 133

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com/lit/pdf/swra509
http://www.ti.com/lit/pdf/swra509
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

– SL_FS_CREATE_NOSIGNATURE: The flag is relevant only for secure files. By default, a secure file has a
signature, which authenticates the file creator. See the security application notes for more information
about how to create file signature.

– SL_FS_CREATE_STATIC_TOKEN: Relevant only for secure files. This flag changes the default behavior
of the file tokens creation: with this flag, the file tokens are not changed each time a file is opened for
write.

– SL_FS_CREATE_VENDOR_TOKEN: Relevant only for secure files. This flag changes the default
behavior of the file tokens creation: with this flag, the file master tokens are set by the host.

– SL_FS_CREATE_PUBLIC_WRITE: Relevant only for secure files. This flag changes the default behavior
of the file tokens creation: with this flag, the file can be written without a token, but for a read operation a
token is required.

– SL_FS_CREATE_PUBLIC_READ: Relevant only for secure files. This flag changes the default behavior
of the file tokens creation; with this flag, the file can be read without a token, but for a write operation a
token is required.

• Flags: The following flags are not creation flags, but can be set when creating or opening an existing file for
write.
– SL_FS_WRITE_BUNDLE_FILE: Used for the bundle commit feature; for new files, the FAILSAFE flag is

not a precondition for this flag.
– SL_FS_WRITE_ENCRYPTED: Used for secure content download.

If the application creates a file once, it can then be created by the Image Creator tool with the default content.
The application can then update the file when required.

8.4.3.1 Secure File Creation Notes

When creating a secure file, the file resides encrypted on the SFLASH, and any access to the secure file
requires a token. The default behavior is that the open for create function returns the master token of the file, the
token is kept by the host application, and is then used for the file operation (read/write/delete).

To prevent a situation in which the host application was powered off before the received token is kept, use one of
the following methods:
• Create the file with the SL_FS_CREATE_VENDOR_TOKEN flag and set the required token; in this way, the

token is kept in the host application code.
• Create the file with the SL_FS_CREATE_PUBLIC_WRITE and SL_FS_CREATE_PUBLIC_READ flags; in

this way, the secure file can be write/read without a token. To delete the file, a token is required, so this
method is ideal for a file which is created once and never deleted.

• Combine both methods mentioned in the previous bullets; create a secure file with the vendor and public
write and public read flags. In this case, no token is required for read and write, and deleting the file requires
the vendor token.

File System www.ti.com

134 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.4.3.2 Forced Creation Flags

For security reasons, some of the system files must be created with specific flag. Table 8-4 lists the files and
their required creation flags.

Table 8-4. Creation Flags

Filename
CC3120,
CC3130,
CC3135

CC3220S,
CC3230S,
CC3235S

CC3220SF,
CC3230SF,
CC3235SF

CC3220R Remark

/sys/servicepack.ucf
/sys/certstore.lst

Secure signed
by TI
+ public write
+ Fail-safe

Secure signed
by TI
+ public write
+ Fail-safe

Secure signed
by TI
+ public write
+ Fail-safe

Secure
signed by TI
+ public write
+ Fail-safe

Those files are delivered by TI.
The service pack contains fixes to the
device code; the trusted root-certificate
catalog contains the root CAs supported
by TI and a revoked certificate list.
TI might deliver a new version for those
files when required.
TI highly recommends designing the
host to support future updates of these
files.

/sys/mcuimg.bin NA Secure signed NA Not secure The file contains the host application

/sys/mcuflashimg.bin NA NA Secure signed NA The file contains the host application
and used during programming and over-
the-air firmware update

/sys/cert/private.key
/sys/cert/client.der

/sys/cert/ca.der

Secure Secure Secure Secure,
blocked for
read

The files contain the key and certificates
for enterprise connection.

Note

The trusted root-certificate catalog file has a downgrade protection mechanism based on built-in
version number value.

The service pack is a special file which already contains the signature. When writing the service pack
by the host, the sl_FsClose() function should receive a NULL certificate name and a NULL signature.

8.4.4 Open a File for Write

Opening an existing file for write is the preferred way to update the file content (rather than to delete it and
recreate it). A file which was not closed or aborted cannot be opened for write.

Appending content to an existing file is not supported; when the file is opened for write, the storage of the file is
erased.

If the file was created with a FAILSAFE flag, the storage of the nonactive content is erased; thus, if the device
was powered off before the file closure, the file contains the last valid content.

If the file was created without a FAILSAFE flag, powering off the device before the file is closed results in no
valid copy.

The operation of opening a file for write does not involve updating the file allocation table, unlike the create file
function.

For a secure file, the default behavior is that when opening a file for write, all the tokens except the master are
regenerated. The new tokens can be retrieved by the sl_FsGetInfo function.

If the file is already open (for write or read) or does not exist, sl_FsOpen() returns an error.

Table 8-5 shows a partial list of errors that might be returned by the creation function.

Table 8-5. Creation Function Errors
Error Description

SL_ERROR_FS_FILE_IS_ALREADY_OPENED The file is already opened for read or write.

www.ti.com File System

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 135

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 8-5. Creation Function Errors (continued)
Error Description

SL_ERROR_FS_INVALID_TOKEN_SECURITY_ALERT For a secure file, the input token is not valid; this triggers security
alerts if the device is secured.

SL_ERROR_FS_FILE_NOT_EXISTS The file does not exist.

The following parameters are required to create a file:
• Filename: The filename is not case-sensitive.
• File tokens: The token is the key for accessing a secure file; for nonsecure files it is set to zero. For a secure

file with no public write permission, the host should supply a token with write permission (master token, write
token, or read-write token).

• The function returns a token on the same permission level as the input one.
• Flags: The noncreation flags that can be set:

– SL_FS_WRITE_MUST_COMMIT – used for the file commit feature, and can be used only if the file was
created with a FAILSAFE flag.

– SL_FS_WRITE_BUNDLE_FILE – used for the bundle commit feature, and can be used only if the file was
created with a FAILSAFE flag.

– SL_FS_WRITE_ENCRYPTED – used for secure content delivery.

8.4.5 Write an Opened File

The host can invoke the write command for each file opened for write. For nonsecure files, the write command
can be done to random offsets. For secure files, the write operation also encrypts the file, thus writing secure
files requires writing to sequential offsets, or writing to a 16-byte-aligned offset buffer, which is also 16-byte-
aligned in size.

The file system sets the actual file size as the higher offset than was written; the actual file size can be retrieved
by the sl_FsGetInfo() function.

The return value of the write function is the number of bytes written, and a negative value is an error number.

Table 8-6 shows a partial list of errors that might be returned by the write function.

Table 8-6. Write Function Errors
Error Description

SL_ERROR_FS_OFFSET_OUT_OF_RANGE
The file can be written to offsets which are less than the maximum
file size; trying to write a file to an offset which exceeds the maximum
file size results in an error.

SL_ERROR_FS_INVALID_HANDLE The input file handle is illegal.

SL_ERROR_FS_OFFSET_NOT_16_BYTE_ALIGN For a secure file, when trying to write to an offset, this is not
sequential.

SL_ERROR_FS_FILE_ACCESS_IS_DIFFERENT Trying to read a file which was opened for read.

Example:

_i32 FileHdl;
_i32 Status;
_u32 Offset = 0;
unsigned char pData[100];
_u32 Len = 0;
Status = sl_FsWrite(FileHdl, Offset, pData, Len);
if(Status < 0)
{
 /* error */
 /* abort */
 sl_FsClose(FileHdl,0,'A',1);
}

File System www.ti.com

136 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.4.6 Close an Opened File (for Write)

Closing or aborting an opened file is mandatory. Closing the file frees the file resources from the device memory
and sets the last file copy (if one exists) as the active one.

If the host application decides not to write an opened file due to an error, use abort instead of close.

The abort function requires the file handle. How to abort a file without using the file handle is described in the file
commit-rollback function.

A file that was not closed or aborted appears in the file system; its storage is allocated, but it might have no valid
copy. Such files can be observed by the SL_FS_INFO_NOT_VALID flag, and the file flags can be retrieved by
the sl_FsGetFileList () or sl_FsGetInfo () functions.

For a file opened with the FAILSAFE flag that has a valid copy (from a previous write operation), invoking the
abort function sets the nonactive copy as the active one, so that the next read operation reads the valid copy
and not the one that has been aborted.

In the case of an unexpected or sudden shutdown, each file opened for write that has not been closed is treated
as if abort has been called for this file.

The sl_FsClose() function returns 0 for success, and a negative number for an error.

Table 8-7 shows a partial list of errors that might be returned by the close after write function.

Table 8-7. Close After Write Function Errors
Error Description

SL_ERROR_FS_INVALID_HANDLE The input file handle is illegal.

SL_ERROR_FS_CERT_CHAIN_ERROR_SECURITY_ALERT For a secure signed file, testing the certificate chain of trust failed,
and a security alert is triggered.

SL_ERROR_FS_CERT_IN_THE_CHAIN_REVOKED_SECURITY_A
LERT

For a secure signed file, the certificate chain of trust exists in the
revoked list, and a security alert is triggered.

SL_ERROR_FS_WRONG_SIGNATURE_SECURITY_ALERT For a secure signed file, the signature test failed, and a security alert
is triggered.

SL_ERROR_FS_WRONG_CERTIFICATE_FILE_NAME For a secure signed file, if one of the certificates in the chain of trust
is missing, it does not trigger security alerts.

Close nonsigned file example:

_i32 FileHdl;
_i16 Status;
const _u32 SignatureLen;
_u8* pSignature, pCeritificateFileName;
pCeritificateFileName = 0;
pSignature = 0;
SignatureLen = 0;
Status = sl_FsClose(FileHdl,pCeritificateFileName,pSignature,SignatureLen);
if(Status < 0)
{
 /* error */
 /* abort */
 sl_FsClose(FileHdl,0,'A',1);
}

Abort file example:

_i32 FileHdl;
_i16 Status;
const _u8 Signature;
const _u32 SignatureLen;
_u8* pCeritificateFileName;
pCeritificateFileName = 0;
Signature = 'A';
SignatureLen = 1;
Status = sl_FsClose(FileHdl,pCeritificateFileName,Signature,SignatureLen);
if(Status < 0)

www.ti.com File System

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 137

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

{
 /*error */
}

8.4.7 Close an Opened Secure-Signed File (for Write)

To create a file signature:
1. The vendor generates a public and private RSA key pair, supported: RSA 128 or 256 bytes, the generated

files are of public.pem and private.pem.
2. A known CA creates a signed certificate which contains the public key.
3. The subject name of the certificate must contain the CN (common name) field.
4. Using the private key, the file digital signature is generated. The signature is a standard digital signature; the

algorithm first calculates the SHA of the file content and then the SHA result is encrypted using the private
key. The supported signature types are: PKCS#1, RSA 256 or 128 bytes, SHA_1 (the signature length is 256
or 128 bytes). The signature for the file can be created by standard tools, or by the UniFlash Image Creator
tool (using the private key).

5. The close function receives the file signature as an input, and the signed certificate (in DER encoding).

Notes:
• All the chained certificates should exist in the SFLASH when the close function is called.
• The supported encoding for the certificate files is DER.
• After an updated service pack is used, the firmware supports additional certificate chain verification types:

– RSA 1024 to 4096
– SHA 1-512

Such certificates can be used within an OTA update, but not during production line.
• The signed certificates filename should be created in the device with the name as it appears under the

“issued to” property of the certificate (the exact name should be given).
• The trusted root-certificate catalog delivered by TI contains the list of supported and revoked certificates. For

a list of supported CAs, see the security application document.

Example for secure-signed files close function:

_i32 FileHdl;
_i16 Status;
const _u8 CeritificateFileName[180];
const _u8 Signature[256];
const _u32 SignatureLen;
SignatureLen = sizeof(Signature);
Status = sl_FsClose(FileHdl, CeritificateFileName, Signature, SignatureLen);
if(Status < 0)
{
 /* error */
 /* abort */
 sl_FsClose(FileHdl,0,'A',1);
}

8.5 Read a File
To read a file, it should first be opened for read. The following functions are involved in the read file procedure:
• Open-read a file, function sl_FsOpen()
• Read the file, function sl_FsRead()
• Close the file, function sl_FsClose()

8.5.1 Open a File for Read

Open a file for read only succeeds if the file has been closed or aborted. The open-for-read function does not
involve any SFLASH updates, and it has no effect on the SFLASH endurance.

The open-for-read function returns a negative value in case of an error.

Table 8-8 shows a partial list of errors that might be returned by the open-for-read function.

File System www.ti.com

138 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 8-8. Open-For-Read Function Errors
Error Description

SL_ERROR_FS_FILE_IS_ALREADY_OPENED The file is already opened for read or write.

SL_ERROR_FS_INVALID_TOKEN_SECURITY_ALERT For a secure file, the input token is not valid; this triggers security
alerts if the device is secured.

SL_ERROR_FS_FILE_NOT_EXISTS The file does not exist.

SL_ERROR_FS_DEVICE_NOT_SECURED Reading the secure file can only be done in a secure device type.

SL_ERROR_FS_WRONG_SIGNATURE_SECURITY_ALERT
For secure-signed files, each time the file is opened for read, the file
integrity is tested. If the test is failed, an error and a security alert is
raised.

Example:

_i32 FileHdl;
_u8 DeviceFileName[180];
_u32 MasterToken;
FileHdl = sl_FsOpen(unsigned char *)DeviceFileName, SL_FS_READ, &MasterToken);
if(FileHdl < 0)
{
 /*error */
}

8.5.2 Read an Opened File

To read a file, the host requires the file handle, the offset to read, and the output buffer. A file can be read from
random offsets.

The sl_FsRead returns the actual bytes read, or a negative value which represents an error.

Table 8-9 shows a partial list of errors that might be returned by the open-for-read function.

Table 8-9. Open-For-Read Function Errors
Error Description

SL_ERROR_FS_OFFSET_OUT_OF_RANGE
The file system set the actual file size as a higher offset than was
written. Trying to read a file from an offset which is higher than the
actual file size results in an error.

SL_ERROR_FS_NO_MEMORY

The read operation requires a system resource (RX-socket). The
system may return that if there are not available resources (sockets)
for the operation; in this case, the host can repeat the read operation
after a while (or reduce the traffic overload while reading a file).

Example:

_i32 FileHdl;
_i32 Status;
_u32 Offset = 0;
unsigned char pData[100];
_u32 Len = 0;
Status = sl_FsRead(FileHdl, Offset, pData, Len);
if(Status < 0)
{
 /*error */
 /* abort */
 Status = sl_FsClose(FileHdl,0,'A',1);
}

8.5.3 Close an Opened File (for Read)

When the read is completed, the host must close the file. Closing the file releases the file resources from the
device memory.

An abort file command can be invoked without using the file handle; the reference can be found in the file
commit-rollback function.

www.ti.com File System

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 139

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

An abort file command open for read has the same functionality as the close function. In case of an unexpected
or sudden shutdown, each file opened for read that is not closed is treated as if it is aborted.

The following is a partial list of errors that might be returned by the close after read function:
• SL_ERROR_FS_INVALID_HANDLE: The input file handle is illegal.

Close file example:

_i32 FileHdl;
_i16 Status;
const _u32 SignatureLen;
_u8* pSignature, pCeritificateFileName;
pCeritificateFileName = 0;
pSignature = 0;
SignatureLen = 0;
Status = sl_FsClose(FileHdl,pCeritificateFileName,pSignature,SignatureLen);
if(Status < 0)
{
 /* error */
 /* abort */
 sl_FsClose(FileHdl,0,'A',1);
}

Abort file example:

i32 FileHdl;
_i16 Status;
const _u8 Signature;
const _u32 SignatureLen;
_u8* pCeritificateFileName;
pCeritificateFileName = 0;
Signature = 'A';
SignatureLen = 1;
Status = sl_FsClose(FileHdl,pCeritificateFileName,Signature,SignatureLen);
if(Status < 0)
{
 /*error */
}

8.6 Delete a File
Deleting of a file removes its storage from the file system and updates the files allocation table. Deleting is done
by the host function sl_FsDel().

On successful delete, the file allocation storage on the SFLASH is removed, and can be used by other files. For
secure files, the delete requires the file master token.

TI recommends minimizing the number of delete file operations, because it involves updating the allocation
table.

Table 8-10 shows a partial list of errors that might be returned by the delete function.

Table 8-10. Delete Function Errors
Error Description

SL_ERROR_FS_FILE_IS_ALREADY_OPENED
File that is opened cannot be deleted. The file is expected to be
closed or aborted to be deleted; trying to delete a file opened for
write/read results in this error.

SL_ERROR_FS_FILE_NOT_EXISTS Trying to delete a file which does not exist results in this error.

Example:

_i16 Status;
_u8 DeviceFileName[180];
_u32 MasterToken;
Status = sl_FsDel(DeviceFileName, MasterToken);
if(Status < 0)
{
 /*error */
}

File System www.ti.com

140 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.7 Rename a File
This function renames an existing file; for secure files, the rename requires the master token.

Table 8-11 shows a partial list of errors that might be returned by the rename function.

Table 8-11. Rename Function Errors
Error Description

SL_ERROR_FS_FILE_IS_ALREADY_OPENED File that is opened cannot be renamed. The file is expected to be
closed or aborted to be renamed.

SL_ERROR_FS_FILE_NAME_RESERVED System file cannot be renamed, and file cannot be renamed to a
system filename.

SL_ERROR_FS_FILE_NAME_EXIST Renaming a file to a filename that already exists results in an error.

Example:

_i32 Status;
_u8 DeviceFileName[180], NewDeviceFileName[180];
_u32 Token;
Status = sl_FsCtl(SL_FS_CTL_RENAME, Token, DeviceFileName, NewDeviceFileName, 0, NULL, 0, NULL);
if(Status < 0)
{
 /*error */
}

8.8 File System Helper Functions
Some functions are used for observing the file system state. This section describes those functions.

8.8.1 Get File Information

The sl_FsGetInfo() function retrieves information regarding a specific file. For secure files, the file requires a
token. For secure files where the input token is zero, only a part of the information of the file is retrieved,
because the tokens and the creation token flags are hidden.

Trying to request information for a file that does not exist results in an error (FILE_NOT_EXISTS). Trying to
request information for a file which has no valid copy results in retrieving the file information, but the return value
will be an error (SL_FS_INFO_NOT_VALID_EXISTS).

Example:

_i16 Status;
_u8 DeviceFileName[180];
_u32 Token;
SlFsFileInfo_t FsFileInfo;
Status = sl_FsGetInfo(DeviceFileName, Token, &FsFileInfo);
if(Status < 0)
{
 /*error */
}

8.8.2 Get Storage Information

The sl_FsCtl() function can be used to retrieve information about the storage usage and the file system state.
The function output contains information regarding the number of security alerts, the number of allocated files
user/system, the configured storage size, the format type, and so forth.

Example:

_i32 Status;
SlFsControlGetStorageInfoResponse_t GetStorageInfoResponse;
Status = sl_FsCtl((SlFsCtl_e)SL_FS_CTL_GET_STORAGE_INFO, 0, NULL , NULL , 0, (_u8
*)&GetStorageInfoResponse, sizeof(SlFsControlGetStorageInfoResponse_t), NULL);
if(Status < 0)
{
 /*error */
}

www.ti.com File System

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 141

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.8.3 Get List of Files

Retrieves the file list, names, and their main attributes, and observes how many blocks (subsector = 4096 bytes)
each file occupies on the SFLASH.

This function is an iterative function; the host retrieves an iterator that can be used to retrieve the next bulk of
files.

Example:

_i32 NumOfEntriesOrError = 1;
_i32 Index = -1;
slGetfileList_t File[COUNT];
_i32 i;
_i32 Status = 0;
while(NumOfEntriesOrError > 0)
{
 NumOfEntriesOrError = sl_FsGetFileList(&Index, COUNT, (_u8)(SL_FS_MAX_FILE_NAME_LENGTH +
 sizeof(SlFileAttributes_t)), (unsigned char*)File, SL_FS_GET_FILE_ATTRIBUTES);
 if (NumOfEntriesOrError < 0)
{
Status = NumOfEntriesOrError;//errorbreak;
}
for (i = 0; i < NumOfEntriesOrError; i++)
{
/* print
File[i].fileName
File[i].attribute.FileAllocatedBlocks
File[i].attribute.FileMaxSize,(_u16)File[i].attribute.Properties
 */
}
}
return Status;//0 means O.K

File System www.ti.com

142 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.9 Bundle Protection
Bundling changes the content of a group of files and then accepts or rejects the changes for all the files in the
group simultaneously. The bundle is used by the OTA process, which downloads a group of files and needs the
ability to first test the files and then to accept or reject the downloaded content.

Table 8-12 shows a common work flow of using the bundle.

Table 8-12. Bundle Protection
Step Operation System State After Operation

1 Create (with failsafe flag), write, close n files Bundle STOPPED

2 For each of the n files, open the file for write with the
bundle flag, write the file and close it.

Bundle STARTED, reading the files results in their old
copy.
Before the file closure they are in the
OPEN_BUNDLE_COMMIT state.
After the file closure they are in the
PENDING_BUNDLE_COMMIT state.

3 Call sl_Stop(X>0) and sl_Start().
On this step, the host is responsible for testing the
system, to make sure that the downloaded content is
functioning as expected.

Bundle state is PENDING_COMMIT,
Reading the files results in their new copy.
Each n file is in PENDING_BUNDLE_COMMIT state.

4 In case the system test passed successfully, the host
approves the bundle (call to bundle commit), else
initiate rollback of the files (call the bundle rollback).

Bundle state is STOPPED.
Rollback of the bundle files makes their old copy the
valid one.
Commit of the bundle files makes their new copy the
valid one.

In case of power failure before the content approval
(failure during Step 2 or 3), the device automatically
calls the bundle rollback.

Bundle state is STOPPED.
Reading the files results in their old copy.

8.9.1 Bundle File States

To update a file as part of a bundle, the file should be opened for write with the bundle flag
(SL_FS_WRITE_BUNDLE_FILE). Open a new file as part of a bundle that has no pre-conditions.

To open an existing file as part of a bundle, the file should fulfill the following conditions:
• The file was created with the FAILSAFE flag.
• The file has a valid copy (meaning that the file was successfully written at least once).

The device manages the state of a file. The file state can be viewed by retrieving the file flags, and the file flags
can be retrieved by using the FsGetFileList() function and the sl_FsGetInfo() function.

The following is a list of the possible file states.
• Standard: A file which is not part of a bundle.

– If a bundle is committed or rolled back, the bundle files state is changed to standard file.
• SL_FS_INFO_BUNDLE_FILE

– The file is currently open with the bundle flag, but has not been closed yet.
– If the host invokes abort instead of close, the file state changes to standard file.

• SL_FS_INFO_PENDING_BUNDLE_COMMIT
– The file is currently open with the bundle flag, but has been closed.
– A file in this state cannot be opened for write until the bundle is committed or rolled back. Trying to open

this file for write results with the error: SL_ERROR_FS_FILE_IS_PENDING_COMMIT .
– A file in this state can be opened for read; the file copy that will be read is depended on the bundle state.

Table 8-13 is a summary of the possible file states related to the bundle state (the bundle states are described in
the following section).

www.ti.com File System

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 143

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 8-13. Bundle States
Bundle State Possible Files State

STOPPED All files are in normal state

STARTED • Normal
• BUNDLE_FILE
• PENDING_BUNDLE_COMMIT

PENDING_COMMIT • Normal
• PENDING_BUNDLE_COMMIT

8.9.2 Bundle States

The bundle can be in one of three states:
• STOPPED
• STARTED
• PENDING_COMMIT

The following subsections describe the various bundle states.

8.9.2.1 STOPPED

If the bundle state is stopped, no bundle exists.

8.9.2.2 STARTED

The bundle changes its state to STARTED when the first bundle file is opened for write.

In this state, the host is writing the bundle files and keeps the order of the files updated (a certificate should be
written before the file that uses it is closed). Opening the files that belong to a bundle in the STARTED state for
read results in the content of the old file copy.

Transition from this state to the PENDING_COMMIT state is executed if all the following conditions are fulfilled:
• sl_Stop (x > 0) and sl_Start() is called.
• All the bundle files are in the PENDING_BUNDLE_COMMIT state.

Transition from this state to the STOPPED state is executed if the following condition is fulfilled:
• sl_Start() is called without calling sl_Stop (x > 0). In this scenario, the bundle is automatically rolled back by

the device, or the rollback function was invoked by the host.

8.9.2.3 PENDING_COMMIT

This state is used to enable the host to run test code to decide if the downloaded bundle files are working as
expected.

While in this state, opening files for read returns the content of the new files copy.

While in this state, files cannot be opened for write with the bundle flags; in such cases, the device returns an
error: SL_ERROR_FS_BUNDLE_NOT_IN_CORRECT_STATE .

Transition from this state to the STOPPED state is executed if one of the following scenarios is fulfilled:
• On a successful host test, the host invokes the commit bundle function: sl_FsCtl (SL_FS_CTL_COMMIT...).
• On a failed host test, the host resets the device (hibernate or POR) or invokes the rollback bundle: sl_FsCtl

(SL_FS_CTL_ROLLBACK...). After calling the command, a reboot is required.
• The sl_Start() function is called; automatic rollback is triggered by the device.

8.9.3 Commit a Bundle

Committing the bundle approves all the files which belong to the bundle. At the end of the process, all the bundle
files are in the standard file state, and the bundle state is in the STOPPED state. In addition, the newly
downloaded version of the files becomes the active one.

The commit process is fail-safe; that is, if the device has been shut down during the bundle commit procedure,
on power-up the device automatically continues the bundle commit process.

File System www.ti.com

144 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.9.4 Rollback a Bundle

Rolling back the bundle rejects all the new bundle file content. At the end of the process, all the bundle files are
in the standard file state, and the bundle state is in the STOPPED state. In addition, the newly downloaded
content of the files is ignored, and the old copy becomes the active one.

The rollback process is fail-safe; that is, if the device has been shut down during the bundle rollback procedure,
on power-up the device automatically continues the bundle rollback process.

8.9.5 Retrieve the Bundle and Files State

To view the current state of the bundle, use the function sl_FsCtl (SL_FS_CTL_GET_STORAGE_INFO...).

To retrieve the bundle state of a specific file, use the sl_FsGetFileList() function or the sl_FsGetInfo() function.

8.9.6 M4 Host Application Bundle Aspects

The M4 host application software can be updated as part of a bundle. The advantage of adding this file to a
bundle is to keep the integrity of the entire system during update.

When the bundle is in the PENDING_COMMIT state, a hardware watchdog timer (WDT) is automatically
activated (if configured in the mcubootinfo.bin). If the WDT expires, an automatic reboot is triggered and the
bundle files are automatically rolled back.

When invoking the commit function, there are two options:
• Continue the session as it is. In this case, there is no need to stop the WDT. Use

PRCMPeripheralReset(PRCM_WDT).
• Do a clean reboot. In this case, the recommended way is to use PRCMHibernateCycleTrigger(). This also

stops the WDT (this method should be also used after rollback).

When invoking rollback (when the bundle is in the pending commit state), a clean reboot is required
(PRCMHibernateCycleTrigger()).

Note

To configure the WDT, set the mcubootinfo file.

The WDT resets (hibernate-reset) the system after two time-out events.

BootInfo.ulStartWdtTime is a 32-bit field that contains the number of clock ticks; because the WDT
runs at 80 MHz, the maximum time-out possible is approximately (53 sec × 2)

Example of how to set the WDT for the CC32xx devices:

#define APPS_WDT_START_KEY 0xAE42DB15
typedef struct sBootInfo
{
 _u8 ucActiveImg;
 _u32 ulImgStatus;
 _u32 ulStartWdtKey;
 _u32 ulStartWdtTime;
}sBootInfo_t;
_sBootInfo_t sBootInfo;
_u32 MasterToken = 1234;
i32 FileHdl;
_i32 Status;
_i16 StatusClose;
//Open file "/sys/mcubootinfo.bin" for write
FileHdl = sl_FsOpen((unsigned char *)("/sys/mcubootinfo.bin",
 SL_FS_CREATE|SL_FS_OVERWRITE |
 SL_FS_CREATE_SECURE | SL_FS_CREATE_PUBLIC_WRITE |
 SL_FS_CREATE_NOSIGNATURE | SL_FS_CREATE_VENDOR_TOKEN
 SL_FS_CREATE_MAX_SIZE(sizeof(sBootInfo)), &MasterToken);
if(FileHdl < 0)
{
/*error */
/* abort */
sl_FsClose(FileHdl,0,'A',1);

www.ti.com File System

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 145

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

}
memset(&sBootInfo,0,sizeof(sBootInfo_t));
sBootInfo.ulStartWdtKey = APPS_WDT_START_KEY;
sBootInfo.ulStartWdtTime = 80000000;
Status = sl_FsWrite(FileHdl,0,(_u8*)&sBootInfo, sizeof(sBootInfo_t));
if(Status < 0)
{
/*error */
}
StatusClose = sl_FsClose(FileHdl,0,0,0);
if(StatusClose < 0)
{
/*error */
/* abort */
sl_FsClose(FileHdl,0,'A',1);
}

8.10 File Commit Feature
The file commit feature updates a single file and then commits it or rolls it back. A file opened with the commit
flag that was closed is blocked for write operations.

The file is blocked until it is committed or rolled back.

File rollback can also be invoked on files opened without the commit flag.

To open a file with the commit flag, the file should fulfill the following requirements:
• The file was created with the FAILSAFE flag.
• The file has a valid copy (meaning that the file was successfully written at least once).

The following is a common file-commit work flow:
1. Create a file, write, and close.
2. Open the file for write with the commit flag (SL_FS_WRITE_MUST_COMMIT), write the file, and close.
3. The host tests the system: if the test passed successfully, the host commits the file, else rolls it back.

The following is a description of the file-commit states:
• Standard file
• SL_FS_INFO_MUST_COMMIT: The file was opened for write with the commit flag, and has not been closed.
• SL_FS_INFO_PENDING_COMMIT: The file was opened with the commit flag and has been closed. The file

is waiting for the host to invoke the file commit or rollback operation. A file in this state cannot be opened for
write. A file in this state can be opened for read; the file image that is read is the latest image. If the file is
committed or rolled back, the file state is changed to standard file.

File System www.ti.com

146 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.10.1 File Commit Process

Committing a secure file requires a file token with at least write permission.

Committing a file approves the new content of the file; at the end of the process, the file state is changed to
standard file.

The function interface for committing a file is sl_FsCtl (SL_FS_CTL_COMMIT).

8.11 File Rollback Process
Rolling back a secure file requires a file token with write permission.

Rolling back the file makes the old file copy into the active one; at the end of the process, the file state is
changed to standard file.

The function interface for rolling back a file is sl_FsCtl (SL_FS_CTL_ROLLBACK..). For secure files, the rollback
also rolls back the file tokens.

Rolling back files that are currently in the standard file state acts as file abort, but with the filename as input
rather than the file handle.

8.12 Programming
For a fast and smooth production line, the SimpleLink Wi-Fi device offers a programming interface. This process
involves two major steps:
• Creation of the programming image
• Programming the device with the image

The same image can be used to program many devices. At the end of the programming process, the device is
configured and contains the packed files.

8.12.1 Creation of the Programming Image

The programming image is a packed file which contains the service pack, the system configuration files, the user
files, and the host application (in CC32xx devices).

The process of creating the programming image is an offline process.

For creating the programming image, the SimpleLink Wi-Fi package contains the Image Creator tool, a web
application (it also has CLI interface) which lets the user easily create the programming image and supports
programming the device.

The UniFlash Image Creator tool creates four types of files:
• .sli, the file format is TI proprietary structure and is used for the Image Creator tool and host programming.
• .ucf, same as the s.li, used for the host programming
• .bin, the standard binary file for external flash programming
• .hex, the standard Intel Hex file for external flash programming

The programming image can be created as encrypted (AES-CTR 128); the key used for the encryption must be
supplied during the image programming.

8.12.1.1 Programming Image Types

The programming image can be defined (by the Image Creator) as one of the following types:
• Production
• Development

The development image is intended for development and debugging; the development image can be created
only for a specific device (by using its MAC address). For a device programmed with a development image, the
Image Creator tool can retrieve the file list from the device and edit the files (online). For the CC32xxS/
CC32xxSF device, the development mode also enables the JTAG interface.

www.ti.com File System

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 147

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.12.1.2 Program the Device

The image can be programmed to the device using one of the following methods:
• Image Creator tool (by UART lines)
• Host programming API (not applicable for the CC32xx devices)
• External (third party programmer) flash programmer

The programming time depends on the image size and the SFLASH type. During the programming, no file
operation can be executed; trying to read or write a file results in an error of
SL_ERROR_FS_PROGRAMMING_IN_PROCESS.

The programming involves two internal steps:
1. Download the image.
2. Extract the image packed file.

8.12.1.2.1 Image Creator Tool (UART) Programming

The UniFlash Image Creator tool is a method of programming that uses the device UART interface. The tool is
the common programming method.

The device starts the extraction procedure when the last portion of the image file is received.

At the end of the programming method, a success status is returned to the caller, and the device is operational.

8.12.1.2.2 Host Programming

The host has an interface function for programming the device. The interface is applicable more for CC31xx
devices since in CC32xx devices, the JTAG interface is locked by default and the host application is part of the
programming image.

The programming file used by the host interface is created by the UniFlash Image Creator tool.

For non-secure programming, use the file programming.ucf. For secure programming, use the file
programming.encrypt.ucf.

_i32 Status
_u8 DataBuf[1000];
_u16 Len;
_u8 Key[16];
Status = sl_FsProgram ((const _u8*)DataBuf , Len , &Key , 0);
if(Status < 0)
{
 /*error */
}

For programming, the function receives the .ucf file and the image key (or null key). The device starts the
extraction procedure when the last portion of the file is received. The function returns after the extraction is
complete.

When the function completes, a hibernate-reset is required (sl_Stop, sl_Start).

8.12.1.2.3 External Tool Programming

Programming the SFLASH with an external tool requires using the .bin or .hex programming files. The
programming files used by the external tool are created by the UniFlash Image Creator tool.

For non-secure programming, use the programming.bin/.hex. For secure programming, use the
programming.encrypt.bin/.hex.

The .bin and .hex (Intel Hex) files are standard file formats.

At the end of the programming process, the device is operational and configured.

The external programming steps are:
1. Program the SFLASH with the third-party programming tool.

File System www.ti.com

148 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Important: The entire SFLASH should be erased before programming the image. The extraction process
considers that the SFLASH is erased, except to the programming image storage.

2. Assemble the SFLASH to the device.
3. For a nonsecure image:

a. For the CC32xx devices: set the SOP lines to 000.
b. Power-on-reset (POR) the device.
c. The image-extracting process is started automatically by the device.

4. For a secure image (secure image can be created for the CC31xx, CC32xxS, and CC32xxSF) :
a. Set the SOP lines to UART-programming mode (010 or 100).
b. Set the encryption key using the Image Creator tool (after setting the key, it resets the device). The device

extracting process starts automatically. Setting the encryption key is done by the Image Creator tool using
the UART interface.

c. For the CC32xx device: set the SOP lines to 000
d. POR the device.

Note

If the device was POR during the extracting process (after setting the SOP lines to 000 in Step 3.a. or
4.c.), the process continues and the device automatically triggers an additional hibernate-reset.

8.13 Restore to Factory
The SimpleLink Wi-Fi device has an internal recovery mechanism, in which the level of recovery can be set by
the Image Creator tool; it is kept as part of the programming image.

Three levels of recovery are supported:
• None – no recovery level is supported.
• Restore-to-factory default
• Restore-to-factory image
• Restore-to-factory image using SOP, but only if the restored-to-factory image is enabled

If one of the recovery methods is enabled, the programming image is kept on the SFLASH even after being
extracted into the file system. The recovery process uses the original programming image that was saved.

Restore to factory image procedure:
• All the files are rolled back to the image configuration; files that do not exist in the image are deleted.
• Can be invoked by the host, or by SOP

Restore-to-factory default:
• All the files are rolled back to the image configuration, except the service pack and the host application

(CC32xx M4 firmware).
• Can be invoked by the host

The process of restore-to-factory is fail-safe: the process has two stages:
• Preparation, which takes about 0.3 seconds.

If the device is reset during this stage, the file system will not change.
• Extraction depends on the vendor programming image size and the SFLASH type.

If the device was reset during the extraction, the extracting process continues when the device is powered
up.

www.ti.com File System

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 149

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Note

If the Wi-Fi calibration mode is configured as one time, the Wi-Fi calibration is not regenerated when
invoking the restore-to-factory-default method (the current calibration is used).

While the restore-to-factory operation is in process, the networking subsystem is in lock state. Most of
the functions are blocked and will return an error SL_ERROR_INCOMPLETE_PROGRAMMING.

For the CC32xx devices, after the programming stage the SOP lines should be 000, because the
states of the SOP lines impact the restore-to-factory function.

For the CC32xx devices, if the SOP lines are set to 010 or 100 (UART-programming mode), the
following scenario may occur:
1. Restore to factory is called.
2. Device-reset occurs during the restore-to-factory extraction stage.
3. The device is halted.

• The following steps overcome the halt situation:
a. Set the SOP lines to 000.
b. POR the device, and the restore to factory is completed successfully.

8.13.1 Restore to Factory by the Host

To trigger the restore-the-factory image from the host, the following steps are required:
1. From the host, invoke the restore function as in the following example. The function is synchronous; it returns

when the process is finished.
2. Hibernate-reset the device:

• CC31xx: sl_Stop, sl_Start
• CC32xx: sl_Stop, PRCMHibernateCycleTrigger()

Examples:

_i32 slRetVal;
SlFsRetToFactoryCommand_t RetToFactoryCommand;
_i32 Status, ExtendedStatus;
 RetToFactoryCommand.Operation = SL_FS_FACTORY_RET_TO_IMAGE;
 Status = sl_FsCtl((SlFsCtl_e)SL_FS_CTL_RESTORE, 0, NULL , (_u8 *)&RetToFactoryCommand ,
sizeof(SlFsRetToFactoryCommand_t), NULL, 0 , NULL);
 if ((_i32)Status < 0)
 {
 /*error*/
 //Status is composed from Signed error number & extended status
 Status = (_i16)Status>> 16;
 ExtendedStatus = (_u16)slRetVal& 0xFFFF;
 break;
}
//Reset
sl_Stop(10);
sl_Start(NULL, NULL, NULL);

_i32 slRetVal;
SlFsRetToFactoryCommand_t RetToFactoryCommand;
_i32 Status, ExtendedStatus;
 RetToFactoryCommand.Operation = SL_FS_FACTORY_RET_TO_DEFAULT;
 Status = sl_FsCtl((SlFsCtl_e)SL_FS_CTL_RESTORE, 0, NULL , (_u8 *)&RetToFactoryCommand ,
sizeof(SlFsRetToFactoryCommand_t), NULL, 0 , NULL);
 if ((_i32)Status < 0)
 {
 /*error*/
 //Status is composed from Signed error number & extended status
 Status = (_i16)Status>> 16;
 ExtendedStatus = (_u16)slRetVal& 0xFFFF;
 break;
}
//Reset
sl_Stop(10);
sl_Start(NULL, NULL, NULL);

File System www.ti.com

150 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.13.2 Restore to Factory by Using the SOP

To trigger the restore the factory image through the SOP inputs, follow the methods outlined in the following
sections.

8.13.2.1 CC31xx

The recommended method for the CC31xx devices is to invoke the restore to factory by the host application,
because restore to factory based on the SOP lines requires external POR of the CC31xx device (see Step 1)
while the host application is still running. Performing the POR might cause to synchronization loss between the
Host and the CC31xx device or unpredictable behavior of the Host application.

The following steps are required:
1. Set the SOP to 011(SOP2=0, SOP1=1, SOP0=1) and perform POR (power on reset). This initiates the

restore to factory operation.
2. Revert the SOP to 000.
3. When the restore-to-factory operation is done, the device sends an Init complete event with a LOCKED +

Factory restored indication.
4. Perform a POR to clear the SOP indication in the host.

If the user pressed the POR during Step 3, the restore process continues and the device automatically
triggers an additional hibernate-reset when finished.

5. The device sends an Init complete event to the host.

8.13.2.2 CC32xx

For the CC32xx devices, invoking the restore to factory based on the SOP lines requires additional POR and a
method to request that from the end user (see Step 5).

The following steps are required:
1. Set the SOP to 011(SOP2=0, SOP1=1, SOP0=1) and perform POR. This initiates the restore to factory

operation (the LaunchPad has a button for it).
2. Revert the SOP to 000 (the host SOP indication is not yet cleared).
3. When the restore to factory operation is done, the device initiates a hibernate-cycle and the host application

starts.
4. When the host program detects the SOP indication, the host program requests the user to POR (it must not

call sl_Start beforehand).
5. Perform a POR to clear the SOP indication in the host.

If the user pressed the POR during Step 3, the restore process continues and the device automatically
triggers an additional hibernate-reset when finished.

Note

While the restore to factory function is in process, the networking subsystem is in lock state.

On Step 4, detection of the SOP indication(011) is done by reading the following value:
(HWREG(0x4402FC18) & 0x80)

If the user sets the SOP to 010 in Step 2, the scenario described in Step 5 will not work correctly.

8.14 Security Alerts
The SimpleLink Wi-Fi device provides a software tamper detection procedure with a security-alert counter. This
procedure can help detect an integrity violation of file system data, the content of a secure-authenticate file, and
system files. This procedure can also help detect unauthorized operations, such as trying to read a secure file
with an invalid token.

When detecting data tampering, the device data-tampering procedure increases the system security-alert
counter, and when the system reaches the security-alert (configured) threshold, the file system is locked. The

www.ti.com File System

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 151

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

host receives a lock asynchronous event when the file system is locked
(SL_ERROR_DEVICE_LOCKED_SECURITY_ALERT), and each call from the host to a file system interface
results in SL_ERROR_FS_FILE_SYSTEM_IS_LOCKED or SL_RET_CODE_DEV_LOCKED.

A locked device provides the host with limited access; to recover from a locked device (if the reason is a security
alert), the device can be reprogrammed or recovered using the restore to factory method. The security-alert
counter is a persistent counter, and can be set to zero only by the programming or recovery functions.

The default security alerts threshold is set by the UniFlash Image Creator. The host can retrieve the current
number of security alerts and the defined threshold using the function
sl_FsCtl(SL_FS_CTL_GET_STORAGE_INFO..). This function is also enabled when the device is locked.

There are two kinds of security alerts:
• Explicit Alerts – Critical: the device is locked immediately regardless the alert counters. Explicit alerts are

created when detecting the following tamper events:
– File system data integrity violation
– System configuration files integrity violation

• Implicit Alerts – The device is locked when the alert counter crosses the alerts threshold. Implicit alerts are
created when detecting the following tamper events:
– Attempt to perform an operation on a secure file without a valid token
– An integrity violation when a secure-authenticate file is opened for read
– An invalid signature or invalid certificate is set when changing a secure-authenticate file

8.15 Design Consideration
8.15.1 Choosing SFLASH Type

Choosing the correct SFLASH for the application is an important step in the design process. This section
describes the factors to consider when choosing the SFLASH. A list of recommended SFLASH types is
published on the TI website.

In general, SFLASH types may vary in the following factors:
• The operating voltage: the Wi-Fi subsystem operating voltage should never be dropped to a level lower than

the SFLASH-required operating voltage.
• Power removal: all systems using serial flash are vulnerable to the effects of sudden power removal.
• Access time: the time for erases, reads, and writes is different among types of SFLASH. Faster SFLASH

results in faster access of the SimpleLink Wi-Fi device to the file system.
• SFLASH write endurance: a typical serial flash ensures a data endurance of 100K write cycles per sector,

and 20 years data retention.
• Size of the SFLASH: the SimpleLink Wi-Fi device supports SFLASH up to 16MB.

File System www.ti.com

152 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.15.2 Software Design Consideration

Writing to the system with SFLASH requires consideration in the software design to maximize the SFLASH
capabilities and expand the SFLASH life-time.

The following is a list of design recommendations:
• Minimum file updates: invoking of file system functions, which triggers erase or write storage commands,

should be minimized. Such commands are triggered with each update of a file, and each system function has
documentation about whether it triggers a file update.

• File allocation table: the file system allocation table resides on the SFLASH. New file creation and the
deletion of existing files involves updating the allocation table. TI recommends rewriting a file rather than
recreating (that is, deleting and creating) the file.

• System configuration and user file creation: the system configuration is stored on the SFLASH, and setting
the system configuration triggers a file update operation. TI recommends setting the system configuration and
user file creation as part of the programming image, and then programming the image. Setting these at
programming saves the user from having to write these files at runtime, which can help keep the number of
SFLASH accesses to a minimum. During the programming procedure, regardless of the number of the
programmed files, the file system is written only twice.

• The SFLASH storage type that the SimpleLink Wi-Fi device supports has a minimal block (subsector) size of
4096 bytes; this is the minimal unit with which the file system can work. Thus, the file system software rounds
the file sizes to a multiple of 4096 bytes. For example, creating a file with maximum size of 20 bytes results in
a file of 4096 bytes. For optimal consumption of the SFLASH, create files where their maximum size is a
multiple of 4096 minus 500 bytes (for each file the file system allocates a header of 500 bytes).

• The file system does not handle fragmentation; sometimes changing the order in which the files are created
may result in more space. Also, changing the order of user file creation in the programming image may affect
the SFLASH usage.

• To reduce SFLASH writes, create a file which requires frequent updates with the FAILSAFE flag; the number
of SFLASH writes is reduced in half because the system switches between the file images.

8.15.3 Retrieving Info Regarding SFLASH Usage

The SimpleLink Wi-Fi device provides counters of the number of SFLASH write operations. The counters can be
obtained by:
• Getting the storage info returns the file allocation table writes counter. Though the file allocation write counter

is increased during the programming process, the actual count during the programming is only two SFLASH
write operations.

• Getting the file info returns the file write counter. For files created with the fail-safe flag, the retrieved count
should be divided in 2.

8.15.4 SFLASH Size

The SimpleLink Wi-Fi device file system supports an SFLASH size from 1MB up to 16MB.

The required storage size depends on the size of the vendor files, and the requirements of the target system.

Table 8-14 provides the minimum sizes recommended for the different devices:

Table 8-14. Minimum Recommenced Serial Flashes Sizes
Part Number Minimum Recommended Size

CC3120, CC3130, CC3135 1MB to 2MB

CC3220R, CC3220S, CC3230S, CC3235S 2MB to 4MB

CC3220SF, CC3230SF, CC3235SF 4MB

The following subsections describe the usage and the sizes that should be considered while choosing the size of
the SFLASH.

www.ti.com File System

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 153

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

8.15.4.1 Restore to Factory is Disabled

If the implementation disables the restore-to-factory feature, the following storage units are allocated:
• 5 blocks, file system allocation table
• 32 blocks, reserved for system files
• 7 blocks, TI information file
• 66 blocks, service pack
• n blocks, for the host application (applicable for CC32xx devices only).
• n blocks for the vendor files
• Temporary storage for the image, depending on the image size

Note

The size of the programming image depends on the size of the stored files.

During the programming, temporary storage for keeping the programming image is required; at the
end of the programming, the temporary storage can be used for vendor files.

The term block is related to subsector(4096 bytes), which is the smallest erase unit of the SFLASH.

8.15.4.2 Restore to Factory is Enabled

If the implementation enables the restore-to-factory feature, the following storage units are allocated:
• 4 blocks, file system allocation table
• 32 blocks reserved for system files
• 7 blocks, TI information file
• 66 blocks, service pack
• n blocks, for the host application (applicable for CC32xx devices only).
• n blocks for the vendor files
• Storage for the image, depending on the image size, rounded to 32 blocks

Note

The size of the image depends on the size of the stored files.

8.15.5 Storage Usage Information

The required size for the programming image can be observed in the UniFlash Image Creator log. The Image
Creator tool maintains a log which is displayed during the image creation; the log displays how many blocks are
allocated for each file, and an estimation of the total required storage size.

After the SFLASH is programmed, the file list function (host driver) retrieves information about the existing files
and the number of allocated blocks per file.

The get storage info function contains information about the device usage, information about the device capacity,
the largest available gap, and so forth.

Figure 8-1 is an example of the Image Creator log, which is displayed during the image generation.

File System www.ti.com

154 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure 8-1. Image Creator Log

www.ti.com File System

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 155

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

File System www.ti.com

156 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

This page intentionally left blank.

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.1 Introduction...158
9.2 Key Features... 162
9.3 Configurations and Settings..162
9.4 RESTful API Processing.. 163
9.5 Device Parameter Querying Through HTTP (Device Tokens).. 168
9.6 Resource Search Order... 175
9.7 Host HTTP Requests Processing..176
9.8 Security... 185
9.9 Processing of Parallel Requests...186

Chapter 9
HTTP Server

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 157

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.1 Introduction
The SimpleLink Wi-Fi device includes a built-in HTTP server that lets the end-user remotely communicate with
the device. This chapter describes the internal HTTP server capabilities and the relevant APIs. The SimpleLink
HTTP server consists of the following:
• HTML pages stored on the file system
• Content generated on the fly by the host
• Hard coded configuration pages permanently stored in the ROM of the device

9.1.1 Built-in Configuration Pages

These web pages are stored in the SimpleLink device ROM, and allow for changing and reading many of the
device settings through a web interface (similar to those used in many routers and access points), as shown in
Figure 9-1. The pages are completely self-contained, and no host involvement is necessary for them to function.

HTTP Response

HTTP Request

Host
6LPSOH/LQN��

Device
Client

x

AP

Product

Read ROM

File

GET /index.html

HTTP Request
POST /API1

Process API

HTTP Response

Figure 9-1. Configuration Pages

HTTP Server www.ti.com

158 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.1.2 RESTful APIs

A reserved set of resource names may be used to configure various parameters in the SimpleLink Wi-Fi device
directly, through HTTP requests with no host application involvement.

9.1.2.1 Changing Configuration

Settings are changed through HTTP POST requests to hard coded resource names. This is handled by the
device and transparent to the host, as shown in Figure 9-2. For details, see Section 9.4.

Product

Host
SimpleLink�

Device

Process API

HTTP Request
POST /ap1/1/API_NAME

HTTP Request

Client
AP

Figure 9-2. Changing Configuration

9.1.2.2 Reading Configuration

Settings can be read through HTTP GET requests to various token names. This is handled by the device and is
transparent to the host, as shown in Figure 9-3. For details, see Section 9.5.

Product

Host
SimpleLink�

Device

Get token value

HTTP Request
GET _SL_G_TKN

HTTP Request

Client
AP

Figure 9-3. Reading Configuration

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 159

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.1.3 Custom Static Pages

User pages are any content stored under the /www/ or /www/safe/ path on the file system. The content can be
set by the application, either as part of the programming process or using the host application file system API.

Note

The previously mentioned paths are used only to organize files on the file system, and must not be
part of a URL when linking to resources. For example, the URL of a file named example.html that is
placed at /www/user_directory/example.html is http://deviceIP/user_directory/example.html.

Placing any file under the /www/ path of the file system makes it a resource which the HTTP server can serve to
its clients. These resources are static, as their content remains constant. Serving these resources is handled
completely by the HTTP server and is transparent to the host as seen in Figure 9-4.

Product

Host
SimpleLink�

Device

Read File

HTTP Request
GET /Userfile.html

HTTP Request

Client
AP

Figure 9-4. Static Pages

9.1.3.1 Custom Pages With Device Tokens

Device Tokens are special text strings inside a resource, which the HTTP server substitutes with values just
before serving the resource to the requesting client (see Section 9.5 for details). These tokens are updated by
the SimpleLink device every time a resource is served, which lets users create pages with some dynamic
content (various parameters of the SimpleLink device) without any involvement from the host, as shown in
Figure 9-5.

Product

Host
SimpleLink�

Device

Read File

HTTP Request
GET /Userfile.html

HTTP Request

Client
AP

Process Tokens

Figure 9-5. Custom Pages With Device Tokens

HTTP Server www.ti.com

160 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.1.3.2 Static Pages With Host Tokens

Host tokens are similar to device tokens, except that the substitution of each token is deferred to the host
through an asynchronous event. This lets users create pages containing dynamic content with minimal host
involvement, because the major and static part of the web page is stored on the file system and only small
dynamic parts are handled by the host. This can be seen in Figure 9-6.

Product

Host
SimpleLink�

Device

Read File

HTTP Request
GET /Userfile.html

HTTP Request

Client
AP

Token 1 Request

Token 1 Response

Token 2 Request

Token 2 Response

Figure 9-6. Static Pages With Host Tokens

9.1.4 Host Application Interface

If the served content is highly dynamic, the request should be deferred completely to the host using the
mechanism described in Section 9.7.2. In this case, the entire content of the response must be generated by the
host on each request, as seen in Figure 9-7.

Product

Host
SimpleLink�

Device

HTTP Request
GET /ResourceName

POST /ResourceName

HTTP Request

Client
AP

HTTP Request

Response Header

Response Data

Figure 9-7. Host Application Interface

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 161

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.2 Key Features
Table 9-1 lists the key features of the HTTP server.

Table 9-1. Key Features
Feature Description

HTTP Support version 1.0, single client, GET&POST requests

HTTPS TLS connections to the server are supported.

Serve HTML pages from file system Serve any resource that can be placed on the file system.

RESTful APIs Execute various APIs through simple POST requests.

Built-in configuration pages Built-in default page that provides device configuration, status, and analysis tools

Host callbacks HTTP requests can be handled by the host through a simple callback mechanism.

HTTP port configuration Default is port 80.

HTTP web server authentication Includes authentication name, password, and realm, which are configurable. Can be
enabled or disabled (disabled by default).

Domain name configuration Supported in AP mode.

Redirect mechanism Redirect a nonsecure connection to secured .

Host-controlled resource transfer size Host is able to select desired packet size for sending and receiving resources.

9.3 Configurations and Settings
The HTTP server is active by default on all device modes (STA, AP, and Wi-Fi Direct). It can be disabled or
enabled per each device mode using the sl_NetAppStart / sl_NetAppStop API. The domain name can be set by
using the HTTP server options, and are configured through the sl_NetAppSet API with
SL_NETAPP_HTTP_SERVER_ID as the App ID. For the configuration to take effect, the server must be
restarted (either by stopping and restarting the service or by restarting the entire network subsystem).

Table 9-2 describes the available configuration options.

Table 9-2. Configuration Options
Option Name Function Notes Default Value

SL_NETAPP_HTTP_PRIMARY_PORT_NUMBE
R

Port on which the server accepts
new connections

80

SL_NETAPP_HTTP_PRIMARY_PORT_SECURI
TY_MODE

Enables the secure socket
connection (TLS) on the primary
server port

Disabled

SL_NETAPP_HTTP_AUTH_CHECK Enable or disable the client
authentication.

Disabled

SL_NETAPP_HTTP_AUTH_NAME Authentication username Maximum length is 20
characters

Admin

SL_NETAPP_HTTP_AUTH_PASSWORD Authentication password Maximum length is 20
characters

Admin

SL_NETAPP_HTTP_AUTH_REALM Authentication realm Only one realm is
supported. Maximum
length is 20 characters

SimpleLink CC31xx

SL_NETAPP_HTTP_ROM_PAGES_ACCESS Enable access to the configuration
pages stored in the ROM of the
device and processing of the
RESTful APIs.

Enabled

SL_NETAPP_HTTP_SECONDARY_PORT_NUM
BER

Secondary port on the HTTP server
accepts connections.

80

SL_NETAPP_HTTP_SECONDARY_PORT_ENA
BLE

Enable or disable secondary port. Disabled

SL_NETAPP_HTTP_PRIVATE_KEY_FILENAME Public or private pair used for key
exchange when secure socket is
enabled

N/A

HTTP Server www.ti.com

162 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 9-2. Configuration Options (continued)
Option Name Function Notes Default Value

SL_NETAPP_HTTP_DEVICE_CERTIFICATE_FI
LENAME

Public or private pair used for key
exchange when secure socket is
enabled

N/A

SL_NETAPP_HTTP_CA_CERTIFICATE_FILE_N
AME

Certificate file name which will be
used for client authentication (if
present).

N/A

9.4 RESTful API Processing
The SimpleLink HTTP server recognizes dedicated resource names and treats them as APIs. A POST request
to these names executes the API without any involvement from the host application. All HTTP API requests must
have the encoding of application/x-www-form-urlencoded. Most APIs require one or more parameters. These
parameters are passed as part of the message body and have a rigid structure. They begin with the prefix
“__SL_P_”, followed by three characters for the parameter ID, followed by an equal sign, and then by the
parameter value (such as __SL_P_T.A=192.168.10.10).

Several parameters can be chained together with the ampersand operator (such as __SL_P_T.A
=192.168.10.10 & __SL_P_T.B =64). Blank spaces that are not part of the parameter value are not allowed. All
parameters relevant to an API should be provided in the body of the same request. However, if a parameter was
omitted, its previously known value is used. This feature is enabled by default (see Section 9.3 for details).

9.4.1 Ping

The device has a built-in ping utility for testing and troubleshooting network connectivity issues. The ping is
started by posting the following parameters to /api/1/netapp/ping, as shown in Table 9-3.

Table 9-3. Ping Options
Name (code) Description Example

Target IP (__SL_P_T.A) IPv4 target address of ping requests. (__SL_P_T.A=192.168.10.10)

Ping packet size (__SL_P_T.B) Size of the ping payload in bytes (from 1 to 1472). (__SL_P_T.B=1024)

Packets to send (__SL_P_T.C) Number of packets to send (from 1 to 255). (__SL_P_T.C=4)

For example, the following request will send 4 ping packets, each of size 1024 bytes, to IP 10.123.45.2:

POST /api/1/netapp/ping HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded
__SL_P_T.C=4&__SL_P_T.B=1024&__SL_P_T.A=10.123.45.2

The ping process stops automatically when the requested number of packets is sent. To manually stop it
beforehand, a post request should be sent to /api/1/netapp/ping_stop (no parameters are necessary). The
results can be retrieved by requesting the token __SL_G_T.D (see Appendix A for details).

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 163

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.4.2 IP Configuration

Many IP settings can be configured from the HTTP interface by sending a POST request to either /api/1/netapp/
netcfg_sta, /api/1/netapp/netcfg_sta_ipv6, or /api/1/netapp/netcfg_ap URLs with some (or all) of the parameters
listed in Table 9-4.

Table 9-4. IP Configurations
Name (code) Description Example

STA mode IP (__SL_P_N.A) Device IP in station mode (__SL_P_N.A=192.168.10.10)

AP mode IP (__SL_P_N.P) Device IP in AP mode (__SL_P_N.P=192.168.10.10)

STA mode netmask (__SL_P_N.B) Device subnet mask in station mode (__SL_P_N.B=255.255.255.0)

AP mode netmask (__SL_P_N.Q) Device subnet mask in access point mode (__SL_P_N.Q=255.255.255.0)

STA Gateway (__SL_P_N.C) Network gateway IP in station mode (__SL_P_N.C=192.168.10.1)

AP Gateway (__SL_P_N.T) Network gateway IP in AP mode (__SL_P_N.T=192.168.10.1)

Address of primary STA DNS server
(__SL_P_N.H)

Address of primary DNS server in station
mode

(__SL_P_N.H=8.8.8.8)

Address of primary AP DNS server
(__SL_P_N.U)

Address of primary DNS server in AP mode (__SL_P_N.U=8.8.8.8)

IPv4 mode (__SL_P_N.D) IP acquisition mode for IPv4 address.
Options are: LLA DHCP, DHCP, and Static

(__SL_P_N.D=DHCP)

IPv6 Local mode (__SL_P_I.S) IP acquisition mode for local IPv6 address.
Options are: Stateless, Static, and Statefull

(__SL_P_I.S=Disable,
__SL_P_I.S =Stateless,
__SL_P_I.S =Static,
__SL_P_I.S =Statefull)

IPv6 Local address (__SL_P_I.L) Set the IPv6 link-local address (if local mode
is set to Static)

(__SL_P_I.S=fe80::ccaf:9519:0002:a5fd)

IPv6 Global mode (__SL_P_I.G) IP acquisition mode for global IPv6 address.
Options are: Stateless, Static, and Statefull

(__SL_P_I.G=Disable,
__SL_P_I.G =Stateless,
__SL_P_I.G =Static,
__SL_P_I.G =Statefull)

IPv6 Global address (__SL_P_I.B) Set the IPv6 global address (if global mode is
set to Static)

(__SL_P_I.B==2001:0db8:3c4d:0015:0000:0
000:1a2f:1a2b)

IPv6 DNS address (__SL_P_I.K) Set IPv6 primary DNS server (__SL_P_I.K= 2001:4860:4860::8888)

For example, the following request sets the AP mode IP address to 10.10.10.10 without DHCP (Static):

POST /api/1/netapp/netcfg_ap HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded
__SL_P_N.P=10.10.10.10&__SL_P_N.D=Static

9.4.3 URN Configuration

The device URN (uniform resource name) can be set by posting to /api/1/netapp/set_urn the parameters listed in
Table 9-5. The maximum size of the URN is 33 characters (not including the null terminator).

Table 9-5. URN Configurations
Name (code) Description Example

Device URN (__SL_P_S.B) Must not exceed 33 characters. __SL_P_S.B=mysimplelink1.net

For example, the following request changes the device URN to my-urn:

POST /api/1/netapp/set_urn HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded
__SL_P_S.B=my-urn

HTTP Server www.ti.com

164 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.4.4 WLAN Profiles

WLAN connection profiles can be added by posting to either /api/1/wlan/profile_add or /api/1/wlan/profile_p2p
the parameters listed in Table 9-6 (all are case sensitive).

Table 9-6. WLAN Profiles
Name (code) Description Example

SSID (__SL_P_P.A) The SSID of the desired AP. Must not exceed 32
characters.

__SL_P_P.A=TargetSSID

Security (__SL_P_P.B) Security type for the connection.

0-Open, 1-WEP, 2-WPA, 3-WPA2/WPA2+PMF, 5-
WPA3, 6-WPS/Push-button, 7-WPS/Pin Keypad, 8-
WPS/Pin Display

__SL_P_P.B=3

Security key (__SL_P_P.C) Security key or PIN code. Must not exceed 64
characters.

__SL_P_P.C=MySecurePassword

Priority (__SL_P_P.D) Priority of the profile. Must be from 0 to 15. __SL_P_P.D=1

For EAP connections, the URL for posting is /api/1/wlan/profile_eap, and the parameters are listed in Table 9-7
(all are case sensitive).

Table 9-7. WLAN EAP Profiles
Name (code) Description Example

SSID (__SL_P_P.H) The SSID of the desired AP. Must not exceed 32
characters.

__SL_P_P.H=TargetSSID

Identity (__SL_P_P.I) User identity. Must not exceed 64 characters. __SL_P_P.I=MyIdentity

Anonymous Identity (__SL_P_P.J) Anonymous user identity. Must not exceed 64
characters.

__SL_P_P.J=MyAnonymousIdentity

Password (__SL_P_P.K) Connection password. Must not exceed 63
characters.

__SL_P_P.K=MySecurePassword

Priority (__SL_P_P.L) Priority of the profile. Must be from 0 to 15. __SL_P_P.L=1

EAP Method (__SL_P_P.M) Can be TLS / TTLS / PEAP0 / PEAP1 / FAST. __SL_P_P.M=TLS

Pahse2 Authentication (__SL_P_P.N) Can be None / TLS / MSCHAPV2 / PSK __SL_P_P.N=None

EAP Provisioning Type (__SL_P_P.O) Can be None / 0 / 1 / 2 __SL_P_P.O=0

A post to /api/1/wlan/profile_del with the parameters listed in Table 9-8 erases a profile from the file system.

Table 9-8. Erase Profiles
Name (code) Description Example

Delete profile (__SL_P_PRR) Delete the profile with the specified index such that 0
< Index < 9.

__SL_P_PRR=2

A post to /api/1/wlan/profile_del_all deletes all profiles stored on the file system (this includes all profiles and is
not limited to those created through the HTTP interface). Information on the existing profiles can be accessed
using the __SL_G_PN1 to __SL_G_PP7 tokens (see Section 9.5).

For example, the following request adds a profile for connecting to a secure (3) network with SSID mySSID,
password 0123456789, and priority 5:

POST /api/1/wlan/profile_add HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded
__SL_P_P.B=3&__SL_P_P.A=mySSID&__SL_P_P.C=0123456789&__SL_P_P.D=5

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 165

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.4.5 WLAN Scan

A WLAN scan for nearby access points may be triggered by posting to /api/1/wlan/en_ap_scan using the
parameters listed in Table 9-9.

Table 9-9. WLAN Scan
Name (code) Description Example

Number Of Scan Cycles (__SL_P_SC2) Number of scan cycles to execute. Must be greater
than zero and smaller than 2^32.

__SL_P_SC2=64

Time Between Scan Cycles
(__SL_P_SC1)

Time (in seconds) to wait between each two cycles. __SL_P_SC1=10

For example, the following request triggers 3 scan cycles with 10-second intervals between them:

POST /api/1/wlan/en_ap_scan HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded
__SL_P_SC2=3&__SL_P_SC1=10

The scan results can be accessed with the __SL_G_NW0 and __SL_G_NW1 tokens (see Section 9.5).

9.4.6 Provisioning Confirmation

Posts to /api/1/wlan/en_ap_scan/confirm_req are handled as described in Chapter 16.

9.4.7 Connection Policy

The connection policy of the device can be set by posting to /api/1/wlan/policy_set. Any combination of the
parameters listed in Table 9-10 and present in the request turns on their associated option. Options with
parameters that are not preset are turned off. No values are provided after the equal sign; the options are
chained together with the ampersand operator. See Section 4.3.3 for details on each option.

To disable a specific policy, the corresponding token should not be passed. To disable all connection policies, the
user should pass an empty or dummy post that does not contain any of the tokens.

Table 9-10. Connection Policies
Name (code) Description Example

Enable Auto Connect (__SL_P_P.E) Auto connect policy __SL_P_P.E=

Enable Fast Connect (__SL_P_P.F) Fast connect policy __SL_P_P.F=

Enable P2P Any Connect (__SL_P_P.G) AnyP2P connect policy – relevant for Wi-Fi Direct only __SL_P_P.G=

Enable Auto Provisioning (__SL_P_P.Q) Auto provisioning policy __SL_P_P.Q=

For example, the following request enables auto-connect and fast-connect policies, but keeps the P2P-any-
connect and auto-provisioning policies disabled:

POST /api/1/wlan/policy_set HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded
__SL_P_P.E=&__SL_P_P.F=

HTTP Server www.ti.com

166 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.4.8 Station Action

When the device is in AP mode, posts to /api/1/wlan/en_ap_scan/station_action can be performed to disconnect
stations from the device. The station to disconnect is given by the parameters in Table 9-11.

Table 9-11. Station Action
Name (code) Description Example

Station number to disconnect (__SL_P_CRR) The number of the station to disconnect. Must be from 1
to the maximum number of station as set by the user.

__SL_P_CRR=1

For example, the following request disconnects station 1:

POST /api/1/wlan/en_ap_scan/station_action HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded
__SL_P_CRR=1

9.4.9 AP Black List

When the device is in AP mode, posts to /api/1/wlan/en_ap_scan/ap_aclist can be made to control the black list,
which indicates stations are not allowed to connect to the device. Table 9-12 lists these parameters.

Table 9-12. AP Control
Name (code) Description Example

Blacklist Filter Enable (__SL_P_C.M) Enables the station MAC address

blacklist filter:

0-Filter disabled

1-Filter enabled

__SL_P_C.M=1

Add station to the blacklist filter
(__SL_P_CRL)

Adds the station of the specified index to the blacklist
filter (if filter is enabled it will not be allowed to connect
again).

__SL_P_CRL=1

Remove station from the blacklist filter
(__SL_P_CRS)

Removes the station of the specified index from the
blacklist filter (station can connect).

(__SL_P_CRS=1)

Remove station from the blacklist filter
(__SL_P_C.B)

Sets the maximum number of simultaneously-connected
stations. Must be less than 5.

(__SL_P_C.B=3)

For example, the following request enables the filter and adds a station at index 1, preventing it from connecting
to the device:

POST /api/1/wlan/en_ap_scan/ap_aclist HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded
__SL_P_C.M=1&__SL_P_CRL=1

AP black list information can be accessed using the __SL_G_SR1 to __SL_G_CL8 tokens (see Section 9.5).

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 167

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.4.10 Date and Time

The device time and date can be set by posting to /api/1/wlan/en_ap_scan/set_time the parameters listed in
Table 9-13.

Table 9-13. Date and Time
Name (code) Description Example

Set date and time (__SL_P_S.J) This parameter sets the time and date
according to the following format:

yyyy,mm,dd,hh,mm,ss

(year,month,day,hours,minutes,seconds)

Each number must not contain more than
four characters.

__SL_P_S.J=2016,01,01,12,45,30

For example, the following request sets the date to 30/5/2016 and the time to 13:45:00:

POST /api/1/wlan/en_ap_scan/set_time HTTP/1.1
Host: mysimplelink.net
Content-Type: application/x-www-form-urlencoded
__SL_P_S.J=2016,05,30,13,45,00

9.5 Device Parameter Querying Through HTTP (Device Tokens)
The SimpleLink HTTP server supports querying various device parameters through a mechanism called device
tokens. These tokens can be requested directly through an HTTP GET request, or embedded inside any
serveable resource where they are replaced by their value when it is served. The token name has a rigid
convention of “__SL_G_” followed by three characters of the parameter ID (for example, __SL_G_T.A).

9.5.1 Retrieving Tokens Through GET Request

A token value may be retrieved by an HTTP GET request whose target is the token name. These requests must
have the encoding of application/x-www-form-urlencoded. Only one parameter can be queried in each HTTP
GET request.

9.5.2 Embedded Tokens

The HTTP server automatically replaces token names with their values when it serves files from the file system
or ROM. For example, if a text file is created on the file system under the path /www/example.txt with the
content:

Device hardware version: __SL_G_V.D
Device network version: __SL_G_V.A

Then a GET request to mysimplelink.net /example.txt returns the following text:

Device hardware version: 20000000
Device network version: 3.92.1.1

The tables in the following sections specify all supported tokens.

HTTP Server www.ti.com

168 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.5.3 System Information

Table 9-14 lists the system information tokens.

Table 9-14. System Information Tokens
Token Name Value and Usage

__SL_G_S.A System Up Time Returns the system up time since the last reset in the
following format:
000 days 00:00:00

__SL_G_S.B Device Name (URN) Returns device name

__SL_G_DNP Device Name Returns device name + MAC address (as string) if the
default device name is set.

__SL_G_S.C Domain Name Returns domain name

__SL_G_S.D Device Mode (role) Returns device role.
Values: Station, Access Point, P2P

__SL_G_S.E Device Role Station Drop-down menu select/not select
Returns selected if device is station, else it returns
not_selected.

__SL_G_S.F Device Role AP Drop-down menu select/not select
Returns selected if device is AP, else it returns
not_selected.

__SL_G_S.G Device Role P2P Drop-down menu select/not select
Returns selected if device is in P2P, else it returns
not_selected.

__SL_G_S.H Device Name URN (truncated to 16 bytes) Returns the URN string name with up to 16 bytes length.
Longer names will be truncated.

__SL_G_S.I System requires reset (after parameters
change)

If system requires reset, return value will be the following
string: "-- Some parameters were changed, System may
require reset --" else it returns an empty string.
(Every internal post that was handled will cause this
token to return TRUE.)

__SL_G_S.J Get System Time and Date Returned value is a string with the following format:
year, month, day, hours, minutes, seconds

__SL_G_S.K Safe Mode Status If device is in safe mode – return Safe Mode, if not return
empty string.

9.5.4 Version Information

Table 9-15 lists the version information tokens.

Table 9-15. Version Information Tokens
Token Name Value and Usage

__SL_G_V.A NWP version Returns string with the version information

__SL_G_V.B MAC version Returns string with the version information

__SL_G_V.C PHY version Returns string with the version information

__SL_G_V.D HW version Returns string with the version information

__SL_G_REV Revision R2.0

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 169

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.5.5 Network Information

Table 9-16 lists the network information tokens.

Table 9-16. Network Information Tokens
Token Name Value and Usage

Station (and P2P Client)
__SL_G_N.A STA IPv4 Address String format: xxx.yyy.zzz.ttt

__SL_G_N.B STA IPv4 Subnet Mask

__SL_G_N.C STA IPv4 Default Gateway

__SL_G_N.D MAC Address String format: 00:11:22:33:44:55

__SL_G_N.E STA IPv4 DHCP State Returned value: Enabled / Disabled

__SL_G_N.F STA IPv4 DHCP Disable State If DHCP is disabled, returns Checked, else
returns Not_Checked.
Used in the DHCP radio button

__SL_G_N.G STA IPv4 DHCP Enable State If DHCP is enabled, returns Checked, else
returns Not_Checked.
Used in the DHCP radio button

__SL_G_N.L STA IPv4 LLA Enable State If LLA option is enabled, returns Checked, else
returns Not_Checked.

__SL_G_N.H STA IPv4 DNS Server String format: xxx.yyy.zzz.ttt

__SL_G_LV6 STA IPv6 Enable If IPv6 interface is enabled, returns Checked, else
returns Not_Checked.

__SL_G_LSC STA IPv6 Local Address Type Returns Checked if IPv6 local address mode is
static.

__SL_G_LSS Returns Checked if IPv6 local address mode is
stateless.

__SL_G_LSF Returns Checked if IPv6 local address mode is
statefull.

__SL_G_N.Z STA IPv6 Global Address Type Returns Checked if IPv6 global address is
disabled.

__SL_G_N.R Returns Checked if IPv6 global address mode is
static

__SL_G_N.O Returns Checked if IPv6 global address mode is
statefull

__SL_G_N.S Returns Checked if IPv6 global address mode is
stateless

__SL_G_LSK STA Current IPv6 Local Address Returns the address in the format
xxxx:xxxx:xxxx:xxxx: xxxx:xxxx:xxxx:xxxx__SL_G_LSG STA Current IPv6 Global Address

__SL_G_LSP STA IPv6 DNS Server

__SL_G_LSO STA IPv6 Local Address Mode Returns Disabled / Static / Stateless / Statefull
according to the configured local address mode

__SL_G_LSD STA IPv6 Global Address Mode Returns Disabled / Static / Stateless / Statefull
according to the configured global address mode.

DHCP server
__SL_G_N.I DHCP Start Address String format: xxx.yyy.zzz.ttt

__SL_G_N.J DHCP Last Address

__SL_G_N.K DHCP Lease Time String of the lease time in seconds

AP (and P2P Go)
__SL_G_N.P AP IP Address String format: xxx.yyy.zzz.ttt

__SL_G_N.Q AP Subnet Mask

__SL_G_N.T AP Gateway Address

__SL_G_N.U AP DNS Address

HTTP Server www.ti.com

170 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 9-16. Network Information Tokens (continued)
Token Name Value and Usage

__SL_G_W.A Channel # in AP mode

__SL_G_W.B SSID

__SL_G_W.I Is SSID Public If SSID is public (visible), returns Checked, else
returns Not_Checked.
Used in the security type radio button check/not
checked.

__SL_G_W.J Is SSID Hidden If SSID is hidden (invisible), returns Checked,
else returns Not_Checked.
Used in the security type radio button check/not
checked.

__SL_G_W.C Security Type Returned values: Open, WEP, WPA.

__SL_G_W.D Security Type Open If security type is open, returns Checked, else
returns Not_Checked.
Used in the security type radio button check/not
checked.

__SL_G_W.E Security Type WEP If security type is WEP, returns Checked, else
returns Not_Checked.
Used in the security type radio button check/not
checked.

__SL_G_W.F Security Type WPA If security type is WPA, returns Checked, else
returns Not_Checked.
Used in the security type radio button check/not
checked.

__SL_G_SR1 The configured max number of connected
stations.

The token representing the max number of
connected stations returns Checked. Others
return Not Checked.__SL_G_SR2

__SL_G_SR3

__SL_G_SR4

__SL_G_CN1 Name of the connected station (string) in the
given index.

Each token returns the host name of the station in
the specified index. “ - “ is returned if the client
does not exist.__SL_G_CN2

__SL_G_CN3

__SL_G_CN4

__SL_G_CM1 MAC address (string in the format
AA:BB:CC:DD:EE:FF) of the connected station in
the given index.

Each token returns the MAC address of the
station in the specified index. “ - “ is returned if no
station is connected.__SL_G_CM2

__SL_G_CM3

__SL_G_CM4

__SL_G_CI1 IP address (string in the format W.X.Y.Z) of the
connected station in the given index.

Each token returns the IP address of the station
in the specified index. “ - “ is returned if no station
is connected.__SL_G_CI2

__SL_G_CI3

__SL_G_CI4

__SL_G_SM1 Access control filter is enabled If AP access control filter is enabled, returns
Checked, else returns Not_Checked.

__SL_G_SM0 Access control filter is disabled If AP access control filter is disabled, returns
Checked, else returns Not_Checked.

__SL_G_CLS Number of filtered MAC addresses.

__SL_G_CL1 The MAC filter of the given index (string in the
format AA:BB:CC:DD:EE:FF).

Return the configured MAC address to filter. “ -
“ is returned if no filter is configured.__SL_G_CL2

__SL_G_CL3

__SL_G_CL4

__SL_G_CL5

__SL_G_CL6

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 171

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 9-16. Network Information Tokens (continued)
Token Name Value and Usage

__SL_G_CL7

__SL_G_CL8

__SL_G_NW1 Tokens for retrieving the scan results. Each result
is in the format Nssid; where N is the security
indicator (0=open, 1=WEP, 2=WPA/
WPA2,3=WPA3).

Incrementally returns scan results (one for each
get request).

__SL_G_NW0 Always returns the first scan result and resets the
internal pointer.

9.5.6 Ping Results

Table 9-17 lists the ping results tokens.

Table 9-17. Ping Results Tokens
Token Name Value and Usage

__SL_G_T.A IP Address String format: xxx.yyy.zzz.ttt

__SL_G_T.B Packet Size

__SL_G_T.C Number of Pings

__SL_G_T.D Ping Results – total sent Number of total pings sent

__SL_G_T.E Ping Results – successful sent Number of successful pings sent

__SL_G_T.F Ping Test Duration In seconds

9.5.7 Connection Policy Status

Table 9-18 lists the connection policies status tokens.

Table 9-18. Connection Policies Status Tokens
Token Name Value and Usage

__SL_G_P.E Auto Connect If auto connect is enabled, returns Checked, else
returns Not_Checked.
Used in the auto connect checkbox.

__SL_G_P.F Fast Connect If fast connect is enabled, returns Checked, else
returns Not_Checked.
Used in the fast connect checkbox.

__SL_G_P.G Any P2P If any P2P is enabled, returns Checked, else
returns Not_Checked.
Used in the Any P2P checkbox.

__SL_G_P.P Auto Smart Config If auto smart config is enabled, returns Checked,
else returns Not_Checked.
Used in the Auto Smart Config checkbox.

9.5.8 Provisioning

Table 9-19 lists the provisioning tokens.

Table 9-19. Provisioning Tokens
Token Name Value and Usage

__SL_G_P.Q Auto Provisioning If auto provisioning is enabled, returns Checked,
else returns Not_Checked.

__SL_G_MCH Returns a human-readable text representing the
status of the provisioning process

__SL_G_MCR Returns a number code of the provisioning status

__SL_G_PST Provisioning Active Indication Simple text indication returning 1 if provisioning is
active; 0 otherwise.

__SL_G_PIP Provisioned IP Address IP address obtained in the provisioning process

HTTP Server www.ti.com

172 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.5.9 Display Profile Information

Table 9-20 lists the display profile information tokens.

Table 9-20. Display Profile Information Tokens
Token Name Value and Usage

__SL_G_PN1 Return profile 1 SSID SSID string

__SL_G_PN2 Return profile 2 SSID

__SL_G_PN3 Return profile 3 SSID

__SL_G_PN4 Return profile 4 SSID

__SL_G_PN5 Return profile 5 SSID

__SL_G_PN6 Return profile 6 SSID

__SL_G_PN7 Return profile 7 SSID

__SL_G_PS1 Return profile 1 Security Status Returned values: Open, WEP, WPA, WPS, ENT,
P2P_PBC, P2P_PIN or “ – “ for empty profile.__SL_G_PS2 Return profile 2 Security Status

__SL_G_PS3 Return profile 3 Security Status

__SL_G_PS4 Return profile 4 Security Status

__SL_G_PS5 Return profile 5 Security Status

__SL_G_PS6 Return profile 6 Security Status

__SL_G_PS7 Return profile 7 Security Status

__SL_G_PP1 Return profile 1 Priority Profile priority: 0–7

__SL_G_PP2 Return profile 2 Priority

__SL_G_PP3 Return profile 3 Priority

__SL_G_PP4 Return profile 4 Priority

__SL_G_PP5 Return profile 5 Priority

__SL_G_PP6 Return profile 6 Priority

__SL_G_PP7 Return profile 7 Priority

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 173

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.5.10 P2P Information

Table 9-21 lists the P2P information tokens.

Table 9-21. P2P Information Tokens
Token Name Value and Usage

__SL_G_R.A P2P Device Name String

__SL_G_R.B P2P Device Type String

__SL_G_R.C P2P Listen Channel Returns string of the listen channel number

__SL_G_R.T Listen Channel #1 If current listen channel is #1, returns selected, else
returns not_selected.
Used for the drop down menu of the listen channel.

__SL_G_R.U Listen Channel #6 If current listen channel is #6, returns selected, else
returns not_selected.
Used for the drop down menu of the listen channel.

__SL_G_R.V Listen Channel #11 If current listen channel is #11, returns selected, else
returns not_selected.
Used for the drop down menu of the listen channel.

__SL_G_R.E P2P Operation Channel Returns string of the operational channel number

__SL_G_R.W Operational Channel #1 If current operational channel is #1, returns selected, else
returns not_selected.
Used for the drop down menu of the operational channel.

__SL_G_R.X Operational Channel #6 If current operational channel is #6, returns selected, else
returns not_selected.
Used for the drop down menu of the operational channel.

__SL_G_R.Y Operational Channel #11 If current operational channel is #11, returns selected,
else returns not_selected.
Used for the drop down menu of the operational channel.

__SL_G_R.L Negotiation Intent Value Returned values: Group Owner, Negotiate, Client

__SL_G_R.M Role Group Owner If intent is Group Owner, returns Checked, else returns
Not_Checked.
Used for negotiation intent radio button.

__SL_G_R.N Role Negotiate If intent is Negotiate, returns Checked, else returns
Not_Checked.
Used for negotiation intent radio button.

__SL_G_R.O Role Client If intent is Client, returns Checked, else returns
Not_Checked.
Used for negotiation intent radio button.

__SL_G_R.P Negotiation Initiator Policy Returned Values: Active, Passive, Random Backoff

__SL_G_R.Q Neg Initiator Active If negotiation initiator policy is Active, returns Checked,
else returns Not_Checked.
Used for negotiation initiator policy radio button.

__SL_G_R.R Neg Initiator Passive If negotiation initiator policy is Passive, returns Checked,
else returns Not_Checked.
Used for negotiation initiator policy radio button.

__SL_G_R.S Neg Initiator Rand Backoff If negotiation initiator policy is Random Backoff, returns
Checked, else returns Not_Checked.
Used for negotiation initiator policy radio button.

HTTP Server www.ti.com

174 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

9.5.11 Host Tokens

All tokens that are not defined in the previous sections are transferred to the host for conversion. Section 9.7
describes how the requests are transferred to the host.

9.6 Resource Search Order
This section describes the way in which the HTTP server handles each HTTP request according to its type and
resource name.

9.6.1 GET Request Search Order

A GET request is processed according to the flow in Figure 9-8.

Resource

name exists on file

system?

Resource

name exists in

ROM?

Resource

name is token

request

Defer request to

host

No

No

No

Yes

Yes

Yes

Read File

Read File

Create token

response

Send

Response

Send

Response

Send

Response

Host response

timeout?

Host response

received?

NoNo

Yes

Yes Send 404 (not

found) response

Send response

from host

GET

Figure 9-8. GET Request Flow

If a file is not found in the file system, it is searched in the device ROM, where the following files always exist:
• index.html
• netlist.txt
• param_product_version.txt
• param_device_name.txt
• param_ip_address.txt
• param_cfg_result.txt

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 175

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Any request other than GET is not associated with these resources, and is transferred directly to the host.
Additionally, to use the built-in configuration page, do not override any of the built-in pages, because this breaks
functionality.

9.6.2 POST Request Search Order

A POST request is processed according to the flow in Figure 9-9.

Resource

name exists on file

system?

Defer request to

host

No

Yes
Process API

Send
Response

Host response

timeout?

Host response

received?

NoNo

Yes

Yes Send 404 (not

found) response

Send response

from host

POST

Figure 9-9. POST Request Flow

9.6.3 PUT and DELETE Request Search Order

PUT and DELETE requests are always deferred to host regardless of resource name, as shown in Figure 9-10.

Defer request to

host
Host response

timeout?

Host response

received?

NoNo

Yes

Yes Send 404 (not

found) response

Send response

from host

POST

Figure 9-10. PUT and DELETE Request Flow

9.7 Host HTTP Requests Processing
All HTTP requests transferred to the host are processed through the macro slcb_NetAppRequestHdlr, which
should be mapped to a user function by user.h. The function receives two parameters (and returns void): A
pointer to the request structure containing the parameters and type of the HTTP request, and a pointer to the
response structure which should be populated with the desired HTTP response.

The HTTP headers are transferred to the host as TLVs (type length value) in the metadata section of the
request. The HTTP message (if present) is transferred as is, and should be parsed and processed by the user
function. The HTTP user handler is invoked from the SimpleLink driver context, and must therefore return quickly

HTTP Server www.ti.com

176 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

and without calling any other SimpleLink APIs. If the response cannot be determined immediately by the handler,
it should set the response status to pending and return. The application must then generate and send a
response from its own context.

9.7.1 Metadata (TLVs) Description

Each HTTP request consists of two parts: the HTTP headers, and HTTP body (which is optional). The headers
are standard fields defined by the HTTP RFCs and set various parameters of the HTTP transaction. To allow
easy parsing of the headers, they are converted to TLV representation. Each TLV has the structure listed in
Table 9-22.

Table 9-22. TLV Structure
Size 1 Byte 2 Bytes n Bytes

Name Metadata Type Length Value

Description A unique number identifying the
HTTP header, see Table 9-23.

Size in bytes of the entire TLV
including the Length and Type

fields.

Raw value of the HTTP header
copied directly from the HTTP

request without line termination (\r
or \n characters).(1)

(1) The only exception is the HTTP Content Length field, which is automatically converted to an integer.

Table 9-23 lists the metadata types.

Table 9-23. HTTP Metadata Types
Metadata Type HTTP Header Name

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_TYPE Content-Type

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_LEN Content-Length

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_LOCATION Location

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_SERVER Server

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_USER_AGENT User-Agent

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_COOKIE Cookie

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_SET_COOKIE Set-Cookie

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_UPGRADE Upgrade

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_REFERER Referer

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_ACCEPT Accept

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_ENCODING Content-Encoding

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_DISPOSITION Content-Disposition

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONNECTION Connection

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_ETAG Etag

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_DATE Date

SL_NETAPP_REQUEST_METADATA_TYPE_HEADER_HOST Host

SL_NETAPP_REQUEST_METADATA_TYPE_ACCEPT_ENCODING Accept-Encoding

SL_NETAPP_REQUEST_METADATA_TYPE_ACCEPT_LANGUAGE Accept-Language

SL_NETAPP_REQUEST_METADATA_TYPE_CONTENT_LANGUAGE Content-Language

SL_NETAPP_REQUEST_METADATA_TYPE_ORIGIN Origin

SL_NETAPP_REQUEST_METADATA_TYPE_ORIGIN_CONTROL_ACCESS Access-Control-Allow-Origin

All HTTP headers not in Table 9-23 are skipped. Additionally, the metadata types listed in Table 9-24 are
generated internally by the HTTP server to provide more information on the HTTP request.

Table 9-24. Internal Metadata Types
Metadata Type Description

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_VERSION Version field of the HTTP request

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_REQUEST_URI URI string of the HTTP request

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 177

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 9-24. Internal Metadata Types (continued)
Metadata Type Description

SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_QUERY_STRING Query string of the HTTP request

The TLVs are packed continuously in the metadata section of the request. The user’s code should begin parsing
from byte 0, which is always the type field of the first TLV, and finish when metadata-length bytes are processed
(which should point to the last byte of the value field of the last TLV). The TLVs are packed in no particular order.
Table 9-25 is an example metadata breakout containing two TLVs

Table 9-25. Metadata Breakout Examples
Metadata Offset/

Content
0

(TLV1 Type)
1–2

(TLV1 Length)
3–10

(TLV1 Value)
11

(TLV2 Type)
12–13

(TLV2 Length)
14–24

(TLV2 Value)

Data 1 (HTTP Version) 11 “HTTP/1.0” 19 (Header Host) 14 10.123.45.1

An example of how to find and extract the content of a specific TLV from the metadata buffer follows:

_i32 ExtractLengthFromMetaData(_u8 *pMetaDataStart, _u16 MetaDataLen)
{
 _u8 *pTlv;
 _u8 *pEnd;
 _u8 Type;
 _u16 TlvLen;
 pTlv = pMetaDataStart;
 pEnd = pMetaDataStart + MetaDataLen;
 while (pTlv < pEnd)
 {
 Type = *pTlv; /* Type is one byte */
 pTlv++;
 TlvLen = *(_u16 *)pTlv; /* Length is two bytes */
 pTlv+=2;
 if (Type == SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_LEN)
 {
 _i32 LengthFieldValue=0;
 /* Found the right type, extract its value and return. */
 memcpy(&LengthFieldValue, pTlv, TlvLen);
 return LengthFieldValue;
 }
 else
 {
 /* Not the type we are looking for. Skip over the
 value field to the next type. */
 pTlv += TlvLen;
 }
 }
 return -1;
}
/* NetApp request handler*/void NetAppRequestHandler(SlNetAppRequest_t *pNetAppRequest,
 SlNetAppResponse_t *pNetAppResponse)
{
 _u32 HttpContentLength;

 if (pNetAppRequest->requestData.MetadataLen > 0)
 {
 HttpContentLength = ExtractLengthFromMetaData(
 pNetAppRequest->requestData.pMetadata,
 pNetAppRequest->requestData.MetadataLen);
 }
}

9.7.2 GET Processing

When the HTTP server receives an HTTP GET request for a resource which is not a ROM or user page, the
HTTP handler (as shown in the preceeding example) is invoked with SL_NETAPP_REQUEST_HTTP_GET as
the request type. The handler function must parse the HTTP metadata, extract the resource name and any other
fields of interest, and generate a response. The host may choose to respond immediately by filling all response
fields in the handler function. Alternatively, the host can fill the status field to “pending”, and return, which means

HTTP Server www.ti.com

178 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

another part of the user application must complete the response using the sl_NetAppSend API (as shown in the
examples that follow).

9.7.2.1 Fragmentation

The host may choose to send the resource as a single chunk as part of the response from the handler (the
payload fields in the ResponseData structure), or split it across multiple fragments. Fragmentation must be used
to transfer resources larger than 1500 bytes (this is also the maximal size of a single fragment). Without
fragmentation, the entire resource data is sent as part of the response from the handler. With fragmentation, the
handler does not return anything but the pending status, while the fragments of the response are sent using the
sl_NetAppSend API. Each fragment may be a different size (but smaller than 1500 bytes). While there are more
fragments to send, the SL_NETAPP_REQUEST_RESPONSE_FLAGS_CONTINUATION bit must be set in the
flags parameter of the API. On the last fragment, this bit must be zero. The first call to sl_NetAppSend API must
carry the metadata (HTTP headers) of the response. For that, the
SL_NETAPP_REQUEST_RESPONSE_FLAGS_METADATA bit must be set in the flags parameter of the API.
Figure 9-11 demonstrates the handling of a GET request without (1) and with (2) fragmentation.

Figure 9-11. GET Request With and Without Fragmentation

The following code demonstrates how to implement an HTTP GET handler that sends a response (a short text
string) immediately. The code assumes that the macro slcb_NetAppRequestHdlr is mapped to
NetAppRequestHandler in file user.h.

#define RESPONSE_TEXT "Example text to be displayed in browser"
void NetAppRequestHandler(SlNetAppRequest_t *pNetAppRequest,

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 179

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

 SlNetAppResponse_t *pNetAppResponse)
{
 char *contentType = "text/html";
 unsigned char *pMetadata;
 unsigned char *pResponseText;

 pMetadata = (unsigned char*)malloc(128);
 pResponseText = (unsigned char*)malloc(sizeof(RESPONSE_TEXT));
 if ((NULL == pMetadata) || (NULL == pResponseText))
 {
 /* Allocation error */
 }
 memcpy(pResponseText, RESPONSE_TEXT, sizeof(RESPONSE_TEXT));
 switch(pNetAppRequest->Type)
 {
 case SL_NETAPP_REQUEST_HTTP_GET:
 {
 pNetAppResponse->Status = SL_NETAPP_HTTP_RESPONSE_200_OK;
 /* Write the content type TLV to buffer */
 pNetAppResponse->ResponseData.pMetadata = pMetadata;
 *pMetadata =
 (_u8) SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_TYPE;
 pMetadata++;
 *(_u16 *)pMetadata = (_u16) strlen (contentType);
 pMetadata+=2;
 memcpy (pMetadata, contentType, strlen(contentType));
 pMetadata+=strlen(contentType);
 /* Write the content length TLV to buffer */
 *pMetadata = SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_LEN;
 pMetadata++;
 *(_u16 *)pMetadata = 2;
 pMetadata+=2;
 *(_u16 *) pMetadata = (_u16) sizeof(RESPONSE_TEXT);
 pMetadata+=2;
 /* Calculate and write the total length of meta data */
 pNetAppResponse->ResponseData.MetadataLen =
 pMetadata - pNetAppResponse->ResponseData.pMetadata;
 /* Write the text of the response */
 pNetAppResponse->ResponseData.PayloadLen = sizeof(RESPONSE_TEXT);
 pNetAppResponse->ResponseData.pPayload = pResponseText;
 pNetAppResponse->ResponseData.Flags = 0;
 }
 break;
 default:
 /* POST/PUT/DELETE requests will reach here. */break;
 }
}

The following code demonstrates how to implement HTTP GET handler that delegates the request to some other
application. The user must extract any relevant information from the request and save it as the data buffers are
freed when the handler returns.

void NetAppRequestHandler(SlNetAppRequest_t *pNetAppRequest,
 SlNetAppResponse_t *pNetAppResponse)
{
 switch(pNetAppRequest->Type)
 {
 case SL_NETAPP_REQUEST_HTTP_GET:
 {
 /* Prepare pending response */
 pNetAppResponse->Status = SL_NETAPP_RESPONSE_PENDING;
 pNetAppResponse->ResponseData.pMetadata = NULL;
 pNetAppResponse->ResponseData.MetadataLen = 0;
 pNetAppResponse->ResponseData.pPayload = NULL;
 pNetAppResponse->ResponseData.PayloadLen = 0;
 pNetAppResponse->ResponseData.Flags = 0;
 /* Copy to some global buffer any relevant info from pNetAppRequest (the handle
 In particular) and signal the user application that a new HTTP request has arrived. */
 }
 break;
 default:
 /* POST/PUT/DELETE requests will reach here. */break;
 }
}

HTTP Server www.ti.com

180 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

When signaled, the user application can then send this suggested response:

#define RESPONSE_TEXT "Example text part 1 --- "
#define RESPONSE_TEXT2 "Example text part 2"
_u8 *metadataBuff;
_u8 *pResponseText;
_u8 *pMetadata;
_u16 MetadataLen = 0;
const _u8 *contentType = "text/html";
_u8 Flags = 0;
_u16 TextLength;
metadataBuff = (_u8 *) malloc (128);
pMetadata = metadataBuff;
/* HTTP status is sent as part of the meta-data*/
*pMetadata = (_u8) SL_NETAPP_REQUEST_METADATA_TYPE_STATUS;
pMetadata++;
*(_u16 *)pMetadata = (_u16) 2;
pMetadata+=2;
*(_u16 *)pMetadata = (_u16) SL_NETAPP_HTTP_RESPONSE_200_OK;
pMetadata+=2;
/* Write the content type TLV to buffer */
*pMetadata = (_u8) SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_TYPE;
pMetadata++;
*(_u16 *)pMetadata = (_u16) strlen((char*)contentType);
pMetadata+=2;
memcpy (pMetadata, contentType, strlen((char*)contentType));
pMetadata+=strlen((char*)contentType);
/* Write the content length TLV to buffer */
*pMetadata = SL_NETAPP_REQUEST_METADATA_TYPE_HTTP_CONTENT_LEN;
pMetadata++;
*(_u16 *)pMetadata = 2;
pMetadata+=2;
TextLength = sizeof(RESPONSE_TEXT) + sizeof(RESPONSE_TEXT2);
*(_u16 *) pMetadata = TextLength;
pMetadata+=2;
MetadataLen = pMetadata - metadataBuff;
/* First send the meta-data (note the METADATA flag).
Continuation flag indicates there are more fragments to follow.
gHandle is assumed to be populated by the handler. */
Flags |= SL_NETAPP_REQUEST_RESPONSE_FLAGS_CONTINUATION;
Flags |= SL_NETAPP_REQUEST_RESPONSE_FLAGS_METADATA;
sl_NetAppSend (gHandle, MetadataLen, metadataBuff, Flags);
/* Send first data fragment. Continuation flag still
indicates there are more fragments to follow, */
Flags = SL_NETAPP_REQUEST_RESPONSE_FLAGS_CONTINUATION;
pResponseText = (_u8 *) malloc (sizeof(RESPONSE_TEXT));
memcpy(pResponseText, RESPONSE_TEXT, sizeof(RESPONSE_TEXT));
sl_NetAppSend (gHandle, sizeof(RESPONSE_TEXT), pResponseText, Flags);
/* Last data fragment - continuation flag is cleared. */
Flags = 0;
pResponseText = (_u8 *) malloc (sizeof(RESPONSE_TEXT2));
memcpy(pResponseText, RESPONSE_TEXT2, sizeof(RESPONSE_TEXT2));
sl_NetAppSend (gHandle, sizeof(RESPONSE_TEXT2), pResponseText, Flags);

9.7.3 POST Processing

POST requests that were not recognized as RESTFul APIs are transferred to the host with
SL_NETAPP_REQUEST_HTTP_POST as the request type. The user handler must parse the HTTP metadata,
extract the resource name and any other fields of interest, and generate a response. The host may choose to
respond immediately by filling all response fields in the handler. Alternatively, the host can fill the status field to
pending and return, which means another part of the user application must complete the reception of the request
using the sl_NetAppRecv API. Then it must use the sl_NetAppSend API to send a response. Figure 9-12 shows
the data flow when the response is sent immediately.

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 181

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure 9-12. POST Processing Flow

Similarly to Figure 9-12, the following code receives acknowledgments for every POST request to the host with
an HTTP 200 OK response:

void NetAppRequestHandler(SlNetAppRequest_t *pNetAppRequest,
 SlNetAppResponse_t *pNetAppResponse)
{
 extern _u16 gHandle;
 switch(pNetAppRequest->Type)
 {
 case SL_NETAPP_REQUEST_HTTP_POST:
 {
 pNetAppResponse->Status = SL_NETAPP_HTTP_RESPONSE_200_OK;
 pNetAppResponse->ResponseData.pMetadata = NULL;
 pNetAppResponse->ResponseData.MetadataLen = 0;
 pNetAppResponse->ResponseData.pPayload = NULL;
 pNetAppResponse->ResponseData.PayloadLen = 0;
 pNetAppResponse->ResponseData.Flags = 0;
 }
 break;
 default:
 /* GET/PUT/DELETE requests will reach here. */break;
 }
}

9.7.3.1 Long Requests and Delayed Responses

Only the first 1364 bytes of the request are passed to the handler (this includes the meta-data). The reset (if
present) should be requested using the sl_NetAppRecv API outside the handler. The user may choose at what
fragment size to pull the remaining payload from the device. The last fragment indicates when the flags returned
by the sl_NetAppRecv API no longer contain the continuation flag. The same flow can be used if the response
cannot be determined by the NetApp handler and must be delegated to another process. In this case, the
handler must fill the response field as pending and return. The process must then be invoked to retrieve the
reset of the request (if present) and actually send the response. Figure 9-13 demonstrates the data flow with
delayed response.

HTTP Server www.ti.com

182 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure 9-13. Delayed Response

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 183

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

The following code implements a handler for a POST request. It sends an HTTP 200 OK response immediately if
the entire request was received, or sets the pending status and signals the user application to handle the
remaining of the request. It also parses the metadata in search for the content length field, which represents the
expected size of the payload, and extracts it. This field (similar to all other metadata) is not generated by the
SimpleLink device, but transferred as is, and must be validated by the user.

void NetAppRequestHandler(SlNetAppRequest_t *pNetAppRequest,
 SlNetAppResponse_t *pNetAppResponse)
{
 extern _u16 gHandle;
 switch(pNetAppRequest->Type)
 {
 case SL_NETAPP_REQUEST_HTTP_POST:
 {
 _u32 RequestFlags;
 _u32 ContentLength;
 RequestFlags = pNetAppRequest->requestData.Flags;
 /* Prepare pending response */
 pNetAppResponse->ResponseData.pMetadata = NULL;
 pNetAppResponse->ResponseData.MetadataLen = 0;
 pNetAppResponse->ResponseData.pPayload = NULL;
 pNetAppResponse->ResponseData.PayloadLen = 0;
 pNetAppResponse->ResponseData.Flags = 0;
 if (pNetAppRequest->requestData.MetadataLen > 0)
 {
 /* Process the meta data in
 pNetAppRequest->requestData.pMetadata */
 ContentLength = ExtractLengthFromMetaData(
 pNetAppRequest->requestData.pMetadata,
 pNetAppRequest->requestData.MetadataLen);
 /* Allocate buffer to receive the entire content if needed */
 }
 if (pNetAppRequest->requestData.PayloadLen > 0)
 {
 /* First fragment of the payload is @
 pNetAppRequest->requestData.pPayload */
 }
 if (RequestFlags & SL_NETAPP_REQUEST_RESPONSE_FLAGS_CONTINUATION)
 {
 /* More fragments to follow. */
 pNetAppResponse->Status = SL_NETAPP_RESPONSE_PENDING;
 /* Signal the user application to receive the rest.*/
 SetEvent(g_netAppRequestSyncObj);
 /* The handle will be used to receive the rest + send response*/
 gHandle = pNetAppRequest->Handle;
 }
 else
 {
 pNetAppResponse->Status = SL_NETAPP_HTTP_RESPONSE_200_OK;
 }
 break;
 }
 default:
 /* GET/PUT/DELETE requests will reach here. */break;
 }
}

The following code can be placed in the user application, to retrieve the remaining fragments and send a
response in the end when signaled from the preceeding handler.

_u8 *MetadataBuff;
_u8 *pMetadata;
_u16 MetadataLen = 0;
_u8 Fragment[100]; /* Fragment buffer of arbitrary size */
_u16 FragmentLen;
_SlReturnVal_t RetVal;
_u32 Flags;

do
{
 FragmentLen = sizeof(Fragment); /* Indicates max buffer size */
 RetVal = sl_NetAppRecv(gHandle, &FragmentLen, Fragment, &Flags);
 if ((RetVal < 0) | (Flags & SL_NETAPP_REQUEST_RESPONSE_FLAGS_ERROR))
 {

HTTP Server www.ti.com

184 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

 // API error, abort. Error code can be extracted as follows:
 // ErrorCode = (short)(0x0000ffff & Flags);
 }
 /* Process the received fragment here.
 FragmentLen contains the actual fragment size. */
} while (Flags & NETAPP_REQUEST_RESPONSE_FLAGS_CONTINUATION);

/* Send response OK */
MetadataBuff = (_u8*) malloc(128);
pMetadata = MetadataBuff;
*pMetadata = (_u8) SL_NETAPP_REQUEST_METADATA_TYPE_STATUS;
pMetadata++;
*(_u16 *)pMetadata = (_u16) 2;
pMetadata+=2;
*(_u16 *)pMetadata = (_u16) SL_NETAPP_HTTP_RESPONSE_200_OK;
pMetadata+=2;
MetadataLen = 5;
Flags = SL_NETAPP_REQUEST_RESPONSE_FLAGS_METADATA;
sl_NetAppSend (gHandle, MetadataLen, MetadataBuff, Flags);

There is no way to return payload data as part of the response, only HTTP headers as part of the meta-data.

9.7.4 PUT Processing

PUT requests are handled in a similar way to POST requests. The only difference (aside from the command type
received) is that there is no processing of RESTful APIs; all requests are transferred directly to the host. As in
POST, the response cannot contain any payload, only HTTP headers.

9.7.5 DELETE Processing

DELETE requests are handled in a similar way to POST requests. The only difference (aside from the command
type received) is that there is no processing of RESTful APIs; all requests are transferred directly to the host. As
in POST, the response cannot contain any payload, only HTTP headers.

9.8 Security
9.8.1 Authentication

When authentication is enabled (see Section 9.3), the client must provide a username and password before the
HTTP server processes any requests. Both user name and password are limited to 20 characters, and both are
case sensitive.

9.8.1.1 HTTP Realm

A realm in HTTP context is a group of resources protected by the same username and password. Therefore, it is
relevant only when authentication is enabled. All resources served by the SimpleLink HTTP server (including
those residing in the host) belong to one realm. The name of this realm can be set as described in Section 9.3.
The realm name is presented in the client browser when it prompts for username and password.

9.8.2 Secure Connection

The HTTP server can accept connections over a secure socket (TLS). When enabled, the primary server port
accepts only secure connections, and unsecure connection requests are rejected. The secondary port can be
enabled to redirect nonsecure connection attempts to the primary (secure) port. This scheme is commonly used
to redirect browsers, which by default initiate a nonsecure connection on port 80. When the secure connection is
enabled, a server certificate and a private key must be placed on the file system in PEM or DER format, and
their names must be configured in the HTTP server. The following example shows how to enable the secure
socket and use the secondary socket for redirection.

unsigned char ServerCertificateFileName[] = "server-cert.der";
unsigned char ServerKeyFileName[] = "server-key.der";
unsigned char SecurityMode[] = {0x1};
unsigned char HttpsPort[] = {0xBB, 0x01}; // 0x1BB = 443unsigned char SecondaryPort[] = {0x50,
0x00}; // 0x050 = 80unsigned char SecondaryPortEnable[] = {0x1};
// Set the file names used for TLS key exchange.
sl_NetAppSet(SL_NETAPP_HTTP_SERVER_ID,
 SL_NETAPP_HTTP_DEVICE_CERTIFICATE_FILENAME,
 sizeof(ServerCertificateFileName),
 ServerCertificateFileName);

www.ti.com HTTP Server

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 185

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

sl_NetAppSet(SL_NETAPP_HTTP_SERVER_ID,
 SL_NETAPP_HTTP_PRIVATE_KEY_FILENAME,
 sizeof(ServerKeyFileName),
 ServerKeyFileName);
// Activate TLS security on primary HTTP port and change it to
// 443 (standard HTTPS port)
sl_NetAppSet(SL_NETAPP_HTTP_SERVER_ID,
 SL_NETAPP_HTTP_PRIMARY_PORT_SECURITY_MODE,
 sizeof(SecurityMode),
 SecurityMode);
sl_NetAppSet(SL_NETAPP_HTTP_SERVER_ID,
 SL_NETAPP_HTTP_PRIMARY_PORT_NUMBER,
 sizeof(HttpsPort),
 HttpsPort);
// Enable secondary HTTP port (can only be used for redirecting
// connections to the secure primary port).
sl_NetAppSet(SL_NETAPP_HTTP_SERVER_ID,
 SL_NETAPP_HTTP_SECONDARY_PORT_NUMBER,
 sizeof(SecondaryPort),
 SecondaryPort);
sl_NetAppSet(SL_NETAPP_HTTP_SERVER_ID,
 SL_NETAPP_HTTP_SECONDARY_PORT_ENABLE,
 sizeof(SecondaryPortEnable),
 SecondaryPortEnable);
// Restart HTTP server for new configuration to take effect.
sl_NetAppStop(SL_NETAPP_HTTP_SERVER_ID);
sl_NetAppStart(SL_NETAPP_HTTP_SERVER_ID);

It is also possible to require client authentication by providing a Root CA file using the
SL_NETAPP_HTTP_CA_CERTIFICATE_FILE_NAME option. If provided, all client connections are verified, and
those failing the test are not accepted. TLS client verification is described in more detail in Section 5.3.

Note

Currently internal HTTPs server supports only RSA cipher suite due to performance optimization.

9.9 Processing of Parallel Requests
Each HTTP request is handled over a single TCP connection. The client initiates a connection, and sends the
request. The server processes the request and sends the response over the same connection, closing it once
sent. The server then waits to accept a new connection. Even though only one request can be processed at any
given time, many clients can initiate TCP connections to the server simultaneously, and each request is handled
in order.

HTTP Server www.ti.com

186 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

10.1 Introduction...188
10.2 Key Features... 188
10.3 Configurations and Settings..188
10.4 Query... 188
10.5 Get Service List.. 191
10.6 Advertisement...192
10.7 Limitations...194

Chapter 10
mDNS

www.ti.com mDNS

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 187

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

10.1 Introduction
The mDNS/DNS-SD protocol enables the automatic discovery of computers, devices, and services by resolving
IP addresses and ports on the local IP network. mDNS is based on the DNS protocol. In contrast to DNS, which
uses a DNS server, mDNS protocol is distributed, where each device can advertise and discover services. Each
mDNS device on the local IP network can join an mDNS IP multicast group, and advertise its services. mDNS
protocol supports IPv4 and IPv6 local networks. IPv4 multicast address 224.0.0.251, IPv6 multicast address
FF02::FB, and UDP port 5353 are all reserved to mDNS messages.

The SimpleLink host application can register up to five services. The services can be advertised and discovered
on IPv4 networks, IPv6 networks, or both, depending on service interface registration and interface status.

The mDNS service must be enabled to allow query and advertisement operations. By default, the mDNS service
is enabled and the internal HTTP server and host name are advertised on the enabled interfaces, IPv4, IPv6, or
both. The mDNS service can be disabled.

The host application can trigger one-shot or continuous discovery. The results are cached by the SimpleLink Wi-
Fi device, and the application can retrieve the list of discovered devices and services.

The mDNS service is not power-wise-optimized; therefore, TI recommends turning this service off in power-
constrained systems. This service is turned off automatically if the configured power mode is LSI with a sleep
time greater than 2000 ms.

10.2 Key Features
Table 10-1 lists the key features of the mDNS.

Table 10-1. Key Features
Key Features Description

Advertise IPv4/IPv6 services Advertise up to five registered services IPv4, IPv6, or both. If internal HTTP server is
disabled, six services can be registered.

Discover IPv4/IPv6 services Discover services IPv4, IPv6, or both

One-shot discovery Support IPv4/IPv6 single query

Continuous discovery Support IPv4/IPv6 continuous query

Mask services Support masking specific service types in the discovery process

Set advertisement timing Set advertisement timing parameters

Update Service text Update existing services text field

10.3 Configurations and Settings
Starting or stopping mDNS service: mDNS service is enabled by default. mDNS can be stopped and started by
the host application by using the host APIs sl_NetAppStart and sl_NetAppStop. This action takes effect
immediately and reset is not required. This configuration is persistent according to system-persistent
configuration.

Example:

_i16 Status;
/* Start mDNS */
Status = sl_NetAppStart(SL_NETAPP_MDNS_ID);
if(Status)
{
 /* Error */
}

10.4 Query
The SimpleLink Wi-Fi device can discover remote services on the local network. The discovery is performed by
sending one-shot or continuous queries. The queries are transmitted on IPv4 or IPv6 interfaces, according to the
host request and configuration.

mDNS www.ti.com

188 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

10.4.1 One Shot Query

The SimpleLink Wi-Fi device can issue one-shot queries in which the device triggers only a single mDNS query
to the network by calling the API sl_NetAppDnsGetHostByService. The query can be set as IPv4 or IPv6 (If
enabled) format, or both. A discovery result returns the first response received with information regarding the
remote service: IP address, port, and service text description.

Example:

_i16 Status;
_i8 query[] = "_http._tcp.local";
_u32 addr;
_u32 Port = 0;
_u16 TextLen = 800;
_i8 pText[800];
Status = sl_NetAppDnsGetHostByService(query, (unsigned char)strlen(&query[0]), SL_AF_INET, &addr,
&Port, &TextLen,pText);
if(Status)
{
 /* Error */
}

10.4.2 Continuous Query

In a continuous mDNS query mode, the device keeps sending queries to the network according to a specific
service name. The queries are sent in IPv4 and IPv6 (if enabled) formats or both. To see the complete list of
responding services, sl_NetAppGetServiceList must be called. To stop the continuous query, call the same API
with length 0.

Continuous query configuration is persistent by default, and can be set according to a system-persistent
configuration.

Example:

_i16 Status;
_i8 query[] = "_http._tcp.local";
/* Start continuous query */
Status = sl_NetAppSet(SL_NETAPP_MDNS_ID, SL_NETAPP_MDNS_CONT_QUERY_OPT, (unsigned
char)strlen(&query[0]), query);
if(Status)
{
 /* Error */
}
/* Stop continuous query */
Status = sl_NetAppSet(SL_NETAPP_MDNS_ID, SL_NETAPP_MDNS_CONT_QUERY_OPT,0 , 0);
/* Set length to zero to stop continuous query */if(Status)
{
 /* Error */
}

www.ti.com mDNS

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 189

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

10.4.3 Mask Services

The SimpleLink Wi-Fi device offers the ability to predefine specific service types to monitor. If the host
application decides not to get responses from certain types of services (not stored in the cache), the adapt bit
can be set in the event mask according to the following:
• _ipp – bit 0
• _device-info – bit 1
• _http – bit 2
• _https – bit 3
• _workstation – bit 4
• _guide – bit 5
• _h323 – bit 6
• _ntp – bit 7
• _objective – bit 8
• _rdp – bit 9
• _remote – bit 10
• _rtsp – bit 11
• _sip – bit 12
• _smb – bit 13
• _soap – bit 14
• _ssh – bit 15
• _telnet – bit 16
• _tftp – bit 17
• _xmpp-client – bit 18
• _raop – bit 19

Example:

_i16 Status;
_u32 EventMask;
EventMask = BIT0 | BIT1 | BIT18;
Status = sl_NetAppSet(SL_NETAPP_MDNS_ID,
SL_NETAPP_MDNS_QEVETN_MASK_OPT,sizeof(EventMask),&EventMask);
if(Status)
{
 /* Error */
}

mDNS www.ti.com

190 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

10.5 Get Service List
The SimpleLink device can return a list of peer services, which are stored in the device, without issuing any
queries (relying on previously collected data stored in the cache). The list is in a form of a service structure,
which can include full-service parameters with text, partial-service parameters, or short-service parameters (port
and IP only), dedicated for hosts with memory limitations (for different size of buffers). The list size can store up
to eight services, and when a new service is discovered, the oldest service entry is replaced. The list is cleared
when mDNS service is disabled or if Wi-Fi disconnects.

The host can retrieve different levels of detail to support memory reduction in the host application:
• IPv4/IPv6 full-service parameters – IP address, port, service name, service host, and service text
• IPv4/IPv6 partial-service parameters – IP address, port, service name, and service host
• IPv4/IPv6 minimal-service parameters – IP address and port only

Example:

_i16 Status;
SlNetAppGetShortServiceIpv4List_t listMdns[6];
 /* Get a list of discovered services */
Status = sl_NetAppGetServiceList(0, 6, /* Maximum number of services to receive */
 SL_NETAPP_FULL_SERVICE_WITH_TEXT_IPV6_TYPE, /* receive full ipv6 services with text */
 (_i8*) &listMdns6[0], sizeof(listMdns));
if(Status)
{
 /* Error */
}

www.ti.com mDNS

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 191

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

10.6 Advertisement
10.6.1 Registering mDNS Services

Registration of a new service should be performed only if the mDNS service is enabled (it is enabled by default).
Services can be registered as IPv4 or IPv6 services, or both. All registered services are advertised at once. Each
service includes a name, text description, port number, and TTL (time to live) value. The registered service is
persistent by default, unless set otherwise by using the flag
SL_NETAPP_MDNS_OPTIONS_IS_NOT_PERSISTENT.

The maximum number of registered services is five (or six if the internal web server is not running). The following
flags can be set when registering the service:
• SL_NETAPP_MDNS_OPTIONS_IS_UNIQUE_BIT – Set service as unique.
• SL_NETAPP_MDNS_IPV6_IPV4_SERVICE – Service is set for IPV4 and IPV6 interfaces (IPV6 should be

enabled).
• SL_NETAPP_MDNS_IPV4_ONLY_SERVICE – Service is set for IPV4 interface only (default mode).
• SL_NETAPP_MDNS_IPV6_ONLY_SERVICE – Service is set for IPV6 interface only (IPV6 should be

enabled).
• SL_NETAPP_MDNS_OPTION_UPDATE_TEXT – Update text fields (without reregistering the service).
• SL_NETAPP_MDNS_OPTIONS_IS_NOT_PERSISTENT – Set a nonpersistent service.

Example:

_i16 Status;
_u32 Options;
const signed char AddService[40] = "printer._ipp._tcp.local";
Options = SL_NETAPP_MDNS_OPTIONS_IS_NOT_PERSISTENT | SL_NETAPP_MDNS_IPV4_ONLY_SERVICE;
Status = sl_NetAppMDNSRegisterService(AddService, strlen(AddService),
"Service 5;paper=A4;size=10",strlen("Service 5;paper=A4;size=10"),4578,120,Options);
if(Status)
{
 /* Error */
}

10.6.2 Unregistering mDNS Services

A service can be unregistered by using the correct API with the service name. Setting the length variable to zero
deletes all services at once.

If the service was originally created as persistent, it can be unregistered as persistent or as nonpersistent:
• Unregister the service with the nonpersistent flag to temporarily delete the service (send advertisement with

TTL set to 0) until the device resets, which then returns to advertise the service with the original configured
TTL.

• Unregister the service as persistent, to cause the service to be permanently deleted (send advertisement with
TTL set to 0); also after reset.

If the service was originally created as nonpersistent, unregistering it is done with the nonpersistent flag
accordingly, otherwise an error returns.

Example:

_i16 Status;
_u32 Options;
const signed char AddService[40] = "printer._ipp._tcp.local";
Options = SL_NETAPP_MDNS_OPTIONS_IS_NOT_PERSISTENT;
Status = sl_NetAppMDNSUnRegisterService(AddService,strlen(AddService),Options);
if(Status)
{
 /* Error */
}

mDNS www.ti.com

192 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

10.6.3 Advertisement Settings
10.6.3.1 Timing

This option allows the configuration of the timing parameters for all services' advertisements. The API includes a
unique structure for this specific configuration, with the following parameters:
• T – Number of ticks for the initial period. Default is 100 ticks for 1 second.
• P – Number of repetitions. Default value is 1.
• K – Increasing interval factor. Default value is 2.
• Retransmission interval – Number of ticks to wait before sending out repeated announcement message.

Default value is 0.
• Max interval – Period interval. Number of ticks between two announcement periods. Default value is

0xFFFFFFFF.
• Max time – Maximum announcement period, default value is 3 seconds.

For example, if period is set to T, repetitions are set to P, increasing interval factor is K = 2, the transmission shall
be: advertise P times, wait T, advertise P times, wait 2×T, advertise P times, wait 4×T... (until max time reached /
configuration changed /query issued).

Example:

_i16 Status;
SlNetAppServiceAdvertiseTimingParameters_t Timing;
Timing.t = 200; /* 2 seconds */
Timing.p = 2; /* 2 repetitions */
Timing.k = 2; /* Telescopic factor 2 */
Timing.RetransInterval = 0;
Timing.Maxinterval = 0xFFFFFFFF;
Timing.max_time = 5;
Status = sl_NetAppSet(SL_NETAPP_MDNS_ID, SL_NETAPP_MDNS_TIMING_PARAMS_OPT,sizeof(Timing),&Timing);
if(Status)
{
 /* Error */
}

www.ti.com mDNS

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 193

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

10.6.3.2 Update Text

The SimpleLink device offers the ability to update the text field for registered services. The update can be
performed for the text field only. The API must be applied with the previous registered service name. If the
service was originally created as persistent, the text field can be updated as persistent or as nonpersistent:
• Updating the text with the nonpersistent flag causes the service to hold the updated text until the device

resets, which then returns to the original text.
• Updating the text as persistent causes the service to store the updated text, even after a device reset.

If the service was originally created as nonpersistent, the text should be updated with the nonpersistent flag,
otherwise an error returns.

Example:

_i16 Status;
_u32 Options;
const signed char AddService[40] = "printer._ipp._tcp.local";
/* Update Service text (as persistent)*/
Options = SL_NETAPP_MDNS_OPTIONS_IS_UNIQUE_BIT | SL_NETAPP_MDNS_IPV4_ONLY_SERVICE |
SL_NETAPP_MDNS_OPTION_UPDATE_TEXT;
Status = sl_NetAppMDNSRegisterService(AddService, sizeof(AddService), "Printer=2;Size=A3;size=8",
strlen("Printer=2;Size=A3;size=8"), 4578, 120, Options);
if(Status)
{
 /* Error */
}

10.7 Limitations
• The maximum number of registered services is five (or six, if the internal web server is not running).
• The size of the service total length should be smaller than 255 bytes.
• The size of the discovered service text length should be smaller than 120 bytes.
• The discovered service list is limited to eight services.

mDNS www.ti.com

194 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

11.1 Introduction...196
11.2 Matching Process... 197
11.3 Examples of Filter Use... 200
11.4 Filter Creation... 202
11.5 Managing Filters... 212

Chapter 11
Rx Filters

www.ti.com Rx Filters

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 195

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

11.1 Introduction
The Rx filter is a powerful feature that enables the host to save power consumption and reduce application code.

The host can define reception filters that have been processed by the device. Each frame is tested against the
filters; if there is a match, the filter actions are executed. Filter actions can be set to drop the frame or send an
event to the host.

The Rx filters can be used for implementing features such as Wake on LAN, in which the host can enter deep
sleep until a specific frame is detected by the device, then wake up the host by sending the programmed event.

The Rx filter feature can filter frames by standard protocol fields of a frame (MAC, frame type, IP, and so forth),
or by pattern on the frame payload.

The Rx filters are rule-based systems embedded in the SimpleLink Wi-Fi device. They let the user simply define
a set of filters that determine which of the received frames will be dropped by the SimpleLink Wi-Fi device. They
also let the user configure filters that trigger asynchronous events to the host.

Operating the Rx filter with the event mechanism can reduce the power consumption and code size of the host
MCU. Using filters can also reduce the processing efforts of the SimpleLink Wi-Fi device itself, because frames
can be dropped before their processing is finished.

The maximum number of supported filters is 64; 15 filters are used by the SimpleLink Wi-Fi device and cannot
be configured or viewed from the host, and 49 filters are configurable by the host.

The host interface includes the following operations:
• Create filter
• Update filter arguments
• Enable filters; the function enables several filters at once
• Disable filters; the function disables several filters at once
• Remove filters; the function deletes several filters at once
• Store filters; the function stores all the filters on the FS

Figure 11-1 describes the processing of the Rx filters at a high level.

Networking Subsystem

Data Path Frame Processing

Rx Filters Drop

Event

Host

F
ra

m
e

s

Rx Filters

1

2

3 Filters

Database

Search for match

Match

Found

No

Match

Execute actions

Drop?

21

3

No

Yes

Figure 11-1. Rx Filters

Rx Filters www.ti.com

196 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

The Rx filter module includes a database of filters, an interface for defining the filters from the host, a match
process, and execution of actions.
• Database – The filter database is created by the host application and contains the filters definitions and the

relation between the filters. By default, the database is not persistent; when the device resets, the host
application must redefine the filters. There is an option to store the filters database to the FS. If a database
file exists, it automatically loads when the device is powered up.

• Host interface – The host has a simple interface which lets the user define, delete, enable, disable, or store
existing filters. This interface is part of the WLAN silo.

• Matching process – The process verifies if a match exists between the received frame and a set of filters. For
each filter, if a match is found, the filter actions are executed. If the actions do not include dropping the frame,
the processing of the frame continues normally. If there is no match between the frame and any filter, the
processing of the frame continues normally.

• Action execution – If a match is found, all the actions of the matched filter are executed. These actions are
defined as part of the filter definition.

11.2 Matching Process
The filters database is organized as a series of decision trees, according to the network stack layers. During
reception of a frame, the networking subsystem runs through the filters and checks for a match between a filter
and the received frame. The filters tree traversal is the process of passing through the filters, and it is done such
that any filter is visited a maximum of once per frame, and only the relevant filters are visited. The traversal is
done layer by layer among all the trees, and the process stops when the frame reaches a drop action in one of
the trees.

11.2.1 Filter Matching

A basic Rx filter contains three major attributes:
• Trigger is the precondition which should be fulfilled before the rule is checked, such as the system state. For

example, the rule can be defined to be active only in promiscuous mode.
• Rule is the match criteria. It contains the compare field name, the expected value, and the compare function.

For example, the rule can be: source port is equal to 23.
• Actions are the operations that execute if the rule is matched.

The outcome of filter matching could be: No Match, Pass, or Drop. Figure 11-2 shows the Rx filter matching flow.

Table 11-1 lists the possible triggers of a filter.

www.ti.com Rx Filters

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 197

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Trigger

Condition

Valid?

Rule Condition

Passed?

Yes

Execute Actions

Yes

No

Match

No

No

Drop

Drop?

Yes

Pass

No

Figure 11-2. Rx Filter Match Flow

Table 11-1. Possible Triggers
Trigger Type Possible Values

Wi-Fi Mode Station (Station Connected / Wi-Fi Direct client)

AP (Access Point / Wi-Fi Direct GO)

Promiscuous

Wi-Fi Connection State Connected

Disconnected

Counter Value Numeric value

Rx Filters www.ti.com

198 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 11-2 lists the possible rules of a filter.

Table 11-2. Possible Rules
Rule Layer Field Name

MAC Frame type

Frame subtype

BSSID

Source MAC address

Destination MAC address

Frame length

Payload value

LLC Protocol type

IP IP version

IP protocol

Source IP address

Destination IP address

ARP operation

ARP target IP address

Source port number

Destination port number

Payload value

Table 11-3 lists all possible actions of a filter.

Table 11-3. Possible Actions
Action Possible Values

Drop Drop the frame and abort any processing of this frame.

Event Send an asynchronous event to the host.

Counter Increase or decrease counter value.

To perform a logical operation on filters such as logical OR or logical AND, create a special filter. This combined
filter node has two parent nodes (unlike a regular node, which has one parent node), and is checked only if one
or both (user-defined) of its parent nodes passed the match.

11.2.2 Tree Traversal

The filters are organized as a decision tree in layers. This structure enables the user to combine several filters to
identify a specific frame; the division to filter layers optimizes the traversal processing. For example, three filters
are required to detect a specific IP frame from a specific source MAC and a specific word in the payload:
• Filter 1: Specific source of the MAC address
• Filter 2: The packet protocol type is IP.
• Filter 3: The payload of the IP layer contains a specific word.

Filter 1 is the root, Filter 2 is a child of Filter 1, and Filter 3 is a child of Filter 2.

In this example, all of the filters are part of the same tree, but each filter is of a different layer. For every received
frame the device traverses through a series of decision trees that determine how the frame is treated. The
decision trees are composed of filter nodes. The tree traversal process starts with the root nodes of the trees:
• If a filter node passes the match, its actions are performed.

www.ti.com Rx Filters

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 199

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• For drop action, the packet is dropped and the matching process for this frame stops. For any other action,
the frame matching process continues to its child nodes.

• If the filter node does not pass the match, the match does not proceed to the child nodes; however, the match
process for this frame continues for other filter trees.

• In any case, packets that were not dropped during the matching process continue with the other (regular)
network stack processing.

11.3 Examples of Filter Use
This section provides some basic examples of filters. The examples do not represent a real-use case scenario,
and their purpose is only to demonstrate and explain the structure of the Rx filters.

11.3.1 Example 1

The system has the following requirements:
• Receive only WLAN management beacon frames from all MAC addresses.

Figure 11-3 shows the filter trees that should be created.

FRAME_TYPE == µ0$1$*(0(17¶

FRAME_SUBTYPE != µ%($&21�(0x80)¶

DROP

FRAME_TYPE != µ0$1$*(0(17¶

DROP

Figure 11-3. Example 1

Rx Filters www.ti.com

200 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

11.3.2 Example 2

The system has the following requirements:
• Receive WLAN data broadcast frames only from two specific MAC addresses.
• Do not receive WLAN unicast frames from a certain SRC_IP address range.
• If a unicast frame is received from MAC address AA.BB.CC.DD.EE.FF, increase counter_1.
• If a unicast frame is received from MAC address CC.HH.II.JJ.KK.LL, increase counter_2.
• If a unicast UDP frame is received from MAC address AA.BB.CC.DD.EE.FF or CC.HH.II.JJ.KK.LL, pass only

packets from port 5001.

Figure 11-4 shows the filter trees that should be created.

DST_MAC_ADDR != µ%52$'&$67¶

SRC_IP_ADDR == 192.168.x.x

DROP

SRC_MAC_ADDR == µ$$:BB:CC:DD:EE:))¶

Counter1++

SRC_MAC_ADDR == µ**:HH:II:JJ:KK://¶

Counter2++

PROTOCOL == µ8'3¶

PORT != µ5001¶

DROP

DST_MAC_ADDR == µ%52$'&$67¶

FRAME_TYPE == µ'7¶

SRC_MAC_ADDR != µ$$:BB:CC:DD:EE:))¶

SRC_MAC_ADDR != µ**:HH:II:JJ:KK://¶

DROP

Combined OR

Figure 11-4. Example 2

www.ti.com Rx Filters

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 201

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

11.4 Filter Creation
Application filters are created by the host application, and defined in a hierarchical way. The maximal number of
application filters is 50. Application filters can be created, removed, enabled, disabled, and stored by the host
application. During these operations, there are some transactional periods in which the filters might behave
differently than the final behavior (it is possible that some of the filters are disabled and some enabled during
these transactions). Therefore, TI recommends first creating each filter as disabled, and then enabling all of
them at once (one enable command).

Stored filters are created once, stored on the SFLASH, and then loaded by the device as part of the device start-
up.

Creating a basic Rx filter requires definitions of three attributes: trigger, rule, and actions. This subsection
describes these attributes and the additional parameters that are required by the creation function
(sl_WlanRxFilterAdd). The creation function requires the following parameters:
• FilterType
• Flags
• pRule
• pTrigger
• pAction
• pFilterId, return value of the function

11.4.1 Filter Type

There are two kinds of filters: the basic filter (header), and the combination filter.
• For the basic filter, the field should be set to SL_WLAN_RX_FILTER_HEADER.
• The SL_WLAN_RX_FILTER_COMBINATION filter type creates a combined filter, which defines the compare

function on one or two filters.

11.4.2 Filter Flags

The filter flag dictates the filter behavior, by a bit field, and the following flags are supported:
• SL_WLAN_RX_FILTER_BINARY – For creating a basic filter, usually the binary flag is set; a nonbinary filter

is supported for both filter types. The nonbinary filter lets the user set the rule argument as a string instead of
binary values. See Section 11.4.4 for the filters that support the nonbinary filter.

• SL_WLAN_RX_FILTER_ENABLE – A filter can be enabled or disabled. A disabled filter is skipped during the
matching process. For better performance during the filter creation, first create the set of all required filters
with the disable flag, and then, when all the filters have been created, enable all of them with a single function
call.

• SL_WLAN_RX_FILTER_PERSISTENT – A filter set with a persistent flag is saved to the SFLASH and loads
on each device reset. The act of saving the persistent filters to the flash is executed by calling the sl_WlanSet
function with the store command SL_WLAN_RX_FILTER_STORE.

11.4.3 Rule Structure for Header Filters

The rule structure describes the match criteria. The rule is a combination of:
• Field
• Argument
• Compare function

During the packet processing, the value of the frame field is compared with the value of the rule arguments. For
example:
• Destination IP is equal to 123.44.55.66 means:

– Field is destination IP.
– Argument is 123.44.55.66.
– Compare function is equal.

• Source MAC is different from 0x34567899 means:

Rx Filters www.ti.com

202 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

– Field is source MAC.
– Argument is 0x34567899.
– Compare function is not equal.

• Frame length is higher than 500 and lower than 900 means:
– Field is frame length.
– Arguments are 500, 900.
– Compare function is in between.

The structure of the rule is a union which serves two types of rules: the header rule type and the combination
rule type. For rule of type SL_WLAN_RX_FILTER_HEADER, the structure used is SlWlanRxFilterRuleHeader_t.

11.4.3.1 Field

The field value defines the field that is checked during the processing. The list of supported fields follows:
• SL_WLAN_RX_FILTER_HFIELD_FRAME_TYPE
• SL_WLAN_RX_FILTER_HFIELD_FRAME_SUBTYPE
• SL_WLAN_RX_FILTER_HFIELD_BSSID
• SL_WLAN_RX_FILTER_HFIELD_MAC_SRC_ ADDR
• SL_WLAN_RX_FILTER_HFIELD_MAC_DST_ADDR
• SL_WLAN_RX_FILTER_HFIELD_FRAME_LENGTH
• SL_WLAN_RX_FILTER_HFIELD_ETHER_TYPE
• SL_WLAN_RX_FILTER_HFIELD_IP_VERSION
• SL_WLAN_RX_FILTER_HFIELD_IP_PROTOCOL
• SL_WLAN_RX_FILTER_HFIELD_IPV4_SRC_ADDR
• SL_WLAN_RX_FILTER_HFIELD_IPV4_DST_ADDR
• SL_WLAN_RX_FILTER_HFIELD_IPV6_SRC_ADRR
• SL_WLAN_RX_FILTER_HFIELD_IPV6_DST_ADDR
• SL_WLAN_RX_FILTER_HFIELD_PORT_SRC
• SL_WLAN_RX_FILTER_HFIELD_PORT_DST
• SL_WLAN_RX_FILTER_HFIELD_L1_PAYLOAD_PATTERN
• SL_WLAN_RX_FILTER_HFIELD_L4_PAYLOAD_PATTERN

11.4.3.2 Compare Functions

A list of the supported compare functions follows:
• Equal – SL_WLAN_RX_FILTER_CMP_FUNC_EQUAL
• Not equal – SL_WLAN_RX_FILTER_CMP_FUNC_NOT_EQUAL_TO
• In between – SL_WLAN_RX_FILTER_CMP_FUNC_IN_BETWEEN; in this case, two arguments are required.
• Not in between – SL_WLAN_RX_FILTER_CMP_FUNC_NOT_IN_BETWEEN; in this case, two arguments

are required.

Table 11-4 lists the possible compare function per filter field.

Table 11-4. Possible Compare Functions
Header Rule Supported Functions

== != <> !<>
SL_WLAN_RX_FILTER_HFIELD_FRAME_TYPE + + – –

SL_WLAN_RX_FILTER_HFIELD_FRAME_SUBTYPE + + + +

SL_WLAN_RX_FILTER_HFIELD_BSSID + + + +

SL_WLAN_RX_FILTER_HFIELD_MAC_SRC_ ADDR + + + +

SL_WLAN_RX_FILTER_HFIELD_MAC_DST_ADDR + + + +

SL_WLAN_RX_FILTER_HFIELD_FRAME_LENGTH + + + +

SL_WLAN_RX_FILTER_HFIELD_ETHER_TYPE + + + +

www.ti.com Rx Filters

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 203

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 11-4. Possible Compare Functions (continued)
Header Rule Supported Functions

== != <> !<>
SL_WLAN_RX_FILTER_HFIELD_IP_VERSION + + + +

SL_WLAN_RX_FILTER_HFIELD_IP_PROTOCOL + + + +

SL_WLAN_RX_FILTER_HFIELD_IPV4_SRC_ADDR + + + +

SL_WLAN_RX_FILTER_HFIELD_IPV4_DST_ADDR + + + +

SL_WLAN_RX_FILTER_HFIELD_IPV6_SRC_ADRR + + + +

SL_WLAN_RX_FILTER_HFIELD_IPV6_DST_ADDR + + + +

SL_WLAN_RX_FILTER_HFIELD_PORT_SRC + + + +

SL_WLAN_RX_FILTER_HFIELD_PORT_DST + + + +

SL_WLAN_RX_FILTER_HFIELD_L1_PAYLOAD_PATTERN + – – –

SL_WLAN_RX_FILTER_HFIELD_L4_PAYLOAD_PATTERN + – – –

11.4.3.3 Rule Fields

A list of the header rule fields follows. Each field is described with its possible values, and in which system state
it is available (for system states, see Section 11.4.5).
• In Table 11-5, whenever ASCII parameters are used, the host code must set the filter flags as follows:

FilterFlags |= ~SL_WLAN_RX_FILTER_BINARY
• In Table 11-5, whenever byte stream parameters are used, the host code must set the filter flags as follows:

FilterFlags |= RX_FILTER_BINARY

Table 11-5 describes the rule types and their possible values.

Table 11-5. Field Values
Field Argument Size Values

SL_WLAN_RX_FILTER_HFIELD_FRAME_TY
PE

Rule.Args.Value.Frametype 1 0 for mgmt

1 for ctrl

2 for data

3 for reserved

Rule.Args.Value.FrametypeAscii 4 “MGMT”

“CTRL”

“DATA”

Rx Filters www.ti.com

204 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 11-5. Field Values (continued)
Field Argument Size Values

SL_WLAN_RX_FILTER_HFIELD_FRAME_SU
BTYPE

Rule.Args.Value.FrameSubtype 1 0x00 ASSOCIATION REQ

0x10 ASSOCIATION RESPONSE

0x20 REASSOCIATION REQ

0x30 REASSOCIATION
RESPONSE

0x40 PROBE REQ

0x50 PROBE RESPONSE

0x80 BEACON

0x90 ATIM

0xA0 DISASSOCIATION

0xB0 AUTHENTICATION

0xC0 DEAUTHENTICATION

0xD0 ACTION CTRL FRAMES

0x74 CONTROL WRAPPER

0x84 BLOCK ACK REQ

0x94 BLOCK ACK

0xA4 PS POLL

0xB4 RTS

0xC4 CTS

0xD4 ACK

0xE4 CF END

0xF4 CF END ACK

DATA FRAMES

0x08 DATA

0x18 DATA CF ACK

0x28 DATA CF POLL

0x38 DATA CF ACK POLL

0x48 NO DATA FRAME

0x58 CF ACK

0x68 CF POLL

0x78 CF ACK POLL

0x88 QOS DATA

0x98 QOS DATA CF ACK

0xA8 QOS DATA CF POLL

0xB8 QOS DATA CF ACK POLL

0xC8 QOS NO DATA FRAME

0xD8 QOS CF ACK

0xE8 QOS CF POLL

0xF8 QOS CF ACK POLL

SL_WLAN_RX_FILTER_HFIELD_BSSID Rule.Args.Value.Bssid 6

SL_WLAN_RX_FILTER_HFIELD_MAC_SRC_
ADDR

Rule.Args.Value.Mac 6

SL_WLAN_RX_FILTER_HFIELD_MAC_DST_
ADDR

Rule.Args.Value.Mac 6

www.ti.com Rx Filters

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 205

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 11-5. Field Values (continued)
Field Argument Size Values

SL_WLAN_RX_FILTER_HFIELD_FRAME_LE
NGTH

Rule.Args.Value.FrameLength 4

SL_WLAN_RX_FILTER_HFIELD_ETHER_TY
PE

Rule.Args.Value.EtherType 4

SL_WLAN_RX_FILTER_HFIELD_IP_VERSIO
N

Rule.Args.Value.IpVersion 1

Rule.Args.Value.IpVersionAscii 4 “IPV4”

“IPV6”

SL_WLAN_RX_FILTER_HFIELD_IP_PROTO
COL

Rule.Args.Value.IpProtocol 1 1 – ICMP (IPV4 Only)

2 – IGMP (IPV4 only)

6 – TCP

17 – UDP

58 – ICMPV6

Rule.Args.Value.IpProtocolAscii 5 “ICMP”

“ICMP6”

“IGMP”

“TCP”

“UDP

SL_WLAN_RX_FILTER_HFIELD_IPV4_SRC_
ADDR

Rule.Args.Value.Ipv4 4

SL_WLAN_RX_FILTER_HFIELD_IPV4_DST_
ADDR

Rule.Args.Value.Ipv4 4

SL_WLAN_RX_FILTER_HFIELD_IPV6_SRC_
ADRR

Rule.Args.Value.Ipv6 16

SL_WLAN_RX_FILTER_HFIELD_IPV6_DST_
ADDR

Rule.Args.Value.Ipv6 16

SL_WLAN_RX_FILTER_HFIELD_PORT_SRC Rule.Args.Value.Port 4 1–65535

SL_WLAN_RX_FILTER_HFIELD_PORT_DST Rule.Args.Value.Port 4 1–65535

SL_WLAN_RX_FILTER_HFIELD_L1_PAYLOA
D_PATTERN

Rule.Args.Value.Pattern.Offset 2

Rule.Args.Value.Pattern.Length 1

Rule.Args.Value.Pattern.Value 16

SL_WLAN_RX_FILTER_HFIELD_L4_PAYLOA
D_PATTERN

Rule.Args.Value.Pattern.Offset 2

Rule.Args.Value.Pattern.Length 1

Rule.Args.Value.Pattern.Value 16

11.4.3.4 Pattern-Matching Rule Fields

Pattern matching can be used to look for a specific payload on the frame. The SimpleLink Wi-Fi device currently
supports two types of pattern matching:
• L1 payload matching (L1_PAYLOAD_EXACT_PATTERN_FIELD) – The offset is counted from the beginning

of the 802.11 MAC headers (that is, the frame control field). This is useful in transceiver mode, but can also
be used while connected.

• L4 payload matching (L4_PAYLOAD_EXACT_PATTERN_FIELD) – The offset is counted from the beginning
of the TCP or UDP payload.

The inputs to this field header rule are as follows:
• Offset, or where to start checking for the requested pattern (offset can be set between 0x0 to 0x5ff)

Rx Filters www.ti.com

206 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• Length, or how many bytes: can be 1 to 16
• Pattern to compare with: can be up to 16 bytes
• Masking: bit masking on the pattern

Usage notes on pattern-matching filters:
• L4_PAYLOAD_EXACT_PATTERN_FIELD type filter only applies to STA or AP (not to transceiver mode)
• L1_PAYLOAD_EXACT_PATTERN_FIELD type filter can be in any mode (such as to a STA in transceiver

mode or to a connected STA or to an AP)

Usage note for pattern matching while the device is connected to a TCP transmitter:

To ensure that an application frame arrives with high probability as sent by the transmitter host application, use a
long interval (and short time-out) between the TCP sends, because TCP by nature is a streaming protocol. The
TCP stack may aggregate or fragment frames into bytes, and send them in accordance with the current network
or receiver congestion conditions.

Therefore, when a stream of bytes representing an application frame is sent over a TCP socket of the
SimpleLink Wi-Fi device, there is no guarantee that this application frame will arrive in a single WLAN frame, as
when it was sent by the transmitter host to the SimpleLink device; in these cases, the filter may not be relevant.

The following example demonstrates a definition of a rule that finds a frame from a specific MAC address. In this
example, the rule searches for the MAC address: 0x08, 0x09, 0x76, 0x54, 0x32, 0x45:

_u8 MacMask[6] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
_u8 MacAddress[6] = {0x08,0x09,0x76,0x54,0x32,0x45};
Rule.CompareFunc = SL_WLAN_RX_FILTER_CMP_FUNC_EQUAL_TO;
Rule.Field = SL_WLAN_RX_FILTER_HFIELD_MAC_SRC_ADDR;
memcpy(Rule.Args.Value.Mac[0], MacAddress, 6);
memcpy(Rule.Args.Mask, MacMAsk , 6);

The following example demonstrates a definition of a rule that finds a frame from a specific group of MAC
addresses by address mask. In this example, the rule searches for MAC addresses that end with 0x45:

_u8 MacMask[6] = {0x0 ,0x0 ,0x0 ,0x0 ,0x0 ,0xFF};
_u8 MacAddress[6] = {0x08,0x09,0x76,0x54,0x32,0x45};
Rule.CompareFunc = SL_WLAN_RX_FILTER_CMP_FUNC_EQUAL_TO;
Rule.Field = SL_WLAN_RX_FILTER_HFIELD_MAC_SRC_ADDR;
memcpy(Rule.Args.Value.Mac[0], MacAddress, 6);
memcpy(Rule.Args.Mask, MacMask , 6);

11.4.4 Rule Structure for Combined Filters

The rule for combined filters is built from the following parameters:
• Compare function: not, and, or, defines the compare method of the parent filters.
• Parent filters, the filters which are compared (applies only for "and" and "or" compare functions)

The following example demonstrates a combined filter (the parent filters are already created):

SlWlanRxFilterRule_u RuleCombination;
RuleType = SL_WLAN_RX_FILTER_COMBINATION;
RuleCombination.Combination.CombinationFilterId[0] = ParentFilter1;
RuleCombination.Combination.CombinationFilterId[1] = ParentFilter2;
RuleCombination.Combination.Operator = SL_WLAN_RX_FILTER_COMBINED_FUNC_OR;
RetVal = sl_WlanRxFilterAdd(RuleType,
 FilterFlags,
 (const SlWlanRxFilterRule_u* const)&RuleCombination,
 (const SlWlanRxFilterTrigger_t* const) &Trigger,
 (const SlWlanRxFilterAction_t* const)&Action,
 &FilterId);

www.ti.com Rx Filters

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 207

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

11.4.5 Filter Trigger

The trigger is the environment conditions which are verified before the matcher tests the rule. If the environment
conditions are not fulfilled, the rule is not tested and the matching result is FALSE.

The following parameters are used to define a trigger:
• Parent filter ID
• Connection state
• Role

The following features are used to define counter triggers:
• Counter
• Counter val
• Compare function

The following subsection describes the parameters required to create the filter trigger.

11.4.5.1 Parent Filter ID

The filter ID contains the ID of the parent filter; filters can be organized in a tree hierarchy.
• Setting ParentFilterId to 0 creates a root filter. All filters can be assigned as a root.
• The parent filter ID is the ID of the filter which is the parent of the current filter.
• The filter rule is tested only if the match result for the parent is TRUE.

The parent filter can be from the same layer or a layer lower than the child filter.

The following defines the filter layer of each rule.

Filter layers: The header rules can be specified in a tree form, but the rules must also preserve a layered
approach.

Therefore, a filter on a transport layer field (such as TCP or UDP source or destination ports) cannot be a parent
of a filter on a MAC header field (such as frame type).

Table 11-6 presents which groups of header rule types can be parents of other header rule types. The general
guideline is that the lower the communication layer to which the header rule filter applies, the more filters can
depend on this filter.

Note

When a filter contains a drop action, it cannot be a parent of any other filter, because if a packet is
dropped the tree traversal is stopped.

Table 11-6. Rule Field Layers
Group Rule Field Can Be Parent of Rules from Group

A FRAME_TYPE

FRAME_SUBTYPE

BSSID_ADDRESS

MAC_SRC_ADDRESS

MAC_DST_ADDRESS

FRAME_LENGTH

A, B, C, D

B ETHER_TYPE

IP_VERSION

Multicast destination IPs (V4 and V6)

L1_PAYLOAD

B, C, D

Rx Filters www.ti.com

208 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 11-6. Rule Field Layers (continued)
Group Rule Field Can Be Parent of Rules from Group

C Source IP (V4 and V6)

Unicast destination IP (V4 and V6)

IP PROTOCOL field (UDP, TCP, ICMP, IGMP, and so
forth)

C, D

D Source port (UDP/TCP)

Destination port (UDP/TCP)

L4_PAYLOAD

D

11.4.5.2 Connection State and Role

The filter can be set to be tested only in a specific connection state; for example, only in STA mode or only in AP
mode. The state in which the filter is considered is a combination of role and connection state.

Supported roles:
• SL_WLAN_RX_FILTER_ROLE_AP
• SL_WLAN_RX_FILTER_ROLE_STA
• SL_WLAN_RX_FILTER_ROLE_PROMISCUOUS (transceiver)
• SL_WLAN_RX_FILTER_ROLE_NULL

Supported connection states:
• SL_WLAN_RX_FILTER_STATE_STA_CONNECTED
• SL_WLAN_RX_FILTER_STATE_STA_NOT_CONNECTED
• SL_WLAN_RX_FILTER_STATE_STA_HAS_IP
• SL_WLAN_RX_FILTER_STATE_STA_HAS_NO_IP

Example of defining a filter which only works in transceiver mode:

/* Parent */
Trigger.ParentFilterID = parentId;
/* No counter is used, which is the common scenario */
Trigger.Counter = SL_WLAN_RX_FILTER_NO_TRIGGER_COUNTER;
/* Role is set to Transceiver mode */
Trigger.Role = SL_WLAN_RX_FILTER_ROLE_PROMISCUOUS;
/* The connection state is ignored since the filter works in the Transceiver mode */
Trigger.ConnectionState = SL_WLAN_RX_FILTER_STATE_STA_CONNECTED;

Example of defining a filter which only works in STA mode after the IP is acquired:

/* Parent */
Trigger.ParentFilterID = parentId;
/* No counter is used, which is the common scenario */
Trigger.Counter = SL_WLAN_RX_FILTER_NO_TRIGGER_COUNTER;
/* Connection state and role, role is STA */
Trigger.Role = SL_WLAN_RX_FILTER_ROLE_STA;
/* Works only in case ip is acquired */
Trigger.ConnectionState = SL_WLAN_RX_FILTER_STATE_STA_HAS_IP;

Example of defining a filter which only works in STA mode:

/* Parent */
Trigger.ParentFilterID = parentId;
/* No counter is used, which is the common scenario */
Trigger.Counter = SL_WLAN_RX_FILTER_NO_TRIGGER_COUNTER;
/* Connection state and role, role is STA */
Trigger.Role = SL_WLAN_RX_FILTER_ROLE_STA;
/* Work on any connection state */
Trigger.ConnectionState =
SL_WLAN_RX_FILTER_STATE_STA_CONNECTED |
SL_WLAN_RX_FILTER_STATE_STA_NOT_ CONNECTED |

www.ti.com Rx Filters

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 209

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

SL_WLAN_RX_FILTER_STATE_STA_HAS_IP |
SL_WLAN_RX_FILTER_STATE_STA_HAS_NO_IP;

11.4.5.3 Filter During Transceiver Mode

In case of transceiver mode filtering, the transceiver socket receive function must be invoked for receiving
frames; the function triggers the device to start the receiving of Rx frames. Once the device receives frames, the
frames are processed by the Rx filter matcher (see Chapter 13). In transceiver mode, TCP and UDP frames are
carried over fragmented IPv4 or IPv6 datagrams, and therefore are not filtered on L4 ports or on payload.

11.4.6 Rx Filter Action

The actions execute if the filter trigger and the filter rule are matched. Each filter can be defined with several
actions.

The following actions are supported:
• SL_WLAN_RX_FILTER_ACTION_NULL, no action
• SL_WLAN_RX_FILTER_ACTION_DROP, drop the packet
• SL_WLAN_RX_FILTER_ACTION_EVENT_TO_HOST, send event

The following actions are relevant only for the counters feature:
• SL_WLAN_RX_FILTER_ACTION_ON_REG_INCREASE
• SL_WLAN_RX_FILTER_ACTION_ON_REG_DECREASE
• SL_WLAN_RX_FILTER_ACTION_ON_REG_RESET

The following subsection describes the event actions.

11.4.6.1 Send Events Action

A typical usage for the send event capability is to perform wake on WLAN (that is, to wake the host on a specific
packet matching a filter).

Events can be sent from the SimpleLink Wi-Fi network processor to the host as a result of a matched Rx filter.

The event action arguments (Action.UserId) define the bit number set in the triggered event.

The supported ID range is from 0 to SL_RX_FILTER_MAX_USER_EVENT_ID (=63).

A single host event aggregates all the events actions which have been triggered for a single frame. The
aggregation is based on the filter groups, as described in rule types. Examples follow.

11.4.6.2 Multiple Bits Set on the Same Event

Consider the following case:
• Source IP has event action with argument ID X.
• Destination IP has event action with argument ID Y.
• Both header rule fields are from the same group C.
• A received frame passes both filters.

This results in a single host event with bit X and bit Y set.

11.4.6.3 Multiple Events From the Same Rx Frame

Consider the following case:
• Source MAC (group A) has event action with argument ID X.
• Destination IP (group C) has event action with argument ID.
• A received frame passes both filters.

This results in two host events: event with bit X set and event with bit Y set.

11.4.6.4 Code Example

In the following code example, the event ID is set in byte 3 of the action arguments and may be set to a value
between 0 and SL_RX_FILTER_MAX_USER_EVENT_ID (=63).

Rx Filters www.ti.com

210 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

The code example for adding a filter with an event (the event input is highlighted in yellow, and the event output
parsing is highlighted in gray):

void AddSomeFilters()
{
 // declarations
 SlWlanRxFilterID_t FilterId;
 SlWlanRxFilterRuleType_t RuleType;
 SlWlanRxFilterFlags_u FilterFlags;
 SlWlanRxFilterRuleHeader_t Rule;
 SlWlanRxFilterTrigger_t Trigger;
 SlWlanRxFilterAction_t Action;
 ...
 // here comes the code for adding a header rule filter
 ...
 // now for action args setting.
 // request an event as one of the actions to perform
 Action.Type = SL_WLAN_RX_FILTER_ACTION_EVENT_TO_HOST;
 // The output of the event is to set bit number (in this case it is bit 2).
 Action.UserId = 2;
 ...
 // finally the code to add the event.
 RetVal = sl_WlanRxFilterAdd(
 RuleType,
 FilterFlags,
 (const SlWlanRxFilterRule_u* const)&Rule,
 (const SlWlanRxFilterTrigger_t* const)&Trigger,
 (const SlWlanRxFilterAction_t* const)&ction,
 &FilterId);

// rx filters events handling is a specific case in the WLAN events handlingvoid
SLWlanEventHandler(SlWlanEvent_t *pWlanEventHandler)
{
int i = 0;
 switch(pWlanEventHandler->Id)
 {
 case SL_WLAN_EVENT_CONNECT:
break;
case SL_WLAN_EVENT_STA_ADDED:
break;
 case SL_WLAN_EVENT_DISCONNECT:
break;
 case SL_WLAN_EVENT_RXFILTER:
{
SlWlanEventRxFilterInfo_t *pEventData =
 (SlWlanEventRxFilterInfo_t *)&pWlanEventHandler->Data;
/*
 printf("\n\nRx filter event %d, event type = %d
 \n",g_RxFilterEventsCounter,pEventData->Type);
for(i = 0;i < 64;i++)
{
if(SL_WLAN_ISBITSET8(pEventData->UserActionIdBitmap,i))
{
printf("User action %d filter event
 arrived\n",i);
}
}
 */
}
break;
 }
}

11.4.6.5 Counter Action

Two sets of filter counters can be used. Each counter is associated with a set of filter type groups (see rule types
layers).

The counter ID that can be used for each rule layer follows:
• RX_FILTER_COUNTER1-4: can be used with filters from groups C-D
• RX_FILTER_COUNTER5-8: can be used with filters from groups A-B

www.ti.com Rx Filters

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 211

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

11.5 Managing Filters
Managing the filters is performed by calling the regular sl_WlanSet and sl_WlanGet APIs. The available
operations contain:
• Enable and disable
• Remove
• Save
• Update

To manage several filters simultaneously, the SimpleLink Wi-Fi device receives a bit field of the filters that the
operation should take on. This bit field contains up to 128 bits. The following macro can be used to set the
correct bit for a filter ID:

SL_WLAN_SETBIT8 (BitField.FilterIdMask, FilterId);

For example, to set the operation on filter 1 and filter 35, the macro should be called twice:

SL_WLAN_SETBIT8 (FilterIdMask, 1);
SL_WLAN_SETBIT8 (FilterIdMask, 35);

If the filter is not defined or created, the SimpleLink Wi-Fi device ignores its bit on the bit field mask. Therefore,
operations can be performed with a bit field of all 1s.

Note

TI highly recommends updating the Rx filters while the sockets are closed.

11.5.1 Enable and Disable Filters

TI recommends creating filters in a disabled state, and then enabling all the relevant filters simultaneously. A
filter with its corresponding bit set to 1 is enabled, and a filter with its corresponding bit set to 0 is disabled; filters
which are not defined are ignored.

To enable or disable filters, call the sl_WlanSet API with the following arguments:
• ConfigId: SL_WLAN_RX_FILTERS_ID
• ConfigOpt: SL_WLAN_RX_FILTER_STATE

Example:

_u16 Size = sizeof(SlWlanRxFilterRetrieveStateBuff_t);
_u16 opt = SL_WLAN_RX_FILTER_STATE;
RetVal = sl_WlanGet(SL_WLAN_RX_FILTERS_ID, &opt , &Size ,
 (unsigned char *)&RxFilterIdBitField);
SL_WLAN_CLEARBIT8(OutputBuff.FilterIdMask,selectedfilter);
RetVal = sl_WlanSet(SL_WLAN_RX_FILTERS_ID, SL_WLAN_RX_FILTER_STATE,
 sizeof(SlWlanRxFilterOperationCommandBuff_t),
 (unsigned char*)&RxFilterIdBitField);

Rx Filters www.ti.com

212 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

11.5.2 Get Filter Status

To get the enable status of filters, call the sl_WlanGet API with the following arguments:
• ConfigId: SL_WLAN_RX_FILTERS_ID
• ConfigOpt: SL_WLAN_RX_FILTER_STATE

Example:

_u16 Size = sizeof(SlWlanRxFilterRetrieveStateBuff_t);
_u16 opt = SL_WLAN_RX_FILTER_STATE;

RetVal = sl_WlanGet(SL_WLAN_RX_FILTERS_ID, &opt , (_u16*)&Size , (_u8*)&RxFilterIdBitField);

11.5.3 Removing a Filter

Removing a filter is initiated by removing the filter from the active filters list. If a filter is persistent, removing it is
not enough and the STORE operation must also be called.

In this command, filters with bits set to 1 are removed, and filters with bits set to 0 or filters which are not defined
are ignored.

To remove filters, call the sl_WlanSet API with the following arguments:
• ConfigId: SL_WLAN_RX_FILTERS_ID
• ConfigOpt: SL_WLAN_RX_FILTER_REMOVE

11.5.4 Storing Filters into the SFLASH

The filters are not stored on the external flash automatically. This operation must be initiated by the host. In this
command, filters where a persistent bit is set are stored. The stored filters are loaded each time the device is
started.

To store the filters, call the sl_WlanSet command with the following arguments:
• ConfigId: SL_WLAN_RX_FILTERS_ID
• ConfigOpt: SL_WLAN_RX_FILTER_STORE

Example:

retVal = sl_WlanSet(SL_WLAN_RX_FILTERS_ID, SL_WLAN_RX_FILTER_STORE, 0, NULL);
11.5.5 Update Filter Arguments

To update the rule attributes of an existing filter, call the sl_WlanSet command with the following arguments:
• ConfigId: SL_WLAN_RX_FILTERS_ID
• ConfigOpt: SL_WLAN_RX_FILTER_UPDATE_ARGS

Example:

memcpy(updateFilterBuff.Args.Value.Bssid[0], filterData, 6);
memcpy(updateFilterBuff.Args.Mask, MacMAsk, 6);
updateFilterBuff.FilterId = FilterId;
updateFilterBuff.BinaryOrAscii = 1;
retVal = sl_WlanSet(SL_WLAN_RX_FILTERS_ID, SL_WLAN_RX_FILTER_UPDATE_ARGS,
 sizeof(SlWlanRxFilterUpdateArgsCommandBuff_t),
 (unsigned char *) &updateFilterBuff);

www.ti.com Rx Filters

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 213

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Rx Filters www.ti.com

214 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

This page intentionally left blank.

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

12.1 General Description... 216
12.2 Start and Stop Ping.. 216
12.3 Limitations...217

Chapter 12
Ping

www.ti.com Ping

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 215

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

12.1 General Description
Ping is a network utility, part of the device internal network utilities, which verifies if a particular IP address exists.
This utility is based on the Internet Control Message Protocol (ICMP), and sends an echo request to a specified
entity in the network and waits for a reply. Ping supports IPv4 and IPv6 standards. This utility can be used to test
connectivity and determine the round trip time.

12.2 Start and Stop Ping
The same API starts and stops the ping process. To stop the ping process, apply value 0 in the IP field. The
following parameters can be configured in the ping start command:
• Ping parameters – hold configurations regarding the ping command:

– Ping interval time: interval between ping packets, in ms
– Ping size: ping packet size
– Ping request time-out: time-out time for every ping, in ms
– Total number of attempts: number of ping requests. 0 indicates infinite.
– Flags: flag options are as follows:

• 0 – Send ping report only when finished transmitting all the requests.
• 1 – Send ping report for every ping request.
• 2 – Stop ping after one successful ping request (received reply).
• 4 – Do not fragment the ping packet. This flag can be set with other flags.

– IP: destination IPv4\IPv6 address. In case of IPv4, use this field only.
– Ip1OrPadding: destination IPv6 address
– Ip2OrPadding: destination IPv6 address
– Ip3OrPadding: destination IPv6 address

• Family – specifies the protocol family IPv4 or IPv6
• Report – Return value. If callback is not set, the API is blocked until the ping report is received. Hold

information regarding the results of the ping request and include the following parameters:
– Packets sent – number of sent ping requests
– Packets received – number of received ping replied
– Min round time – shortest round trip time, in ms
– Max round time – longest round trip time, in ms
– Average round time – average round trip time, in ms
– Test time – total time the test took, in ms

• Ping callback – optional parameter. If the callback is provided, the API does not block, and immediately
returns. When results are available, the callback is called. If it is not implemented, NULL should be placed
and API blocks until the results are ready.

Example of sending an IPV4 ping request with a report for every successful ping:

_i16 Status;
SlNetAppPingReport_t report;
SlNetAppPingCommand_t pingCommand;

pingCommand.Ip = SL_IPV4_VAL(10,1,1,200); /* destination IP address is 10.1.1.200 */
pingCommand.PingSize = 150; /* size of ping, in bytes */
pingCommand.PingIntervalTime = 100; /* delay between pings, in milliseconds */
pingCommand.PingRequestTimeout = 1000; /* timeout for every ping in milliseconds */
pingCommand.TotalNumberOfAttempts = 20; /* number of ping requests */
pingCommand.Flags = 0; /* report only when finished */
Status = sl_NetAppPing(&pingCommand, SL_AF_INET, &report, NULL);
if (Status)
{
/* error */
}

Ping www.ti.com

216 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Example of stopping the ping request:

_i16 Status;
SlNetAppPingCommand_t pingCommand;
pingCommand.Ip = 0;
Status = sl_NetAppPing(&pingCommand, SL_AF_INET, &report, NULL) ;
if (Status)
{
/* error */
}

Example of sending an IPV6 infinite ping request:

_i16 Status;
SlNetAppPingReport_t report;
SlNetAppPingCommand_t pingCommand;
pingCommand.Ip = 0xFF020000; /* IPV6 Address */
pingCommand.Ip1OrPadding = 0; /* IPV6 Address */
pingCommand.Ip2OrPadding = 0; /* IPV6 Address */
pingCommand.Ip3OrPadding = 0xFB; /* IPV6 Address */
pingCommand.PingSize = 150; /* size of ping, in bytes */
pingCommand.PingIntervalTime = 100; /* delay between pings, in milliseconds */
pingCommand.PingRequestTimeout = 1000; /* timeout for every ping in milliseconds */
pingCommand.TotalNumberOfAttempts = 0; /* max number of ping requests. 0 = forever */
pingCommand.Flags = 0; /* report only when finished */
Status = sl_NetAppPing(&pingCommand, SL_AF_INET6, &report, NULL) ;
if (Status)
{
/* error */
}

12.3 Limitations
To avoid blocking the user context, use a callback to receive the ping reports when trying to send an infinite
number of ping requests.

www.ti.com Ping

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 217

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Ping www.ti.com

218 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

This page intentionally left blank.

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

13.1 Introduction...220
13.2 Key Features... 220
13.3 Configurations and Setting..220
13.4 Internal Packet Generator..224
13.5 CW..225
13.6 Changing Socket Properties... 225
13.7 Limitations...227

Chapter 13
Transceiver

www.ti.com Transceiver

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 219

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

13.1 Introduction
The transceiver mode is a powerful tool that lets the user send and receive any raw data in Layer 2. The user
can use the entire frame, including the 802.11 header (excluding duration field), to receive and transmit its own
data. Transceiver mode is only enabled when the SimpleLink Wi-Fi device is not connected to an AP. Receiving
packets in transceiver mode is enabled only after the first call to the sl_Recv API. Before this call, no packets
can be received. By default, there are no frame acknowledgments or retries; therefore, there are no promises
that the frames reach their destination (when working in L1 mode, it is also not ensured that there will be no
collision with other frames or with other interference).

One common use case for transceiver mode applications is for continuously transmitting the same packet. This
is used mostly for tagging and for measuring loss, using the RX statistics feature. Another use case can be
promiscuous mode, such as using the device as a sniffer.

13.2 Key Features
Table 13-1 lists the key features of the transceiver.

Table 13-1. Key Features
Key Features Description

TX/RX Layer 1 raw data Send and receive any L1 raw data

TX/RX Layer 2 raw data Send and receive any L2 raw data

Internal Packer Generator The device can auto-generate packet internally with infinite
transmission.

CW Carrier-wave signal transmission

13.3 Configurations and Setting
Host driver commands are used to start and operate the transceiver mode.

Note

To use transceiver mode, the device must be set in STA role, be disconnected, and have disabled
previous connection policies that might try to automatically connect to an AP.

Example:

_i16 Status;
Status = sl_WlanPolicySet(SL_WLAN_POLICY_CONNECTION,SL_CONNECTION_POLICY(0,0,0,0,0),NULL,0);
if(Status)
{
 /* error */
}
Status = sl_WlanDisconnect();
if(Status)
{
 /* error */
}

Transceiver www.ti.com

220 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

13.3.1 Open Transceiver Socket

Only a single transceiver socket is supported. To start the transceiver mode, use the sl_Socket API with the
following arguments:
• Domain – Set to SL_AF_RF; indicates transceiver mode socket. Configure this value as the family parameter.
• Type – Set to one of the following options:

– SL_SOCK_RAW – Indicates an L1 mode raw socket (no respect for 802.11 medium access policy - CCA)
– SL_SOCK_DGRAM – Indicates an L2 mode raw socket (respecting 802.11 medium access policies)

• Protocol - used for select special setting for the socket. Supports the following settings:
– Channel – Used for configuring the operational channel from which the device should start receiving or

transmitting traffic. If the channel is set to 0, the channel is set as the last transceiver channel used. If this
is the first time the transceiver socket is open, a channel should be applied by the sl_SetSockOpt
operation, or by the flags parameter in the sl_Send operation.

– Rate range – Optional setting, lets the user ensure that the rates and power used in this socket are within
a certain range. This setting is applicable for channels on the 5-GHz band, and lets the user optimize the
calibration process on these channels to reduce the total system power consumption.

This command must be called only when the device is in STA role and disconnected. The command returns the
socket ID, which is used from now on to reference the socket. If there is a problem with the socket, the command
returns a negative error code.

Example:

_i16 sd;
_i16 channel = 6;
sd = sl_Socket(SL_AF_RF ,SL_SOCK_RAW/SL_SOCK_DGRAM, channel);

13.3.2 Close Transceiver Socket

The sl_Close API is used to close the transceiver mode.

Example:

_i16 Status, sd;
Status = sl_Close(sd);
if(Status)
{
 /* error */
}

13.3.3 Send Data

Transmitting raw socket data is done by calling sl_Send after successfully opening the transceiver socket. The
API return value is the number of bytes sent, or a negative value in the case of an error.

The SimpleLink Wi-Fi device provides the option to set the following parameters as part of the send operation as
part of the flags parameter:
• Channel
• Rate
• Tx Power
• 802.11b preamble

The flags parameter given as part of the sl_Send API are valid only for the specific send operation, and are not
kept for any further operation. If the flags parameter is set to 0, the default values remain. These parameters can
also be set through the sl_SetSockOpt API, as specified in the example that follows.

Note

These parameters have no default values, and therefore must be set through the sl_Send API or
sl_SetSockOpt, as specified below.

www.ti.com Transceiver

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 221

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Note

Tx Power can only be set on 2.4-GHz channels.

Transceiver www.ti.com

222 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Example: transmit a frame on channel 1, with 1-MBps data rate, maximum TX power and long preamble:

void sendPacket(char * data)
{
 /* Base frame: */#define FRAME_TYPE 0x88
 #define FRAME_CONTROL 0x00
 #define DURATION 0xc0,0x00
 #define RECEIVE_ADDR 0x08, 0x00, 0x28, 0x5A, 0x72, 0x3C
 #define TRANSMITTER_ADDR 0x08, 0x00, 0x28, 0x5a, 0x78, 0x1e
 #define BSSID_ADDR 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
 #define FRAME_NUMBER 0x00, 0x00
 #define QOS_CTRL 0x00, 0x00
 _i32 NumOfBytes =0;
 _i32 sock=0;
 /* MAC header */char buff[1536];
 char FrameBaseData[] = {
 FRAME_TYPE, /* version, type sub type */
 FRAME_CONTROL, /* Frame control flag */
 DURATION, /* duration */
 RECEIVE_ADDR, /* Receiver ADDr */
 TRANSMITTER_ADDR, /* Transmitter Address */
 BSSID_ADDR, /* destination */
 FRAME_NUMBER, /* Frame number */
 QOS_CTRL}; /* Transmitter */
 memcpy(buff,FrameBaseData,sizeof(FrameBaseData));
 memcpy (buff + sizeof(FrameBaseData), data, sizeof(buff) - sizeof(FrameBaseData));/* Example data
*/
 sock = sl_Socket(SL_AF_RF, SL_SOCK_RAW, 1);
 NumOfBytes = sl_Send(sock,buff,sizeof(buff),SL_WLAN_RAW_RF_TX_PARAMS(CHANNEL_1,
SL_WLAN_RATE_1M,0,SL_WLAN_LONG_PREAMBLE));
}

13.3.4 Receive Data

Receiving raw socket data is done by calling sl_Recv after successfully opening the transceiver socket. The API
return value is the number of bytes received, or a negative value in case of an error. Each receive packet has an
8-byte proprietary header which includes the following parameters:
• Rate – packet received rate
• Channel – packet received channel
• RSSI – computed RSSI value in dBm of current frame
• Time Stamp – frame timestamp in µs

If the packet is longer than the receive buffer, the remainder of the packet is discarded. The maximum packet
size which can be received is 1544 (1536 bytes of data and 8 bytes of proprietary header).

Example:

_i16 NumOfByets;
signed char buf [1000];
_i16 Soc;
_i16 channel = 6;
_i16 len = 1000;
Soc = sl_Socket(SL_AF_RF ,SL_SOCK_RAW, channel);
NumOfByets = sl_Recv(Soc, buf,500,0);

www.ti.com Transceiver

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 223

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

13.4 Internal Packet Generator
The SimpleLink Wi-Fi device can internally generate packets in transceiver mode. The device is capable of
repeating a user-predefined pattern of data.

Before calling sl_Send, you must set the number of frames using the sl_SetSockOpt API to the number of
frames desired to be transmitted (0 means infinite number of frames).

A single call to the sl_Send API triggers the frames transmission. The SimpleLink Wi-Fi device keeps
transmitting until it has sent all the requested frames, or until the socket is closed or another socket property
changes (through sl_SetSockOpt). It is still possible to receive packets during the send operation. Setting the
number of frames to transmit to 1 returns the socket to the regular transceiver socket state.

Example of transmitting multiple data packets:

void sendPacket(char * data)
{
 /* Base frame: */#define FRAME_TYPE 0x88
 #define FRAME_CONTROL 0x00
 #define DURATION 0xc0,0x00
 #define RECEIVE_ADDR 0x08, 0x00, 0x28, 0x5A, 0x72, 0x3C
 #define TRANSMITTER_ADDR 0x08, 0x00, 0x28, 0x5a, 0x78, 0x1e
 #define BSSID_ADDR 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
 #define FRAME_NUMBER 0x00, 0x00
 #define QOS_CTRL 0x00, 0x00
 _i32 NumOfBytes =0;
 _i32 Soc=0;
 _i16 Status =0;
 _u32 numFrames=20;
 /* Mac header */char buff[1536];
 char FrameBaseData[] = {
 FRAME_TYPE, /* version, type sub type */
 FRAME_CONTROL, /* Frame control flag */
 DURATION, /* duration */
 RECEIVE_ADDR, /* Receiver ADDr */
 TRANSMITTER_ADDR, /* Transmitter Address */
 BSSID_ADDR, /* destination */
 FRAME_NUMBER, /* Frame number */
 QOS_CTRL}; /* Transmitter */
 memcpy(buff,FrameBaseData,sizeof(FrameBaseData));
 /* Example data */
 memcpy (buff + sizeof(FrameBaseData), data, sizeof(buff) - sizeof(FrameBaseData));
 Soc = sl_Socket(SL_AF_RF, SL_SOCK_RAW, 1);
 /* Set 20 frames to transmit */
 Status = sl_SetSockOpt(Soc, SL_SOL_PHY_OPT,SL_SO_PHY_NUM_FRAMES_TO_TX,
&numFrames,sizeof(numFrames));
 if (Status)
 {
 /* Error */
 }
 /* Send 20 packet with the same buffer */
 NumOfBytes = sl_Send(Soc,buff,sizeof(buff),SL_WLAN_RAW_RF_TX_PARAMS(CHANNEL_1,
SL_WLAN_RATE_1M,1, SL_WLAN_LONG_PREAMBLE));
}

Transceiver www.ti.com

224 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

13.5 CW
The SimpleLink Wi-Fi device can transmit infinite carrier-wave signals using the sl_Send API, with NULL buffer
and 0 (zero) length.

The flags parameter in the sl_Send API is used to signal the tone offset (–25 to 25).

The CW is continuously transmitted until stopped. Stopping CW transmission is done by triggering another
sl_Send API with flags= –128 (decimal).

13.6 Changing Socket Properties
The SimpleLink Wi-Fi device offers multiple transceiver socket configurations by using the sl_SetSockOpt API.
All configurations must be set after successfully opening the socket. The configurations are not persistent, and
are deleted after the socket is closed.

13.6.1 Change Operating Channel

Change the transceiver operational channel. If changing the channel during packet transmission, the channel is
changed only after all packet transmission completes.

Example:

_i16 Status;
_i16 channel = 9;
Status = sl_SetSockOpt(soc, SL_SOL_SOCKET, SL_SO_CHANGE_CHANNEL, &channel,sizeof(channel));
if (Status)
{
/* Error */
}

Note

The channel parameter has no default value, and therefore must be set when opening the socket,
through the sl_Send operation, or through sl_SetSockOpt, as specified in this section.

13.6.2 Change Default PHY Data Rate

Change the WLAN transmit rate. The values can be one of the following:
• SL_WLAN_RATE_1M = 1
• SL_WLAN_RATE_2M = 2
• SL_WLAN_RATE_5_5M = 3
• SL_WLAN_RATE_11M = 4
• SL_WLAN_RATE_6M = 6
• SL_WLAN_RATE_9M = 7
• SL_WLAN_RATE_12M = 8
• SL_WLAN_RATE_18M = 9
• SL_WLAN_RATE_24M = 10
• SL_WLAN_RATE_36M = 11
• SL_WLAN_RATE_48M = 12
• SL_WLAN_RATE_54M = 13
• SL_WLAN_RATE_MCS_0 = 14
• SL_WLAN_RATE_MCS_1 = 15
• SL_WLAN_RATE_MCS_2 = 16
• SL_WLAN_RATE_MCS_3 = 17
• SL_WLAN_RATE_MCS_4 = 18
• SL_WLAN_RATE_MCS_5 = 19
• SL_WLAN_RATE_MCS_6 = 20
• SL_WLAN_RATE_MCS_7 = 21

www.ti.com Transceiver

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 225

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Example:

_i16 Status;
_i16 rate = SL_WLAN_RATE_1M;
Status = sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SL_SO_PHY_RATE, &rate, sizeof(rate));
if (Status)
{
/* Error */
}

Note

The PHY data rate parameter has no default value, and therefore must be set through the sl_Send
operation or through sl_SetSockOpt, as specified in this section.

13.6.3 Change Tx Power

Setting the Tx power lets the user change the transmission power relative to the maximum Tx power. The values
represent steps 0 to 15, which reflect as dBm offset from maximum power (0 means MAX power). For more
information, see Chapter 4.

Example:

_i16 Status;
_u32 TxPower = 1; /* valid range is 1-15 */
Status = sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SL_SO_PHY_TX_POWER, &TxPower, sizeof(TxPower));
if (Status)
{
/* Error */
}

Note

The Tx power parameter has no default value, and therefore must be set through the sl_Send
operation or sl_SetSockOpt, as specified in this section.

Note

Tx Power can only be set on 2.4-GHz channels.

13.6.4 Change Number of Frames to Transmit (Internal Packet Generator)

The RAW socket packet generator sets the number of frames to transmit in the internal packet generator.

Example:

_i16 Status;
_u32 NumFrames = 10;
Status = sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SL_SO_PHY_NUM_FRAMES_TO_TX, &NumFrames,
sizeof(NumFrames));
if (Status)
{
/* Error */
}

13.6.5 Change 802.11b Preamble

Set Long or Short WLAN PHY preamble for 802.11b rates only. Set 1 for short preamble or 0 for long.

Example:

_u32 preamble = 1; /* set short preamble */
_i16 Status;
Status = sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SL_SO_PHY_PREAMBLE, &preamble, sizeof(preamble));
if (Status)
{
/* Error */
}

Transceiver www.ti.com

226 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Note

The 802.11b preamble parameter has no default value, and therefore must be set through the sl_Send
operation or sl_SetSockOpt, as specified in this section.

13.6.6 Set CCA Threshold

The CCA threshold can be configured to set the specific threshold when the channel is considered as occupied.
The following values can be set:
• SL_TX_INHIBIT_THRESHOLD_MIN (–88 dBm)
• SL_TX_INHIBIT_THRESHOLD_LOW (–78 dBm)
• SL_TX_INHIBIT_THRESHOLD_DEFAULT (–68 dBm)
• SL_TX_INHIBIT_THRESHOLD_MED (–58 dBm)
• SL_TX_INHIBIT_THRESHOLD_HIGH (–48 dBm)
• SL_TX_INHIBIT_THRESHOLD_MAX (–38 dBm)

Example:

_i16 Status;
_u32 thrshld = SL_TX_INHIBIT_THRESHOLD_MED;
Status = sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SL_SO_PHY_TX_INHIBIT_THRESHOLD,
&thrshld,sizeof(thrshld));
if (Status)
{
/* Error */
}

13.6.7 Set Tx Frames Time-out

Tx time-out for transceiver frames (lifetime) can be set. The value is given in ms (maximum value is 100 ms).

Example:

_i16 Status;
 _u32 TimeOut = 50;
Status = sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SL_SO_PHY_TX_TIMEOUT, &TimeOut, sizeof(TimeOut));
if (Status)
{
/* Error */
}

13.6.8 Enable or Disable Sending ACKs

Enable or disable sending ACKs in transceiver mode (enable = 1, disable = 0). This option is disabled by default.

Example:

_i16 Status;
_u32 Acks = 1; /* 0 = disabled / 1 = enabled */
Status = sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SL_SO_PHY_ALLOW_ACKS ,&Acks, sizeof(Acks));
if (Status)
{
/* Error */
}

13.7 Limitations
• Only one transceiver socket is supported in the system.
• Transceiver mode is available in STA mode only.
• Length of a received packet is trimmed if it exceeds 1536 bytes of data. Each packet includes the 8 bytes of

proprietary header. Therefore, the receive buffer should be set to a maximum of 1544 bytes.
• Cannot transmit a frame over 1536 total bytes (including any header) and below 14 bytes (shortest MAC

header).
• Transceiver mode is not available in connected mode. Auto-connection mode is also considered as

connected mode, even if not connected.

www.ti.com Transceiver

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 227

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• sl_SendTo and sl_RecvFrom are not available in transceiver mode.

Transceiver www.ti.com

228 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

14.1 Introduction...230
14.2 Data Structure...230
14.3 Configurations and Settings..230
14.4 Constraints..231

Chapter 14
Real-Time RSSI

www.ti.com Real-Time RSSI

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 229

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

14.1 Introduction
The Real-Time RSSI feature lets the user gain metrics from RX data frames received in the MAC layer of the
device. The supported metrics are Rate, Channel, and RSSI from the frame source, and a free running
timestamp (as a reference). The metrics of the data are collected on the connection BSS between the device
and the AP. A special option gives the ability to get metrics from all connected station in the BSS.

Real-Time RSSI is supported on the CC3x3x devices only.

14.2 Data Structure
The metrics are gathered in information frames and extracted from the data frames of those information frames.
The original data frames are not dropped, but routed to their designated destination, thus there is no impact to
the traffic.

Information frames are structured in the following manner:

Bytes 2 2 1 1 1 1 4 24/26 (QOS)

Data type Type Length Rate Channel RSSI Antenna Free TS IEEE 802.11 Header

Table 14-1. Information Frame Metrics
Metric Description
Type Information type, currently only a single value - “1” is supported, indicating metrics over data

frame.

Length The length of the information frame doesn’t include the “Type” length fields.

Rate Frame rate index SlSockTransceiverRXRates_e

Channel Current connection channel

RSSI RSSI in dBm

Antenna The active antenna that the frame was received on

Free TS (Timestamp) Free running timestamp

IEEE 802.11 Header All header fields from the analyzed data frame

14.3 Configurations and Settings
14.3.1 Connect to an AP

Note

The device must be connected to an AP to receive data frames and collect metrics.

Note

The device must be set to an SL_ALWAYS_ON_POLICY power policy to receive all data frames and
collect metrics. Otherwise, only frames transmitted while the device is awake would be received.

The sl_WlanConnect command is used for one-time connection, and the sl_WlanProfileAdd is used to add a
connection profile to be triggered when auto connect policy is enabled. Usage of those commands is described
in Chapter 4.

Indication of a successful Wi-Fi connection can be retrieved with the WLAN event. IP acquisition is indicated
using the NETAPP event.

14.3.2 Opening Real-Time RSSI Socket

sl_Socket – The metrics are gathered through a special socket. When opening such a socket, information
frames start to be accumulated in the socket queue. There can be only one Real-Time RSSI socket in the
system.

sl_Recv – Information frames can be retrieved using the receive command. The receive command can be used
with any length value in the size argument.

Real-Time RSSI www.ti.com

230 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

sl_SetSockOpt – Using the PHY option SL_SO_PHY_RX_BSSID_DATA_FRAMES enables or disables
receiving information frames from traffic between other stations to the AP in the BSS.

sl_Close – Stop collecting metrics and close the socket.

14.3.3 Example Code

//open socket dedicated to the Real-Time RSSI to start capturing the medium
SockID = sl_Socket(SL_AF_RF, SL_SOCK_RX_MTR, 0);
flag.enableDisable = 1;
//set option to receive frames of other devices in the BSS
sl_SetSockOpt(SockID,SL_SOL_PHY_OPT,SL_SO_PHY_RX_BSSID_DATA_FRAMES,&flag,1);
for(i = 0 ; i < RUN_NUMBER_OF_TIMES; i++)
{
 actualLength = 1000;
 actualLength = sl_Recv(SockID,buffer,actualLength,0);
 /*
 * Note: if receiving N bytes there might be a reminder on the socket
 * belongs to an info frame.
 * this example doesn't deal with this case.
 */
 bufferOffset = buffer;
 while(bufferOffset < buffer + actualLength)
 {
 tlv = (SlRxMetrics_TLV_t *)bufferOffset;
 header = (SlTransceiverRxOverHead_t *)(buffer + sizeof(tlv));
 WLANHeader = (buffer + sizeof(tlv) + sizeof(header));
 //we use the tlv.length here because this is the indication for QOS wlan header length or
legacy header
 bufferOffset = bufferOffset + sizeof(tlv) + tlv->length;
 }
}
sl_Close(SockID);

14.4 Constraints
• The device must be connected to an AP to receive data frames and collect metrics.
• The device must be set to an SL_ALWAYS_ON_POLICY power policy to receive all data frames and collect

metrics. Otherwise, only frames transmitted while the device is awake would be received.
• Only supported Wi-Fi rates may be received (for example, 11n rates higher than MCS7 cannot be received).
• Only one Real-Time RSSI socket can be opened.
• The original data frames are not dropped, but routed to their designated destination, thus there is no impact

to the traffic.
• When receiving metrics of other stations in the BSS destined to the AP, low RSSI and congested medium can

impact the reception and unsupported rates (above MCS7).

www.ti.com Real-Time RSSI

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 231

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Real-Time RSSI www.ti.com

232 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

This page intentionally left blank.

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

15.1 Introduction...234
15.2 Configurations and Settings..235
15.3 Network Applications and Power Consumption..236
15.4 Design Guidelines.. 236

Chapter 15
Power Management

www.ti.com Power Management

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 233

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

15.1 Introduction
15.1.1 Key Features

Table 15-1 lists the key power management features.

Table 15-1. Key Features
Key Features Description

Auto-power management The SimpleLink device has advanced internal power-management logic that puts it in LPDS
(low-power deep sleep) in a manner transparent to the host.

802.11 Power save Use of the power-save feature of the 802.11 standard allows the device to consume low
power while maintaining a connection to an access point.

IoT Low Power (CC313x and CC323x only) The SimpleLink Wi-Fi device supports the new WFA low power mode during connection. In
this mode, the device negotiates (during the connection) the maximum sleep interval
allowed. Based on the value and its own configuration, the device can extend the sleep
interval.

Power-optimized out of the box Device is power-optimized by default. No configuration by the host is necessary to activate
these features.

Fast connect Can connect to the last known network without performing a WLAN scan, which dramatically
decreases connection time and saves power.

15.1.2 LPDS

Whenever possible, the SimpleLink device strives to enter and remain in its low-power state (LPDS). In this
state, most of its clocks and logic are powered down, and only the memory and basic supervision circuitry are
enabled, which leads to low power consumption. The host interface is designed such that entering and exiting
LPDS is completely transparent to the host. The host may initiate a new command at any time, regardless of the
power state of the device.

15.1.3 802.11 Power Save

When the device is in station mode and connected to an access point, it automatically tries to use the power-
save mechanism defined in the 802.11 standard. This mechanism allows entering into low-power mode while
maintaining a connection to the access point.

15.1.3.1 LSI (Long Sleep Interval)

The 802.11 power-save feature lets the device remain in low-power mode without the risk of missing data
destined to it (including network broadcast data). It is achieved by sending all broadcast data after a DTIM
beacon. The transmission time of this beacon is known in advance to the SimpleLink device, which wakes up in
time for the traffic. When the device is in LSI mode, the device only wakes up for a single broadcast period within
the time interval specified by the user. This process allows further power reduction, but may cause the device to
miss broadcast data on the network.

15.1.4 WFA IoT Low Power

The WFA IoT low power is a Wi–Fi alliance certification program that allows a Wi-Fi station to enter into new
extreme low power modes during connection without losing data. The mode is supported only on the CC313x
and CC323x. This standard includes the implementation of three major features:

• BSS Max Idle Period:
– The BSS Max idle period is the amount of time an AP can keep a client associated without The AP

receiving any frame from the client (the client can remain in sleep mode).
– This value is informed to the wireless client through the association and re-association response frame
– In case the AP does not support BSS Max Idle, the device will remain in normal power save mode.

Power Management www.ti.com

234 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• Proxy ARP:
– Proxy ARP is the technique in which one host, usually a router, answers ARP requests intended for

another machine
– In case the user would like to enter the long sleep interval only when the AP supports the Proxy ARP

feature, SL_WLAN_IOTLP_BITMAP_FORCE_PROXY_ARP bit in PowerMgtBitMask parameter which is a
member of SlWlanPmPolicyParams_t struct should be set

• DMS – Directed Multicast Service:
– Clients that support DMS can request the AP to send a multicast stream as unicast.
– In case the user would like to enter the long sleep interval only in case the AP supports the DMS feature,

SL_WLAN_IOTLP_BITMAP_FORCE_DMS bit in PowerMgtBitMask parameter which is a member of
SlWlanPmPolicyParams_t struct should be set.

This power saving feature lets a station to stay in sleep mode while keeping a live connection, without missing
unicast and multicast packets.

15.1.5 Low Power versus Latency

Both the LPDS and 802.11 power-save features have an overhead, which cause an increased latency in data
transmission and reception. The user may optimize the device for low latency instead of low power by changing
the power policy of the system, as described in Section 15.2.1. Table 15-2 summarizes the available policies and
their effect on power and latency.

Table 15-2. Power and Latency
Policy LPDS 802.11 Power Save Device Power Saving Device Latency

Always On Disabled Disabled None Minimal

Low Latency Enabled High entry threshold Low Low

Normal Enabled Normal entry threshold Medium Medium

Low Power Enabled Low entry threshold High High

LSI Enabled Entry threshold set by user Highest Highest

IoT Low Power
(CC313x and CC323x
only)

Enabled Entry threshold set by user Highest Highest

15.1.6 Power Modes versus Device Modes

The low-power policies of the SimpleLink device are only available when it is in STA and P2P client mode. Once
the device is put into AP or P2P group owner mode, the power-management profile is forced to always on.

15.2 Configurations and Settings
15.2.1 Changing Power Policy

The power policy is changed through the generic sl_WlanPolicySet API, as shown in Table 15-3.

Table 15-3. Power Policy
Desired Policy API Parameters

Type Policy pVal ValLen
Always On SL_POLICY_PM SL_ALWAYS_ON_POLICY NULL 0

Low Latency SL_POLICY_PM SL_LOW_LATENCY_POLICY NULL 0

Normal SL_POLICY_PM SL_NORMAL_POLICY NULL 0

Low Power SL_POLICY_PM SL_LOW_POWER_POLICY NULL 0

LSI SL_POLICY_PM SL_LONG_SLEEP_INTERVAL_PO
LICY

SlWlanPmPolicyParams_t* sizeof(SlWlanPmPolicyParam
s_t)

IoT Low Power
(CC313x and
CC323x only)

SL_POLICY_PM SL_WLAN_IOT_LOW_POWER_P
OLICY

SlWlanPmPolicyParams_t* sizeof(SlWlanPmPolicyParam
s_t)

www.ti.com Power Management

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 235

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

All settings of the sl_WlanPolicySet API are effective immediately after the call, and persistent between device
resets.

15.2.2 Enabling Fast Connect

Fast connect is controlled by the WLAN API (for details see Chapter 4). When enabled, the scan process is
skipped if the connection attempt is to the last connected network. Skipping the scan can save hundreds of
milliseconds in the connection time, thereby reducing the power consumption.

15.3 Network Applications and Power Consumption
15.3.1 mDNS

The device mDNS service (enabled by default) is based on sending and receiving broadcast and multicast data
frames on the connected network, without any user interaction. Because the effects of this behavior on power
consumption cannot be determined in advance, TI recommends turning this service off in power-constrained
systems (assuming it is not necessary for the application). This service will be turned off automatically if LSI
mode with a sleep time greater than 2000 ms is specified.

15.3.2 HTTP Server

The device HTTP server is automatically turned off if LSI is set to 2000 ms. This occurs because the chances of
the server to successfully accept a client connection in these conditions are extremely low.

15.4 Design Guidelines
15.4.1 LSI and Packet Loss

When setting the LSI sleep time to be greater than the DTIM period of the network (the period of the beacon
after which all broadcast messages are sent), the device will most likely miss some of the network broadcast
traffic. The effect of this is application-specific: if the application always initiates traffic and relies on unicast
rather than broadcast response, no behavioral impact is expected other than higher latency. If the application is
expected to respond to unsolicited traffic (run a UDP/TCP server, respond to pings or mDNS) the effect might be
more significant, and may result in clients failing to connect to the device or sense its presence on the network.

15.4.2 PHY Calibration Mode

The PHY calibration mode directly affects system power consumption, because it prolongs the initialization
phase of the device. In normal mode, PHY is calibrated every time the networking subsystem is started and the
device was either reset (using nShut pin), or 24 hours have passed since the last calibration. This mode is set by
default, and provides maximum Tx power flexibility at the expense of occasionally prolonged initialization time.
The triggered calibration mode provides more power saving, by performing calibrations after reset only if the Tx
power was changed. The one-time calibration mode provides further power saving, by performing calibrations on
the first system power up only (this also prevents changing the Tx power). For more information, see Section
4.9.

Power Management www.ti.com

236 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

16.1 Introduction...238
16.2 Key Features... 238
16.3 Provisioning Process Overview..238
16.4 Host Provisioning Application Flow... 239
16.5 Configuration Modes..240
16.6 Starting and Stopping the Provisioning Process..241
16.7 Auto-Provisioning...241
16.8 Delivering Feedback to the User...242
16.9 External Configuration...243
16.10 Common Events and Errors.. 243
16.11 Usage Examples... 245

Chapter 16
Provisioning

www.ti.com Provisioning

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 237

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

16.1 Introduction
Wi-Fi provisioning is the process of providing an IoT (Internet of Things) device the information needed to
connect to a wireless network for the first time (network name, password, and so forth). Providing this
information may be challenging, because not all IoT devices are equipped with conventional input peripherals
such as keyboards or touchscreens.

The SimpleLink Wi-Fi Internet-on-a chip™ family of devices offers smart and fast built-in Wi-Fi provisioning
capabilities, which lets end-users configure their IoT devices wirelessly using a smartphone, PC browser, or a
tablet running a dedicated provisioning app. The provisioning capabilities can be easily embedded by developers
on their own wireless applications.

The CC3135 and CC3235 devices are dual-band Wi-Fi 2.4GHz / 5 GHz. The provisioning process in these
devices is enabled on both 2.4-Ghz and 5-Ghz channels and might take a little bit longer.

This document describes the various provisioning methods supported by SimpleLink Wi-Fi family and provides a
detailed overview about the provisioning process flow.

16.2 Key Features
Table 16-1 lists the key provisioning features of the device.

Table 16-1. Key Features
Key Features Description

Access-Point Provisioning The SimpleLink Wi-Fi device creates a wireless network of its own with a predefined network
name, letting the user to connect it with an external device (such as smartphone, tablet, or
PC) and add a profile through the internal HTTP web server.

SmartConfig Provisioning TI proprietary provisioning method that uses a smartphone or a tablet to broadcast network
credentials to an unprovisioned device. The user can add a profile using any SmartConfig-
capable smartphone or tablet app.

16.3 Provisioning Process Overview
16.3.1 Configuring a Profile

When the provisioning process starts, the SimpleLink Wi-Fi device waits for the end-user to provide it (using an
external tablet or smartphone app) with the information needed to connect to a wireless network:
• Network name (SSID)
• Password
• Device name (optional)
• UUID (Universally Unique Identifier; optional)

The provided information is saved into the device serial flash memory as a new profile.

16.3.2 Confirming a Profile

Once a profile is configured, the device tries to connect to that profile to confirm that it was properly provided (the
user might type the wrong SSID or password), and that the wireless network is valid. If the connection attempt
was successful (such as a WLAN connection was established and an IP address was acquired), the device tries
to provide the end-user who configured the profile a feedback (through a message on their tablet or smartphone
app) indicating a successful connection.

If the feedback about a successful connection was received by the user, the profile is confirmed and the
provisioning process ends.

If the connection was not successful, or if the connection was successful but the feedback was not delivered to
the user, the confirmation fails, and the device waits for the user to try to configure another profile, as shown in
Figure 16-1.

Provisioning www.ti.com

238 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Smartphone App 6LPSOH/LQN��'HYLFH

Wireless Network

Configure Profile

Feedback

C
onfirm

 C
onnection

Figure 16-1. The Provisioning Environment

16.4 Host Provisioning Application Flow
The entire provisioning process (adding profiles, confirming profiles, and delivering confirmation results to the
user) is executed internally by the networking subsystem. The host application is responsible only for initiating
the process. Once the process is started, no further actions are needed.

Figure 16-2 depicts the host application during a provisioning process.

After a provisioning process is started, the host should wait for the networking subsystem to send it the profile
confirmation result. During this time, the host application should not perform any networking activity that may
interrupt the ongoing provisioning process. The confirmation result is sent after the end-user has configured a
profile and the networking subsystem has finished confirming it.

Possible confirmation result values:
• Confirmation failed, SSID was not found during scan
• Confirmation failed, SSID was found, but WLAN connection failed
• Confirmation failed, WLAN connection was successful, but IP address was not acquired
• Confirmation failed, IP address was successfully acquired but feedback to the user’s smartphone app was

not delivered
• Confirmation succeeded

If the received confirmation result is successful (that is, a profile was configured, connection was successful, and
feedback was delivered to the user), the provisioning process automatically stops, and the host should wait for
the provisioning-stopped event before it may continue with its activities. If the profile confirmation failed, the
provisioning process continues, to let the user configure another profile. If no profile was configured by the user
for some time (inactivity time-out), the provisioning process automatically stops, and a provisioning-stopped
event is sent to the host.

Updates regarding the progress of the provisioning process are constantly sent by the networking subsystem to
the host.

www.ti.com Provisioning

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 239

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Wait for

Confirmation

Result

Wait for

Provisioning

Stopped event

Host Application

Active

(Provisioning Stopped)

Provisioning Start

Command

Confirmation Success

Event

Confirmation Fail

Provisioning Stopped

Event

Provisioning Stopped

Event

(due to time-out)

Figure 16-2. The Provisioning Process

16.5 Configuration Modes
The provisioning process can be started in four different configuration modes: AP provisioning, SC provisioning,
AP+SC provisioning, and AP+SC+External configuration mode.

16.5.1 AP Provisioning

In this configuration mode, The SimpleLink Wi-Fi device is in AP role, creating a wireless network of its own with
a predefined network name. Users can connect with an external device (such as a tablet or smartphone running
a dedicated provisioning app) to the SimpleLink AP and can configure a profile through the SimpleLink HTTP
server.

16.5.2 SC Provisioning

SmartConfig is a TI proprietary provisioning method that uses a smartphone or a tablet to broadcast network
credentials to an unprovisioned device. In this mode, the SimpleLink Wi-Fi device is in STA role, scanning for
SmartConfig data broadcasts. Users can configure a profile using any SmartConfig-capable tablet or
smartphone app.

Provisioning www.ti.com

240 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

16.5.3 AP and SC Provisioning

In this mode, the SimpleLink Wi-Fi device is in AP role, simultaneously scanning for SmartConfig broadcasts.
Users can either connect with an external device (such as a tablet or a smartphone running a dedicated
provisioning app) to the SimpleLink AP and configure a profile through the SimpleLink HTTP server, or configure
a profile using SmartConfig.

16.5.4 AP and SC and External Configuration Provisioning

In this mode, the SimpleLink Wi-Fi device is in AP role, enabling users to use AP provisioning or SmartConfig
provisioning (same as AP+SC mode), or an external configuration method executed by the host application (for
example, WAC provisioning).

16.6 Starting and Stopping the Provisioning Process
The provisioning process can be started after receiving an explicit request from the host application. When the
host initiates the provisioning process, it should provide the desired configuration mode, the role (AP/STA) to
which the device should switch in case of a successful provisioning, and an inactivity time-out value which
defines the period of time (in seconds) that the system waits before it automatically stops the provisioning
process when no user activity is detected. During provisioning, the device may have higher power consumption
than usual, so TI does not recommend using long inactivity time-out values (of more than few minutes).

An example of starting provisioning from the host application (in AP+SC configuration mode):

_i32 status;
status = sl_WlanProvisioning(SL_WLAN_PROVISIONING_CMD_START_MODE_APSC,
 ROLE_STA,
 PROVISIONING_INACTIVITY_TIMEOUT,
 NULL, 0x0);
if (0 > status)
{
 /* handle error */
}

Once the provisioning process has started, it continues to run until one of the following occurs:
• A configured profile is successfully confirmed.
• The host requests to stop the provisioning process by issuing a provisioning stop command.
• There is no user activity for some time (defined by the inactivity time-out parameter).
• The device is reset.

When the provisioning process is stopped due to a host request or the inactivity time-out, the device switches
back to the role (AP/STA) that was active before the provisioning process started. If the process stops because a
profile was successfully confirmed, the device switches to the role defined by the host during the provisioning
start command. After the provisioning process is successfully stopped, a PROVISIONING_STOPPED event is
sent to the host. This event is sent after switching to the desired role is done. The host application should wait for
the PROVISIONING_STOPPED event before issuing any additional commands. If the host application tries to
issue a command during an active provisioning process, the command is not served and an error is returned.

An example of stopping provisioning from the host application:

_i32 status;
status = sl_WlanProvisioning(SL_WLAN_PROVISIONING_CMD_STOP,
 0,
 0,
 NULL, 0x0);
if (0 > status)
{
 /* handle error */
}

16.7 Auto-Provisioning
When auto-provisioning connection policy is enabled, the networking subsystem automatically starts the
provisioning process in the following cases:

www.ti.com Provisioning

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 241

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• The device was started without any saved profiles, and 2 seconds have passed without receiving any
command from host.

• The device is in STA role, auto-start connection policy is enabled, the profile list is not empty, and the device
is disconnected from WLAN network for more than 2 minutes.

If the provisioning process is auto-started while in STA role, SC-only configuration mode is used. If it was auto-
started while in AP role, AP+SC configuration mode is used. Whenever a provisioning process is auto-started by
the networking subsystem, the SL_WLAN_PROVISIONING_AUTO_STARTED provisioning status event is sent
to the host. The auto-provisioning connection policy is enabled by default.

16.8 Delivering Feedback to the User
After the SimpleLink device has finished confirming a profile, it should send the confirmation result to the
provisioning smartphone app. The confirmation result is used to report to the user, whether or not the
provisioning process was successful.

When the provisioned SimpleLink device is able to connect to the configured wireless network and acquire an IP
address, it advertises itself using broadcast and multicast packets, and waits for the smartphone app to contact
it. The smartphone app should connect to the same wireless network that was configured to the provisioned
device, discover the device IP address by listening to its broadcasts, and send an HTTP GET request to the
device's internal HTTP server to receive the confirmation result.

If the smartphone app can get the confirmation result from the device, it notifies the user that the provisioning
process was successful, and on the device side, a successful confirmation result event is sent from the
networking subsystem to the host.

If the provisioned device cannot connect to the configured wireless network, or if it is able to connect to the
configured wireless network, but the smartphone app did not receive the confirmation result, the profile
confirmation fails. When a profile confirmation fails, the confirmation fail reason is sent by the networking
subsystem to the host through an event, and the device waits for another profile configuration attempt. At this
point, the smartphone app still does not have the confirmation result, because it was not able to find the
provisioned device on the wireless network. To get the confirmation result, the smartphone app may disconnect
from the configured wireless network and try to directly connect the SimpleLink device AP (possible only if AP-
provisioning or AP+SC-provisioning configuration modes are used). If the smartphone app was able to connect
to the SimpleLink AP, it sends an HTTP GET request to the device internal HTTP server, to retrieve the
confirmation result. If the profile confirmation failed because the device was not able to connect to the wireless
network (SSID was not found, WLAN connection failed, or an IP address was not acquired), the smartphone app
reports it the user. If the profile confirmation failed because the confirmation result was not delivered to the
smartphone (feedback failed), the smartphone app reports to the user that the confirmation was successful, and
the networking subsystem sends the host a successful confirmation result event (because the feedback was
eventually successfully provided to the user’s smartphone app).

16.8.1 External Confirmation

Feedback to the user’s smartphone app can also be delivered through an external cloud-based server. When the
SimpleLink device can connect to the configured network and acquire an IP address, it tries to contact a cloud-
based server over the internet. The user’s smartphone app, rather than connecting to the same wireless network
that was configured to the provisioned device, also connects the cloud-based server over the internet, and asks
if the SimpleLink device is able to connect to the cloud. In this mode, the smartphone provisioning app does not
need to discover the IP address acquired by the device.

Connecting the cloud-based server is not done internally by the networking subsystem, but by the host
application. When the device is able to successfully connect and acquire an IP address, it notifies the host
through an event that an IP address was acquired and that it may start sending socket commands to the
networking subsystem to connect to the cloud server. If the device was able to successfully deliver the feedback
through the cloud server to the smartphone app, the host application should manually stop the provisioning
process by issuing a PROVISIONING_STOP command and order the networking subsystem to stay in STA role
(instead of restoring the previous role). The networking subsystem cannot automatically stop the provisioning
process, because it is not aware of the results coming from the cloud and is unaware of the successful feedback

Provisioning www.ti.com

242 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

delivery. If the device can acquire an IP address, but cannot contact the smartphone app through the cloud
server, the host application should notify the networking subsystem about the failure by issuing an
ABORT_EXTERNAL_CONFIRMATION command, and the networking subsystem should prepare for another
profile configuration attempt.

To use a cloud-based feedback, the external confirmation bit should be set in the provisioning host command
flags parameter when the provisioning process is started.

16.9 External Configuration
When the provisioning process is started in APSC + external configuration mode, the device is ready to serve
stations trying to connect to it (for AP provisioning), ready to handle SmartConfig transmissions (SC
provisioning), and can allow the host to execute an additional external provisioning method that is not
implemented inside the networking subsystem (for example: WAC).

In this mode, the host is allowed to send commands and receive events from the networking subsystem while
provisioning is running. After the networking subsystem has successfully started the provisioning process, it
sends the EXTERNAL_CONFIGURATION_READY event to the host, which indicates that the host may start
executing its external provisioning method (for example: start listening on socket). At this point, the end-user
may choose which method to use: AP provisioning, SC provisioning, or the external method implemented by the
host application.

If the host application identifies that the end-user chose to use the external configuration method, it should stop
the internal running provisioning process by issuing a PROVISIONING_STOP command (the host should also
order the networking subsystem to stay in its current role after stopping the provisioning), and continue carrying
out the external provisioning process.

If the end-user has configured a profile using one of the internal provisioning methods (AP or SC provisioning),
the device must be restarted before it can continue the internal provisioning process. The networking subsystem
sends a RESET_REQUEST event to the host, and the host should stop its external provisioning process (close
all opened sockets, and so forth), restart the SimpleLink Wi-Fi device (by issuing sl_stop and sl_start
commands), and wait for the internal provisioning process to end.

16.10 Common Events and Errors
16.10.1 Provisioning Status Event

The networking subsystem constantly updates the host application regarding the progress of the provisioning
process through the provisioning status event.

The provisioning status event has the following parameters:
• Status
• Role
• WlanStatus
• SsidLen
• Ssid

Table 16-2 lists the status parameter values.

Table 16-2. Provisioning Status
SL_WLAN_PROVISIONING_GENERAL_ERROR 0 The provisioning process has encountered an unknown error. TI

recommends stopping and starting the process again.

SL_WLAN_PROVISIONING_CONFIRMATION_
STATUS_FAIL_NETWORK_NOT_FOUND

1 Profile confirmation failed because the SSID was not found during scan.

SL_WLAN_PROVISIONING_CONFIRMATION_
STATUS_FAIL_CONNECTION_FAILED

2 Profile confirmation failed; the SSID was found during scan, but the
WLAN connection was not successful (possibly due to the wrong
password).

SL_WLAN_PROVISIONING_CONFIRMATION_
STATUS_FAIL_CONNECTION_SUCCESS_IP_NOT_
ACQUIRED

3 Profile confirmation failed; the SSID was found during scan, the WLAN
connection was successful, but an IP address was not successfully
acquired.

www.ti.com Provisioning

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 243

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 16-2. Provisioning Status (continued)
SL_WLAN_PROVISIONING_CONFIRMATION_
STATUS_SUCCESS_FEEDBACK_FAILED

4 Profile confirmation failed; the SSID was found during scan, the WLAN
connection was successful, IP address was acquired, but the feedback to
user about the connection was not delivered. This event might be followed
by a profile confirmation succeeded event, if feedback is eventually
delivered.

SL_WLAN_PROVISIONING_CONFIRMATION_
STATUS_SUCCESS

5 Profile confirmation succeeded; the SSID was found during scan, the
WLAN connection was successful, IP address was acquired, and the
feedback to user about the connection was delivered.

SL_WLAN_PROVISIONING_ERROR_ABORT 6 The provisioning process was not started due to an unknown error.

SL_WLAN_PROVISIONING_ERROR_ABORT_
INVALID_PARAM

7 Auto-provisioning process was not started due to an invalid parameter.

SL_WLAN_PROVISIONING_ERROR_ABORT_
HTTP_SERVER_DISABLED

8 Auto-provisioning process was not started because the HTTP server is
disabled.

SL_WLAN_PROVISIONING_ERROR_ABORT_
PROFILE_LIST_FULL

9 Auto-provisioning process was not started because the profile list is full.

SL_WLAN_PROVISIONING_ERROR_ABORT_
PROVISIONING_ALREADY_STARTED

10 Auto-provisioning process was not started because it is already running.

SL_WLAN_PROVISIONING_AUTO_STARTED 11 The provisioning process was automatically started by the networking
subsystem.

SL_WLAN_PROVISIONING_STOPPED 12 The provisioning process has ended.

SL_WLAN_PROVISIONING_SMART_CONFIG_
SYNCED

13 SmartConfig configuration data transmission was discovered by the
device. The device starts listening and collecting the profile data.

SL_WLAN_PROVISIONING_SMART_CONFIG_
SYNC_TIMEOUT

14 SmartConfig configuration data transmission was discovered by the
device, but the device was not able to extract the profile data from it.

SL_WLAN_PROVISIONING_CONFIRMATION_
WLAN_CONNECT

15 A WLAN connection was established during profile confirmation attempt.

SL_WLAN_PROVISIONING_CONFIRMATION_
IP_ACQUIRED

16 IP address was acquired during profile confirmation attempt.

SL_WLAN_PROVISIONING_EXTERNAL_
CONFIGURATION_READY

17 The host application may start running an external provisioning method
(relevant only when APSC + External Configuration mode is used).

During provisioning, the device might switch between different roles and connection states without notifying the
host application; thus, when the process is stopped, a report about the current status of the device is sent to the
host. When the value of the status parameter is SL_WLAN_PROVISIONING_STOPPED (12), additional
information is provided through the following parameters:
• Role: The active role (AP/STA) after the provisioning process ended.
• WlanStatus: If the active role is STA, this parameter also shows the device WLAN connection status (0-

Disconnected, 1-Scanning, 2-Connecting, 3-Connected) after the provisioning process ended.
• Ssid, SsidLen: If WlanStatus is connected, these parameters provide the SSID to the connected device.

These parameters are not relevant for other provisioning status values.

16.10.2 Provisioning Profile-Added Event

When a profile is configured to the device during provisioning, the
SL_WLAN_EVENT_PROVISIONING_PROFILE_ADDED event is sent to the host.

16.10.3 Reset Request Event

During the provisioning process, the SimpleLink device might automatically restart itself as part of the process. If
a restart is required while the host application is busy (for example, when the host has opened sockets during
external configuration provisioning), instead of performing the restart automatically, the networking subsystem
asks the host application to do it. When this event arrives, the host should stop its activities (for example, close
all opened sockets), and restart the device by issuing sl_Stop and sl_Start commands.

Provisioning www.ti.com

244 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

16.10.4 Errors

Table 16-3 shows the following values that may be returned when a provisioning command is issued.

Table 16-3. Errors
STATUS_OK 0 Command was successfully executed.

SL_ERROR_WLAN_PROVISIONING_ABORT_
PROVISIONING_ALREADY_STARTED

-2169 Start provisioning command failed because provisioning process is
already running.

SL_ERROR_WLAN_PROVISIONING_ABORT_
HTTP_SERVER_DISABLED

-2170 Start provisioning command failed because the HTTP server is
disabled.

SL_ERROR_WLAN_PROVISIONING_ABORT_
PROFILE_LIST_FULL

-2171 Start provisioning command failed because the profile list is full.

SL_ERROR_WLAN_PROVISIONING_ABORT_
INVALID_PARAM

-2172 Start provisioning command failed because one of the parameters
was invalid.

SL_ERROR_WLAN_PROVISIONING_ABORT_
GENERAL_ABORT

-2173 Start provisioning command failed because of an unknown reason.

SL_ERROR_WLAN_PROVISIONING_CMD_
NOT_EXPECTED

-2177 Provisioning command failed because it was not expected.

16.10.5 Host Commands During Provisioning

During the provisioning process, the device switches between different roles, connects to different APs, and
changes its IP address. Thus, the host commands may not be properly served. As a result, when a command is
issued by the host application during an active provisioning process, an
SL_RET_CODE_PROVISIONING_IN_PROGRESS (–2014) error is returned. The only allowed commands are
sl_WlanProvisioning and sl_Stop. For all other commands, the host must wait for the provisioning process to
end, or manually stop it (using the SL_WLAN_PROVISIONING_CMD_STOP command). Additionally, events
that may be sent to the host during the provisioning connection attempts (such as NETAPP_IPACQUIRED) are
blocked, and will not reach the host application (except for dedicated provisioning events, such as the
provisioning status event).

In some cases, after provisioning starts, the host is allowed to send commands and receive all events to perform
some actions necessary for completing the provisioning process:
• External confirmation: When feedback to the user’s smartphone app is done using an external cloud-based

server, the host application must be able to access the internet. Therefore, commands are allowed right after
the PROVISIONING_CONFIRMATION_IP_ACQUIRED status event is sent to the host.

• External configuration: When APSC + external configuration mode is used, the host application might need to
issue a socket command as part of its external provisioning process. To enable this, commands are allowed
right after the PROVISIONING_EXTERNAL_CONFIGURATION_READY status event is sent to the host.

• Auto-provisioning: When provisioning is auto-started, commands are still allowed (unlike host-initiated
provisioning, where the commands are blocked right after the provisioning process was started). Commands
are blocked only after user activity was detected (such as when a profile is being configured).

16.11 Usage Examples
16.11.1 Successful SmartConfig Provisioning

Figure 16-3 shows the behavior of the SimpleLink device when a profile is successfully configured using
SmartConfig. The provisioned device connects to the wireless network given by the configured profile and waits
for the smartphone app to contact its HTTP web server. When the confirmation result is delivered to the
smartphone app, the device sends the successful result to the host, and stops the process.

The APIs between the host driver and the networking subsystem (commands and events) are blocked during the
entire provisioning process. The host is allowed to send commands only after the
SL_WLAN_PROVISIONING_STOPPED event arrives.

www.ti.com Provisioning

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 245

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

x

Smartphone App Networking Subsystem Host

APIs blocked

Connect to AP

�����������������?

�����������������ï������������

������ï������������������

Wait for profile configuration

Start profile confirmation

Provisioning ended

Provisioning Command

(Start APSC mode)

Profile added event

SmartConfig synced event

WLAN connected event

IP acquired event

Get confirmation result (HTTP)

Confirmation result Success (HTTP)

Confirmation status success event

Provisioning stopped event APIs allowed

Figure 16-3. Successful SmartConfig Provisioning

Provisioning www.ti.com

246 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

16.11.2 Unsuccessful SmartConfig Provisioning

In AP+SC mode, the device is waiting for a profile configuration while in AP role.

After profile confirmation fails (because an IP address was not acquired in the configured wireless network), the
device is ready for another profile configuration (back in AP role).

After the smartphone app fails to find the device and collect the confirmation result on the local wireless network,
it can get it by connecting directly to the SimpleLink device AP.

Figure 16-4 shows the behavior of the SimpleLink device when a profile is unsuccessfully configured using
SmartConfig.

x

Smartphone App Networking Subsystem Host

APIs blocked

Connect to AP

�����������������?

�����������������ï������������

Device not found (timeout)

Wait for profile configuration

Start profile confirmation

Provisioning Command

(Start AP+SC mode)

Profile added event

SmartConfig synced event

WLAN connected event

Confirmation status fail

IP not acquired event

Get confirmation result (HTTP)

Confirmation result fail IP not acquired (HTTP)

IP acquired timeout

Wait for profile configuration

���������������������?���

Figure 16-4. Unsuccessful SmartConfig Provisioning

www.ti.com Provisioning

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 247

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

16.11.3 Successful SmartConfig Provisioning With AP Fallback

In APSC mode, the device waits for a profile configuration while in AP role.

After the profile confirmation fails, the device waits for another configuration attempt.

After the smartphone app fails to find the device and collect the confirmation result on the local wireless network,
it can get it by connecting directly to the SimpleLink device AP.

Figure 16-5 shows the behavior of the SimpleLink device when it successfully connects to the wireless network,
but the smartphone app fails to find the device and collect the confirmation result.

x

Smartphone App Networking Subsystem Host

APIs blocked

Connect to AP

�����������������?

�����������������ï������������

Device not found (timeout)

Wait for profile configuration

Start profile confirmation

Provisioning Command

(Start AP+SC mode)

Profile added event

SmartConfig synced event

WLAN connected event

IP acquired event

Get confirmation result (HTTP)

Confirmation result success (HTTP)

User feedback timeout

Wait for profile configuration

���������������������?���

x

Provisioning ended

Confirmation status success event

Provisioning stopped event APIs allowed

Confirmation status fail

User feedback failed event

Figure 16-5. Successful SmartConfig Provisioning With AP Fallback

Provisioning www.ti.com

248 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

16.11.4 Successful AP Provisioning

Figure 16-6 shows the behavior of the SimpleLink device when a profile is configured through its internal HTTP
server while the device is in AP mode.

x

x

Smartphone App Networking Subsystem Host

APIs blocked

���������������������?���

�����������������ï������������

������ï������������������

Wait for profile configuration

Start profile confirmation

Provisioning ended

Provisioning Command

(Start AP+SC mode)

Profile added event

WLAN connected event

IP acquired event

Get confirmation result (HTTP)

Confirmation result Success (HTTP)
Confirmation status success event

Provisioning stopped event APIs allowed

Connect to AP from profile

Add profile (HTTP)

Request to confirm profile (HTTP)

Figure 16-6. Successful AP Provisioning

www.ti.com Provisioning

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 249

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

16.11.5 Successful AP Provisioning With Cloud Confirmation

Figure 16-7 depicts successful AP provisioning with cloud confirmation.

When feedback is provided through a cloud server (external confirmation), the host can send commands to the
networking subsystem to connect to the cloud-based server only after the IP acquired event is received.

Because the networking subsystem is unaware of the results coming from the cloud server, the host is
responsible for stopping the provisioning process and to order the networking subsystem to stay in its active role
(STA), when confirmation is successful. For the same reason, the host must order the networking subsystem to
stop the profile confirmation attempt (by sending the ABORT_EXTERNAL_CONFIRMATION command) when
confirmation fails.

x

x

Smartphone App Networking Subsystem Host

APIs blocked

���������������������?���

Connect to the Cloud server

Get results from the Cloud

server

Wait for profile configuration

Start profile confirmation

Provisioning ended

Provisioning Command

(Start AP+SC)

Profile added event

WLAN connected event

IP acquired event

Provisioning stopped event

APIs allowed

Connect to AP from profile

Add profile (HTTP)

Request to confirm profile (HTTP)

Socket commands

(Connect to the Cloud server

and send results)

Provisioning Command

(Stop Provisioning)

Figure 16-7. Successful AP Provisioning With Cloud Confirmation

Provisioning www.ti.com

250 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

16.11.6 Using External Configuration Method: WAC

When provisioning is started in AP + SC + external configuration mode, the host can start sending commands to
the networking subsystem only after the external configuration ready event is received. When the host identifies
that a user has started a provisioning process using the external configuration method, it should order the
networking subsystem to stop the internal provisioning process. When the internal provisioning process is
stopped, the host can continue with its external provisioning process.

x

x

Smartphone App Networking Subsystem Host

APIs blocked

���������������������?���

Start WAC Provisioning

Wait for profile configuration

Provisioning ended

Provisioning Command

(Start AP+SC + External

Configuration mode)

Provisioning stopped event

APIs allowed
External configuration ready event

Socket commands

(Listen for WAC provisioning)

Provisioning Command

(Stop Provisioning)

WAC Provisioning detected

Continue WAC Provisioning

Figure 16-8. External Configuration Method: WAC

www.ti.com Provisioning

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 251

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

16.11.7 Successful SmartConfig Provisioning While External Configuration Enabled

When provisioning is started in AP + SC + external configuration mode, and the user is using one of the internal
provisioning methods (AP or SC), the device sends a reset request event to the host. The host should stop all of
its external provisioning activities, and restart the device. Once the device is restarted, it starts the profile
confirmation, and the internal provisioning process continues as usual.

x

Smartphone App Networking Subsystem Host

APIs blocked

Connect to AP

�����������������?

�����������������ï������������

������ï������������������

Wait for profile configuration

Start profile confirmation

Provisioning Command

(Start AP + SC + External

configuration mode)

Profile added event

SmartConfig synced event

WLAN connected event

IP acquired event

Get confirmation result (HTTP)

Confirmation result success (HTTP)

Provisioning ended

External configuration ready
x

APIs allowed

Socket commands

(Listen for WAC provisioning)

Reset request event

Stop WAC provisioning

Sl_Stop Command

Sl_Start Command

Confirmation status success event

Provisioning stopped event

Figure 16-9. Successful SmartConfig Provisioning While External Configuration Enabled

Provisioning www.ti.com

252 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

17.1 Introduction...254
17.2 Secured Content Delivery..261

Chapter 17
Crypto Utilities

www.ti.com Crypto Utilities

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 253

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

17.1 Introduction
The SimpleLink device supports on-chip asymmetric key-pair storage (secure key storage) with built-in crypto
acceleration and crypto services to assist in some common cryptographic-related operations.

These crypto services provide a mechanism to manage up to eight ECC key-pairs, and use them to sign or verify
data buffers. This capability can be used for authenticating the device identity, among other usage options.

There are three types of supported key-pairs:
• Device-unique key-pair: A single 256-bit unique key of the device, embedded in hardware
• Temporary key-pair: Created upon request, using the internal TRNG engine
• Installed key-pair: Installed and maintained by the vendor

The system supports a single constant key-pair. Entry 0 is reserved for this key-pair. Entries 1 to 7 can be used
for temporary or installed key-pairs, according to the application needs. All keys are ECC keys using the
SECP256R1 curve. The following applies to all entries:
• Constant and temporary key types – The SimpleLink Wi-Fi device is responsible for using the correct type

and curve.
• Installed key type – The vendor is responsible only for installing keys of this type and curves.

For all key pairs, the private key is never exposed, and can only be accessed indirectly when using it to sign
buffers. The public key may be retrieved by the host application (see Section 17.1.1). Table 17-1 lists the key
crypto utility features.

Table 17-1. Key Features
Main Features Description

Manage temporary key-pair Create or remove temporary keys at a provided index. Temporary keys are not persistent
over the power cycle. Creating a temporary key in an index occupied by another temporary
key overrides the occupied key. An installed key on that index cannot be overridden.

Installed key-pairs Install or uninstall key pairs provided by the host application. The keys must be
preprogrammed in the file system. The install action adds them to the data base, and allows
using them to sign and verify buffers. This operation is persistent over the power cycle
without consideration of system-persistent configuration. The user cannot install a key in an
occupied index.

Constant key-pair Unique key for the given device, embedded in the hardware. Always available and constant.

Retrieve public key For any key-pair type, the host may request to retrieve the public key of the pair in x9.63 raw
format. The host application can also retrieve the metadata of this key (type, curve, length,
filename, and so forth).

Verify buffer Given a buffer and a signature, the host can request to use any key-pair to verify the ECDSA
signature.

Sign buffer Given a buffer, the host can request to use any key-pair to create a signature using ECDSA.

Secured content delivery Transfer secure content by sending the public key to the application server which encrypts
the file, and decrypts in the device internally using the private key only. Can only be
performed with a temporary key in index 1.

True random number Retrieve buffer with true random numbers from the networking subsystem. Maximum buffer
length 172 bytes for each retrieval.

Certificate creation Create a self signed certificate or certificate signing request (CSR) with one of the installed
keys, device key or temporary key.

17.1.1 API and Usage
17.1.1.1 Install and Uninstall Key-Pairs and Certificates

This command is used to install and uninstall a key-pair in one of the crypto utilities key-pair management
mechanism. The key must be an ECC key-pair using the SECP256R1 curve, and already programmed to the file
system in a DER format file. The install and uninstall operations are done using the sl_NetUtilsCmd API. The key
installation is persistent without consideration of system-persistent configuration, and is not erased over the
power cycle. If the wanted index is already occupied by a key-pair, the install operation fails. Installation of the
certificate without a key pair is used to verify buffers.

Crypto Utilities www.ti.com

254 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

An example of installing a key and then uninstalling it:

SlNetUtilCryptoCmdKeyMgnt_t keyAttrib;
SlNetUtilCryptoPubKeyInfo_t *pInfoKey;
_i16 Status;
_u8 buf[256];
_u16 resultLen;
keyAttrib.ObjId = 5; /* key index is 5 */
keyAttrib.SubCmd = SL_NETUTIL_CRYPTO_INSTALL_SUB_CMD;
pInfoKey->KeyAlgo = SL_NETUTIL_CRYPTO_PUB_KEY_ALGO_EC;
pInfoKey->KeyParams.EcParams.CurveType = SL_NETUTIL_CRYPTO_EC_CURVE_TYPE_NAMED;
pInfoKey->KeyParams.EcParams.CurveParams.NamedCurveParams =
SL_NETUTIL_CRYPTO_EC_NAMED_CURVE_SECP256R1;
pInfoKey = (SlNetUtilCryptoPubKeyInfo_t *)buf;
name = ((_u8 *)pInfoKey) + sizeof(SlNetUtilCryptoPubKeyInfo_t);
pInfoKey->KeyAlgo = SL_NETUTIL_CRYPTO_PUB_KEY_ALGO_EC;
pInfoKey->KeyParams.EcParams.CurveType = SL_NETUTIL_CRYPTO_EC_CURVE_TYPE_NAMED;
pInfoKey->KeyParams.EcParams.CurveParams.NamedCurveParams =
SL_NETUTIL_CRYPTO_EC_NAMED_CURVE_SECP256R1;
pInfoKey->CertFileNameLen = 0; /* unused */
name += pInfoKey->CertFileNameLen;
strcpy((char *)name, "extkey.der"); /* private key in the file system */
pInfoKey->KeyFileNameLen = strlen("extkey.der")+1;
Status = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_INSTALL_OP,
 (_u8 *)&keyAttrib, sizeof(SlNetUtilCryptoCmdKeyMgnt_t),
 (_u8 *)pInfo,
 sizeof(SlNetUtilCryptoPubKeyInfo_t) + pInfoKey->KeyFileNameLen,
 NULL, &resultLen);
if(Status < 0)
{
 /* error */
}
resultLen = 0;
keyAttrib.ObjId = 5;
keyAttrib.SubCmd = SL_NETUTIL_CRYPTO_UNINSTALL_SUB_CMD;
/* Uninstall the key */
Status = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_INSTALL_OP, (_u8 *)&keyAttrib,
 sizeof(SlNetUtilCryptoCmdKeyMgnt_t), NULL, 0 , NULL, &resultLen);
if(Status < 0)
{
 /* error */
}

17.1.1.2 Create or Remove Temporary Key

This command is used to create or remove a temporary ECC key-pair with the SECP256R1 curve on a given
index. Create and remove operations are done using the sl_NetUtilsCmd API. The key is generated internally by
the SimpleLink Wi-Fi device. The key is not persistent over the power cycle, and is overridden if another
temporary key is installed on that same index. The operation fails if the desired index is already occupied by a
non-temporary key pair.

An example of creating a temporary key pair:

SlNetUtilCryptoCmdKeyMgnt_t keyAttrib;
_i16 Status;
_u16 resultLen;
keyAttrib.ObjId = 1; /* key index is 1 */
keyAttrib.SubCmd = SL_NETUTIL_CRYPTO_TEMP_KEYS_CREATE;
Status = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_TEMP_KEYS,
 (_u8 *)&keyAttrib, sizeof(SlNetUtilCryptoCmdKeyMgnt_t),
 NULL,
 0,
 NULL, &resultLen);
if(Status < 0)
{
 /* error */
}

17.1.1.3 Get Public Key

This command is used to retrieve the public key of the key-pair installed or temporarily created in a certain index.

www.ti.com Crypto Utilities

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 255

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

The key is in x9.63 raw format. The operation is done using the sl_NetUtilGet API.

_i16 Status;
_u8 configOpt = 0;
_u32 objId = 0;
_u16 configLen = 0;
configOpt = SL_NETUTIL_CRYPTO_PUBLIC_KEY;
objId = 1;
configLen = 255;
/* get the Public key */
Status = sl_NetUtilGet(configOpt, objId, buf, &configLen);
if(Status < 0)
{
 /* error */
}

17.1.1.4 Certificate Creation

This command is used to create a self-signed certificate or a certificate signing request (CSR) with one of the
installed keys, device unique key-pair or the temporary key.

It is possible to set the attributes of the certificate. The self-signed certificate is stored at the file system upon
creation in "/cert/iot/cert.der" and the CSR is stored in "/cert/iot/csr.der and can be retrieved using the sl_FsRead
command. The creation of either a self-signed certificate or CSR is selected by choosing the right sub option
from the following values:

• SL_NETUTIL_CRYPTO_CSR_SAVE
• SL_NETUTIL_CRYPTO_CERT_SIGN_AND_SAVE

Crypto Utilities www.ti.com

256 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Example of creating CSR:

uint16_t retVal;
uint8_t i;
uint8_t udid[16];
SlNetUtilCryptoCmdCreateCertAttrib_t certCmd;
uint32_t certVersion;
uint32_t certSerial;
uint32_t certSigType;
uint32_t certDaysValid;
uint32_t certIsCa;
uint8_t* certSubjectCountry;
uint8_t* certSubjectState;
uint8_t* certSubjectLocality;
uint8_t* certSubjectSur;
uint8_t* certSubjectCommonName;
uint8_t* certSubjectOrg;
uint8_t* certSubjectOrgUnit;
uint8_t* certSubjectEmail;
uint16_t outputLen = 0;
/* initialize the creation process */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CERT_INIT;
certCmd.ObjId = SL_NETUTIL_CRYPTO_SERVICES_IOT_RESERVED_INDEX;
certCmd.Flags = 0;
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t*)&certCmd,sizeof(certCmd),
 NULL,0,
 NULL,&outputLen);
if(0 != retVal) return retVal;
/*
 * set the version of the certificate
 * this number represent the version of the encoded certificate.
 * 0=v1, 1=v2, 2=v3
 * the SimpleLink device support only v3
 *
 */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CERT_VER;
certVersion = 2;
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t*)&certCmd, sizeof(SlNetUtilCryptoCmdCreateCertAttrib_t),
 (uint8_t*)&certVersion, sizeof(certVersion),
 NULL, &outputLen);
if(0 != retVal) return retVal;
/*
 * set a serial number for the certificate
 * this serial number must be a positive integer unique number per issuer name
 * (i.e., the issuer name and serial number identify a unique certificate, every time a
 * certificate is generated on a device, the serial number must be changed)
 * the simplelink device allow serial number of up to 8 bytes (64bits)
 *
 */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CERT_SERIAL;
certSerial = 0x00000001;
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t*)&certCmd, sizeof(SlNetUtilCryptoCmdCreateCertAttrib_t),
 (uint8_t*)&certSerial, sizeof(certSerial),
 NULL, &outputLen);
if(0 != retVal) return retVal;
/*
 * set the signature type of the certificate
 * the type represent the algorithm used
 * by the device to sign the certificate
 * the simplelink device support only SL_UTILS_CRYPTO_SIG_SHAwECDSA for certificate generation
 *
 */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CERT_SIG_TYPE;
certSigType = SL_NETUTIL_CRYPTO_SIG_SHAwECDSA;
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t*)&certCmd, sizeof(SlNetUtilCryptoCmdCreateCertAttrib_t),
 (uint8_t*)&certSigType, sizeof(certSigType),
 NULL, &outputLen);
if(0 != retVal) return retVal;
/*
 * set validity period of the certificate
 * the validity period dates defined from now until now + daysValid
 *

www.ti.com Crypto Utilities

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 257

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

 */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CERT_DAYS_VALID;
certDaysValid = 365*3;
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t *)&certCmd, sizeof(SlNetUtilCryptoCmdCreateCertAttrib_t),
 (uint8_t*)&certDaysValid, sizeof(certDaysValid),
 NULL, &outputLen);
if(0 != retVal) return retVal;
/*
 * define if the certificate is ca certificate
 *
 */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CERT_IS_CA;
certIsCa = 0;
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t*)&certCmd, sizeof(SlNetUtilCryptoCmdCreateCertAttrib_t),
 (uint8_t*)&certIsCa, sizeof(certIsCa),
 NULL, &outputLen);
if(0 != retVal) return retVal;
/*
 * Set subject country
 */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CERT_SUBJECT_COUNTRY;
certSubjectCountry = "US";
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t*)&certCmd, sizeof(SlNetUtilCryptoCmdCreateCertAttrib_t),
 certSubjectCountry, (strlen((char *)certSubjectCountry)+1),
 NULL, &outputLen);
if(0 != retVal) return retVal;
/*
 * Set subject state
 */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CERT_SUBJECT_STATE;
certSubjectState = "Texas";
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t*)&certCmd, sizeof(SlNetUtilCryptoCmdCreateCertAttrib_t),
 certSubjectState, (strlen((char *)certSubjectState)+1),
 NULL, &outputLen);
if(0 != retVal) return retVal;
/*
 * Set the subject locality
 */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CERT_SUBJECT_LOCALITY;
certSubjectLocality = "Dallas";
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t*)&certCmd, sizeof(SlNetUtilCryptoCmdCreateCertAttrib_t),
 certSubjectLocality, (strlen((char *)certSubjectLocality)+1),
 NULL, &outputLen);
if(0 != retVal) return retVal;
/*
 * Set the subject surname
 */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CERT_SUBJECT_SUR;
certSubjectSur = "Jack";
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t*)&certCmd, sizeof(SlNetUtilCryptoCmdCreateCertAttrib_t),
 certSubjectSur, (strlen((char *)certSubjectSur)+1),
 NULL, &outputLen);
if(0 != retVal) return retVal;
/*
 * Set the subject organization
 */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CERT_SUBJECT_ORG;
certSubjectOrg = "Texas Instruments";
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t*)&certCmd, sizeof(SlNetUtilCryptoCmdCreateCertAttrib_t),
 certSubjectOrg, (strlen((char *)certSubjectOrg)+1),
 NULL, &outputLen);
if(0 != retVal) return retVal;
/*
 * Set the subject organization unit
 */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CERT_SUBJECT_ORG_UNIT;
certSubjectOrgUnit = "ECS";
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t*)&certCmd, sizeof(SlNetUtilCryptoCmdCreateCertAttrib_t),
 certSubjectOrgUnit, (strlen((char *)certSubjectOrgUnit)+1),

Crypto Utilities www.ti.com

258 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

 NULL, &outputLen);
if(0 != retVal) return retVal;
/*
 * Set the subject common name
 */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CERT_SUBJECT_COMMON_NAME;
certSubjectCommonName = "SimpleLink-1234";
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t*)&certCmd, sizeof(SlNetUtilCryptoCmdCreateCertAttrib_t),
 certSubjectCommonName, (strlen((char *)certSubjectCommonName)+1),
 NULL, &outputLen);
if(0 != retVal) return retVal;
/*
 * Set the subject email
 */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CERT_SUBJECT_EMAIL;
certSubjectEmail = "SimpleLink-1234@ti-iot.com";
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t*)&certCmd, sizeof(SlNetUtilCryptoCmdCreateCertAttrib_t),
 certSubjectEmail, (strlen((char *)certSubjectEmail)+1),
 NULL, &outputLen);
if(0 != retVal) return retVal;
/*
 * Close the process and create the certificate
 */
certCmd.SubCmd = SL_NETUTIL_CRYPTO_CSR_SAVE;
retVal = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_CREATE_CERT,
 (uint8_t*)&certCmd, sizeof(SlNetUtilCryptoCmdCreateCertAttrib_t),
 NULL, 0,
 NULL, &outputLen);

17.1.1.5 Sign Buffer

This command is used to create a digital signature using the ECDSA algorithm and a key-pair from the crypto-
utilities key management mechanism. This operation is done using the sl_NetUtilCmd. Signing a buffer is only
allowed with ECDSAwithSHA.

Note

The input buffer for signing must not exceed 1.5KB.

17.1.1.6 Verify Buffer

This command is used to verify a digital signature using the ECDSA algorithm. The signature must be created
with one of the key-pairs from the crypto-utilities key management mechanism. Verification of a buffer can be
done by ECDSAwithSHA or ECDSAwithSHA256, where the buffer to digest is given by the API. If a predigested
message is used, verification occurs when the digest is passed in the verify command, instead of the buffer.

Note

The input buffer for signing must not exceed 1.5KB. If a larger buffer must be verified, predigest the
buffer and pass it as the verify buffer with SL_NETUTIL_CRYPTO_SIG_DIGESTwECDSA sigType.

An example of sign and verify buffer:

_u16 configLen = 0;
_u8 buf[256];
_u8 verifyBuf[2048];
SlNetUtilCryptoCmdSignAttrib_t signAttrib;
SlNetUtilCryptoCmdVerifyAttrib_t verAttrib;
_i32 verifyResult;
_u16 resultLen;
_u8 messageBuf[1500];
_i16 Status;
signAttrib.Flags = 0;
signAttrib.ObjId = 3;
signAttrib.SigType = SL_NETUTIL_CRYPTO_SIG_SHAwECDSA; /* this is the only type supported */
configLen = 255;
Status = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_SIGN_MSG, (_u8 *)&signAttrib,
 sizeof(SlNetUtilCryptoCmdSignAttrib_t),
 messageBuf, sizeof(messageBuf), buf, &configLen);
if(0 > Status)

www.ti.com Crypto Utilities

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 259

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

{
 /* error */
}
/* now verify the buffer */
memcpy(verifyBuf, messageBuf, sizeof(messageBuf));
memcpy(verifyBuf + sizeof(messageBuf), buf, configLen);
verAttrib.Flags = 0;
verAttrib.ObjId = 3;
verAttrib.SigType = SL_NETUTIL_CRYPTO_SIG_SHAwECDSA; /* this is the only type supported */
verAttrib.MsgLen = sizeof(messageBuf);
verAttrib.SigLen = configLen;
/* use the created keys to verify the signature from the previous step */
resultLen = 4;
Status = sl_NetUtilCmd(SL_NETUTIL_CRYPTO_CMD_VERIFY_MSG, (_u8 *)&verAttrib,
 sizeof(SlNetUtilCryptoCmdVerifyAttrib_t),
 verifyBuf, sizeof(messageBuf) + configLen,
 (_u8 *)&verifyResult , &resultLen);
if(0 > Status)
{
 /* error */
}

17.1.1.7 True Random Number

Retrieve a buffer of true random numbers from the networking subsystem. Maximum buffer length is 172 bytes
for each retrieval. If the requested length exceeds 172 bytes, it is trimmed to 172 bytes.

Status = sl_NetUtilGet(SL_NETUTIL_TRUE_RANDOM,0,buffer,&len);
17.1.2 Limitations and Constraints

• Mechanism supports a total of eight keys, where index 0 is reserved for the constant key-pair.
• Only ECC keys using the SECP256R1 curve are supported.
• Index management is a host application responsibility; find free index or retrieve index list are not provided.
• For signing and verifying operations, the buffer size is limited to 1.5KB.

17.1.3 Errors

Table 17-2 lists the common errors.

Table 17-2. Common Errors
Error Code Value Comments

SL_ERROR_NETUTIL_CRYPTO_GENERAL -12289 An unspecified general error has occurred.

SL_ERROR_NETUTIL_CRYPTO_INVALID_INDEX -12290 The provided index is out of the valid range.

SL_ERROR_NETUTIL_CRYPTO_INVALID_PARAM -12291 One of the provided parameters is invalid or
illegal.

SL_ERROR_NETUTIL_CRYPTO_MEM_ALLOC -12292 A memory-allocation failure has occurred.

SL_ERROR_NETUTIL_CRYPTO_INVALID_DB_VER -12293 Not in use

SL_ERROR_NETUTIL_CRYPTO_UNSUPPORTED_OPTION -12294 One of the provided parameters requires an
unsupported capability or option.

SL_ERROR_NETUTIL_CRYPTO_BUFFER_TOO_SMALL -12295 The buffer provided by the host-application is
not large enough to contain the returned output.

SL_ERROR_NETUTIL_CRYPTO_EMPTY_DB_ENTRY -12296 The provided index points to an empty
database entry.

SL_ERROR_NETUTIL_CRYPTO_NON_TEMPORARY_KEY -12297 The host application is trying to perform an
operation related to temporary keys, but the
provided index does not contain a temporary
key.

SL_ERROR_NETUTIL_CRYPTO_DB_ENTRY_NOT_FREE -12298 The provided index points to a nonempty
database entry (while the requested operation
requires the entry to be empty).

SL_ERROR_NETUTIL_CRYPTO_CORRUPTED_DB_FILE -12299 The file that stores the database on the
filesystem (for persistency) has been corrupted.

Crypto Utilities www.ti.com

260 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

17.2 Secured Content Delivery
The secure content delivery feature lets the user program a secured file, which is encrypted by a remote device
and decrypted inside the NWP. The private key used for the process remains inside the SimpleLink Wi-Fi
networking subsystem alone with no access from the host. This ability lets the user transfer a file to the system
on any unsecured tunnel.

Note

Secured content delivery is designed to work with a temporary key generated on secure key index 1.

17.2.1 SimpleLink Wi-Fi Side Process Flow

1. Retrieve a temporary, nonpersistent ECC public key using the NetUtils APIs described in Appendix A.
2. Send the public key to the application remote server.
3. Receive the encrypted file.
4. Open a file with a special flag, indicating secure content delivery is about to be written:

secAccessFlags = SL_FS_FILE_MODE_OPEN_CREATE(fpInSize,SL_FS_FILE_DOWNLOAD_SECURED_CONTENT);
fileHande = sl_FsOpen("sec_cont1.txt",secAccessFlags,NULL);
if(0 > fileHande)
{
 /* error */
}

5. Write the file sequentially (all bytes in order with no random access) – the offset attribute in the sl_FsWrite
has no meaning regarding a secured content delivery write and is ignored.

6. Close the file using the sl_FsClose API.

At the end of this process, the file is saved on the SFLASH, and encrypted as a normal secured file in the file
system. The file system uses a different key and method than the ones used to encrypt the file for the secure
content delivery process.

www.ti.com Crypto Utilities

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 261

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure 17-1 shows this process.

SimpleLink CC32xx Internet-on-a-chip Solution

Peripherals
CC32xx Network Processor + MCU

SPI and I2C
GPIO
UART
PWM
ADC

­

Serial Flash

TRANSFER RUN-TIME STORAGE

Network Processor

Storage

Secure File System

HW Crypto Engines

Crypto Utils
ECC Keys

MCU

Cortex-M4

256KB RAM +

Optional 1MB XIP

Flash

Application
Vendor

Application

Servers

User

Access Point

Internet

Encrypt using normal file system

methods.

Encrypt data using secret.

Use the private data.

PLAIN TEXT PLAIN TEXT CIPHER TEXT CIPHER TEXT

Server Device - APP Device - NWP

Generate Priv-Pub key pair.

Generate ECDHE secret.

Decrypt data using secret.

Generate ECDHE secret.

Get key

Public key

Send encrypted data

Generate temp pair

Get public key

Public key

Open file

for write

Write data

(cipher text)

Close file

Figure 17-1. Secure Content Delivery

Crypto Utilities www.ti.com

262 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

17.2.2 Encrypted File Format

Multiple steps are involved in building the secure content file in the format expected by the network processor.
Before building the file, the server must first derive the ECDHE secret from the public key sent by the SimpleLink
device and the private key of the server. The AES key and initialization vector (IV) used to encrypt the data are
formed as follows:
• AES IV: Upper 128 bits of ECDHE secret
• AES Key

– Upper 128 bits of AES Key = Bitwise XOR of upper and lower 128 bits of ECDHE secret
– Lower 128 bits of AES Key = Lower 128 bits of ECDHE secret

Shared Secret

Key Initialization Vector

Shared Secret

b0 b1 b126 b127

0 1 14 15

b128 b129 b254 b255

16 17 30 31b0 b1 b126 b127 b128 b129 b254 b255

b0 b1 b126 b127 b128 b129 b254 b255

b0 b1 b126 b127

XOR

Figure 17-2. AES Key Diagram

The order of operations for building the bundle is:
1. Use SHA256 to generate a digest of the RAW data.
2. Append the RAW data to the digest in a single file.
3. Encrypt the file (digest + RAW data) with AES 256 CBC (allow the encryption function to pad the file as

needed).
4. Add the bundle header that includes the RAW data size, padding, and server ECC public key.

When creating the bundle header, the RAW data size should be specified in little endian format (that is, a raw
data size of 16 is specified as "10 00 00 00" at the beginning of the file).

The file delivered with this process should be in the proprietary format (see Figure 17-3).

www.ti.com Crypto Utilities

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 263

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

SHA256 on RAW data

RAW data

(AES256)

ECC X9.63 Public Key

(SECP256R1)

Padding

RAW data size

n BytesA
E

S
2

5
6

32 Bytes

65 Bytes

4 Bytes

4 Bytes

Figure 17-3. File Format

Crypto Utilities www.ti.com

264 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

18.1 Introduction...266
18.2 Script Overview.. 266
18.3 Conditions...266
18.4 Sub-Conditions...267
18.5 Actions.. 267

Chapter 18
Hostless Mode

www.ti.com Hostless Mode

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 265

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

18.1 Introduction
In an ever-growing attempt to achieve the lowest possible power consumption for every use-case, the
SimpleLink™ Wi-Fi® CC313x and CC323x devices incorporate a scripting ability, enabling simple network
related tasks to be offloaded from the host processor. Using simple and conditional scripts, repetitive tasks can
be handled internally, allowing the host processor to remain in a low power state or even to run in use cases
without host processor at all. In some cases, where the script is being used to send packets, it potentially
reduces the target code footprint and memory consumption.

18.2 Script Overview
The hostless mode is configured through a script. The script can be divided into conditions and actions. The
conditions define when to trigger actions. Only one action can be defined per condition, but multiple instances of
the same condition may be used, so in effect multiple actions can be defined for a single condition. In total, 16
condition and action pairs can be defined. The conditions can be simple or complex, using sub-conditions (a
combinatorial AND condition between them). The actions are divided into two types – those that can occur
during runtime, and those that can occur only during the initialization phase.

18.3 Conditions
This section describes the various conditions that can be configured using the script. For each condition, one
action has to be defined. Up to 16 pairs may be defined. The condition and action pairs, including sub-
conditions, packet tokens and packets have to be defined in advance and programmed into the device’s file
system using the Uniflash tool.

18.3.1 Pre-Initialization

This condition is straight-forward, and happens before the networking core is initialized. It is a special condition
in the sense that it is the only one that can incorporate the pre-initialization reactions.

18.3.2 System Event

System events can be used to trigger reactions using this condition. It can be applied to any asynchronous
system event, including: Connection and disconnection events, Added or removed profile, Socket accept / select
response, Socked receive, Transmission failure, General error, Stop command completion and RX filter
response.

18.3.3 Timer Expiration

Timer expiration can be used as a condition to trigger reactions. It enables the creation of a basic scheduler and
time based operations.

18.3.4 Counter Threshold

Counter threshold can be used as a condition to trigger reactions. It enables the creation of more advanced
scripts that perform actions only on repeated conditions.

18.3.5 Internal Errors

The script is designed to work without host intervention, thus errors cannot be returned to the host (if the host
exists) during run-time. Error handling is done according to the following rules:

• If an error occurs during initialization, the initialization sequence will fail and the failure error code would be
returned to the host (STA_FAIL, AP_FAIL, and so forth) if the host exists.

• If an error occurs during runtime, the internal error condition is triggered. Then, the user may request the
error to be fatal and assert, or attempt to ignore it. In both cases, the user may trigger a reaction (such as
setting a GPIO to indicate the error). Subconditions also apply here.

By default, run-time errors will cause the networking core to stop functioning. This is done to protect from
undesired behavior. It is possible to set the error handling condition to become non-fatal, meaning, in case of a
run-time error, the networking core will attempt to ignore the error and abort the reaction, but keep running.

Hostless Mode www.ti.com

266 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

18.4 Sub-Conditions
Every condition may be coupled with a sub-condition. This can help limit the activation of triggers to certain
conditions.

Available sub-conditions include: Started role, Counter value and GPIO state.

By default the sub-condition is disabled and the condition will be always true.

18.5 Actions
Actions are activated based on conditions. Actions are divided into pre-initialization actions, and run-time
actions.

18.5.1 Pre-Initialization Actions

These actions can only be performed when triggered by the pre-initialization condition.

18.5.1.1 Set Role

This option allows the user to choose the Wlan mode role (AP / Station / Wi-Fi Direct) prior to device
initialization.

18.5.1.2 Delete All Profiles

This action causes the device to remove all preferred networks from the system.

18.5.1.3 Hardware GPIO

This action is special, since it cannot be replaced by a hosted action. It allows an I/O to be driven directly from
the WLAN core hardware to indicate internal signaling. It may be used to indicate an active transmission,
reception, power state and more.

18.5.2 Run-Time Actions

These actions can be activated at run-time.

18.5.2.1 Send Transceiver Packet

This action sends a transceiver packet, using a predefined template. The length can be up to a whole packet (no
aggregation), including any additions made by a packet token. This action can be activated in disconnected
mode only.

18.5.2.2 Send UDP Packet

This action sends a UDP packet, using a predefined template, to a predefined destination address and port
number. Packet length is limited to a single packet (no aggregation), including any additions made by packet
tokens.

18.5.2.3 Send TCP Packet

This action sends a TCP packet, using a predefined template, to a predefined destination address and port
number. Packet length is limited to a single packet (no aggregation), including any additions made by packet
tokens.

18.5.2.4 Set/Increment Counter

This action increments one of the user counters by 1. The counter is defined the first time the action occurs. The
counter can be set to be volatile (retained during LPDS but not during hibernate or off), or kept in one of the two
hibernate user registers.

18.5.2.5 Timer Control

Up to 8 timers may be defined by the scripting tool, each with a 1 second resolution, and in a one-shot or
multiple-shot mode. The timers remain active in LPDS.

www.ti.com Hostless Mode

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 267

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

18.5.2.6 Set GPIO

This action sets a GPIO to be output from the device from the internal networking core. The GPIO can be set to
a certain value or toggled from the previous value.

18.5.2.7 Enter Hibernate

This action is meant primarily for CC313x. It enters hibernate in an orderly fashion, with the option to wake up
from timer, GPIO, or both.

Hostless Mode www.ti.com

268 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

19.1 Introduction...270
19.2 Create Platform Porting File.. 271
19.3 Select Capabilities Set... 271
19.4 Bind the Device Enable/Disable Line..273
19.5 Implement the Interface Communication Abstract Layer...274
19.6 Choose Memory-Management Model... 275
19.7 Implement OS Adaptation Layer... 275
19.8 Implement Timestamp Services..277
19.9 Set Asynchronous Event Handler Routines.. 278

Chapter 19
Porting the Host Driver

www.ti.com Porting the Host Driver

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 269

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

19.1 Introduction
The SimpleLink Wi-Fi device family consists of several device types: the CC32xx devices, which are fully-
integrated system-on-chip (SoC) solutions consisting of both an applications MCU and the network processor,
and the CC31xx devices, which consists only of the networking subsystem. The CC31xx devices can be bundled
with any platform (MCU, MPU, or other, while the CC32xx is already fully integrated with an MCU for handling
the vendor application. In order to work with the CC31xx devices, the customer must port the host driver to the
new platform. The porting of the SimpleLink Wi-Fi host driver to any new platform is based on a few simple
steps. This chapter provides basic step-by-step guidelines on how to port the SimpleLink host driver to new
platforms. Follow the instructions carefully to avoid any problems during this process and to enable efficient and
proper work with the CC31xx devices.

The basic concept of the porting is that all modifications and porting adjustments of the host driver are made in
one file (user.h header file). Strictly following these guidelines ensures a smooth transition to newer versions of
the driver. The porting process consists of a few simple steps:
1. Create the user.h file for the target platform.
2. Select capabilities set.
3. Bind the device enable/disable line.
4. Implement the interface communication driver.
5. Choose memory-management model.
6. Implement OS adaptation layer.
7. Implement timestamp services.
8. Bind asynchronous event handler routines.

The remainder of this chapter describes these steps in more detail.

Porting the Host Driver www.ti.com

270 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

19.2 Create Platform Porting File
The first step is to create a user.h file, which is tailored to the specific requirements of the target platform. The file
must be under the porting folder, as shown in Figure 19-1.

As a basis for this file, TI recommends using one of the porting layers provided with the SimpleLink Wi-Fi SDKs
and plug-ins.

source

x
user.h

ti

drivers

net

wifi

x
cc_pal.c

x
cc_pal.h

porting

Figure 19-1. User.h Location

19.3 Select Capabilities Set
It is possible to tailor the driver by enabling or disabling API groups (silos) and setting the APIs level. The levels
of the APIs are divided into two categories: normal and extended. Table 19-1 describes the available groups and
their relative macros.

Table 19-1. : Selecting Capabilities
GroupName and Macro Normal APIs Level

(#undef SL_INC_EXT_API)
Extended APIs Level

(#define SL_INC_EXT_API)

Default

sl_Start

sl_Stop

sl_StatusGet

sl_Task

sl_Start

sl_Stop

sl_StatusGet

sl_Task

sl_DeviceGet

sl_DeviceSet

sl_DeviceEventMaskGet

sl_DeviceEventMaskSet

www.ti.com Porting the Host Driver

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 271

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 19-1. : Selecting Capabilities (continued)
GroupName and Macro Normal APIs Level

(#undef SL_INC_EXT_API)
Extended APIs Level

(#define SL_INC_EXT_API)

SL_INC_WLAN_PKG

sl_WlanSet

sl_WlanSetMode

sl_WlanProvisioning

sl_WlanSet

sl_WlanSetMode

sl_WlanProvisioning

sl_WlanConnect

sl_WlanDisconnect

sl_WlanProfileAdd

sl_WlanProfileGet

sl_WlanProfileDel

sl_WlanPolicySet

sl_WlanPolicyGet

sl_WlanGetNetworkList

sl_WlanRxFilterAdd

sl_WlanRxStatStart

sl_WlanRxStatStop

sl_WlanRxStatGet

SL_INC_SOCKET_PKG

sl_Socket

sl_Close

sl_Bind

sl_Connect

sl_Select

sl_SetSockOpt

sl_Recv

sl_RecvFrom

sl_Send

sl_SendTo

sl_Htonl

sl_Htons

sl_Socket

sl_Close

sl_Bind

sl_Connect

sl_Select

sl_SetSockOpt

sl_Recv

sl_RecvFrom

sl_Send

sl_SendTo

sl_Htonl

sl_Htons

sl_Accept

sl_Listen

sl_GetSockOpt

SL_INC_NET_APP_PKG

sl_NetAppDnsGetHostByName

sl_NetAppStart

sl_NetAppStop

sl_NetAppDnsGetHostByName

sl_NetAppStart

sl_NetAppStop

sl_NetAppSet

sl_NetAppGet

sl_NetAppRecv

sl_NetAppSend

sl_NetAppDnsGetHostByService

sl_NetAppMDNSRegisterService

sl_NetAppMDNSUnRegisterService

sl_NetAppGetServiceList

sl_NetAppPing

Porting the Host Driver www.ti.com

272 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table 19-1. : Selecting Capabilities (continued)
GroupName and Macro Normal APIs Level

(#undef SL_INC_EXT_API)
Extended APIs Level

(#define SL_INC_EXT_API)

SL_INC_NET_CFG_PKG
sl_NetCfgGet

sl_NetCfgSet

sl_NetCfgGet

sl_NetCfgSet

sl_MacAdrrGet

sl_MacAdrrSet

SL_INC_NET_UTIL_PKG

sl_NetUtilGet

sl_NetUtilSet

sl_NetUtilCmd

sl_NetUtilGet

sl_NetUtilSet

sl_NetUtilCmd

SL_INC_NVMEM_PKG

sl_FsOpen

sl_FsClose

sl_FsRead

sl_FsWrite

sl_FsDel

sl_FsOpen

sl_FsClose

sl_FsRead

sl_FsWrite

sl_FsDel

sl_FsGetInfo

sl_FsCtl

sl_FsProgram

sl_FsGetFileList

Note

There is no option to enable or disable a particular function.

19.4 Bind the Device Enable/Disable Line
The CC3120 has two external hardware lines that can be used to enable or disable the device:
• nReset – Puts the device in shutdown mode
• nHib – Puts the device in hibernate mode

For more information, see Section 3.3.

Note

Only one of these lines or modes can be used. During sl_Start or sl_Stop, the driver calls the macros
to force one of these lines to high or low in the correct sequence.

To bind one of these lines, the following macros must be defined correctly:
• sl_DeviceEnable – To force the line to high level
• sl_DeviceDisable – To force the line to low level

Example:

#define sl_DeviceEnable() (P4OUT |= BIT1)
#define sl_DeviceDisable() (P4OUT &= ~BIT1)

If some initializations are required before the enable or disable macros are called, the host application can also
define the following optional macro:

sl_DeviceEnablePreamble

This macro is called during sl_Start before sl_DeviceEnable is called. The macro can be used as a placeholder
to implement any preprocess operations before enabling networking operations.

www.ti.com Porting the Host Driver

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 273

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

19.5 Implement the Interface Communication Abstract Layer
The SimpleLink Wi-Fi CC3120 device supports two standard communication interfaces: SPI and UART.

The device automatically detects the active interface during initialization. From the device perspective, after the
detection, the second interface is closed and cannot be used. The host driver uses a unified interface for both
communication interfaces (abstract layer). The following functions should be implemented:
• sl_IfOpen – Opens the interface communication port to be used for communicating with the SimpleLink Wi-Fi

device. Prototype:

_SlFd_t sl_IfOpen(char* pIfName , unsigned long flags);
• sl_IfClose – Closes an opened interface communication port. Prototype:

int sl_IfClose(_SlFd Fd);
• sl_IfRead – Reads bytes from an opened communication channel into a buffer. Prototype:

int sl_IfRead(_SlFd Fd , char* pBuff , int Len);
• sl_IfWrite – Transmits buffer of bytes on an opened communication channel. Prototype:

int sl_IfWrite(_SlFd Fd , char* pBuff , int Len);
• sl_IfRegIntHdlr – Registers an interrupt handler routine for the host IRQ line. Prototype:

sl_IfRegIntHdlr(InterruptHdl , pValue);

The way these functions are implemented has a direct impact on the performances of the SimpleLink Wi-Fi
device. Consider using DMA or jitter buffer, if possible.

The function sl_IfOpen returns a file descriptor used later by sl_IfClose, sl_IfRead, and sl_IfWrite. The host
application can define the type of this descriptor to any type required by defining _SlFd_t as a macro or typedef
in user.h.

Example:

typedef _u32 _SlFd_t;

The sl_IfOpen function opens and configures the interface communication port using given interface name and
option flags. The interface name is a parameter of the sl_Start function that passes as is to the sl_IfOpen
function. The value of the option flags can be set to a constant value by defining the macro _SlIfOpenFlags in
user.h.

The baud rate, clock polarity, clock phase, chip select, flow control, or any other specific attributes of the
communication channel must be configured in this function. If the interface name and option flags are not
enough for this configuration and the communication channel could not be entirely configured on this function,
the host application alternatively can leave the sl_IfOpen function empty, and open and configure the
communication channel externally before calling sl_Start. In this method, the host application should provide to
sl_Start the file descriptor of the opened channel. The sl_IfClose function is always called on sl_Stop, even if the
host application opened the communication channel externally.

For most of the platforms, implementing the five macros above for the interface communication is sufficient.

By default, the host driver is running in a zero-copy method. This method is good for most cases, but essential
for microcontrollers with tight availability of resources. However, it means that some commands or messages are
sent in several transactions. In some platforms, it can be more efficient, in terms of performances, to copy the
data to a temporary buffer and send it all at once. The driver allows this method by implementing additional two
macros in user.h:
• sl_IfStartWriteSequence – Indicates that a write sequence is starting. From this point, the host application

can store all the data from sl_IfWrite in a buffer. Prototype:

int sl_IfStartWriteSequence (_SlFd Fd);

Porting the Host Driver www.ti.com

274 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• sl_IfEndWriteSequence – Indicates that a write sequence completed. At this point, the host should send the
temporary buffer. Prototype:

int sl_IfEndWriteSequence (_SlFd Fd);

In some platforms, the host application might need to mask the IRQ line whenever this interrupt could be
masked. The host driver provides a method to implement such schema. To allow this functionality, the user can
define and implement the following macros:
• sl_IfMaskIntHdlr
• sl_IfUnMaskIntHdlr

19.6 Choose Memory-Management Model
The SimpleLink host driver supports two memory models: static (default) and dynamic.

The major difference between these memory models is that the static model requires the memory allocation of
the driver’s control block, even when the driver is not active, and the dynamic does not. In the dynamic model,
the control block and all required resources are allocated on sl_Start and freed on sl_Stop.

To enable the dynamic model, the macro SL_MEMORY_MGMT_DYNAMIC must be defined. For example:

#define SL_MEMORY_MGMT_DYNAMIC

And a complementary malloc and free functions must also be defined:
• sl_Malloc – Allocates a buffer of at least the given size and returns a pointer to this buffer. Prototype:

void* sl_Malloc(int Size);
• sl_Free – Frees a given buffer by a pointer. Prototype:

void sl_Free(void* pBuff);

19.7 Implement OS Adaptation Layer
The SimpleLink Wi-Fi host driver can run on multithreaded environment (OS), as well as a non-OS environment.
This step is not required if the host application is based on a non-OS environment.

To enable the multithreaded environment, the macro SL_PLATFORM_MULTI_THREADED must be defined. For
example:

#define SL_PLATFORM_MULTI_THREADED

The OS adaptation layer consists of two major objects:
• Sync objects – To allow synchronization between threads
• Locking objects – To protect access to resources from different threads

19.7.1 Sync Objects

A sync object is an object used to synchronize between two threads, or between a thread and an interrupt
handler. One thread is waiting on the object and the other thread or interrupt handler sends a signal, which then
releases the waiting thread. The signal can be sent from an interrupt context. This object is generally
implemented by binary semaphore.

The type of the sync object is defined by the host application as needed, by defining the _SlSyncObj_t function
as a typedef or a macro.

#define _SlSyncObj_t HANDLE

The following functions should also be implemented:
• sl_SyncObjCreate – Creates a sync object. The function receives a pointer to a memory control block for the

object, which is later passed to the other functions of the sync object.
• sl_SyncObjDelete – Destroys a sync object. If one of the threads already waits on the sync object while this

function is called, the driver expects that the waiting thread will exit with an error when this function is called.

www.ti.com Porting the Host Driver

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 275

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• sl_SyncObjSignal – Generates a synchronization signal to the sync object from a thread context, which
should release the other thread context that is waiting on this sync object.

• sl_SyncObjSignalFromIRQ – The same as sl_SyncObjSignal, but called from an interrupt handler routine. In
most operating systems, there is no difference between these functions, but in some operating systems there
is a special function for this operation.

Porting the Host Driver www.ti.com

276 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

• sl_SyncObjWait – Waits for a synchronization signal of a specific sync object. The calling thread is blocked
on this function until the signal is generated or time-out value elapsed. If the function is called after the signal
is already generated, the waiting thread should be released immediately.

19.7.2 Locking Objects

Locking objects are used to protect resources from mutual accesses of two or more threads. A locking object
should support reentrant locks by a single thread. This object is generally implemented by a mutex semaphore.

The type of the locking object could be defined by the host application as needed, by defining the _SlLockObj_t
function as a typedef or a macro. For example:

#define _SlLockObj_t HANDLE

The following functions should also be implemented:
• sl_LockObjCreate – Creates a locking object. The function receives a pointer to a memory control block for

the object, which is later passed to the other functions of the locking object.
• sl_LockObjDelete – Destroys a locking object.
• sl_LockObjLock – Locks a locking object. Other threads that try to lock the same object must be suspended

until the locking thread unlocks this locking object.
• sl_LockObjUnlock – Unlocks a locking object to be used by other threads.

19.8 Implement Timestamp Services
The SimpleLink host driver supports a time-out mechanism for busy loops that the operating systems objects do
not support (for example, while waiting for a response from the device between a small SPI transactions). These
time-outs require the implementation of a timestamp mechanism.

To implement this mechanism, the host application must provide a function that retrieves the current timestamp:
• slcb_GetTimestamp – Gets counter value in ticks units

In addition, the host application must declare the time resolution of the timestamp on the platform by using the
following macros:
• SL_TIMESTAMP_TICKS_IN_10_MILLISECONDS
• SL_TIMESTAMP_MAX_VALUE

The default time-out values are set to meet the common values of an average system. If the host application
needs to, it can set a different time-out value by defining the following macros:
• SL_DRIVER_TIMEOUT_SHORT – In ms. By default, set to 30 seconds if this macro is not defined.
• SL_DRIVER_TIMEOUT_LONG – In ms. By default, set to 60 seconds if this macro is not defined.
• SYNC_PATTERN_TIMEOUT_IN_MSEC – In ms. By default, set to 60 seconds if this macro is not defined.

www.ti.com Porting the Host Driver

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 277

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

19.9 Set Asynchronous Event Handler Routines
The host application can register asynchronous event handler routines for the different API silos. TI recommends
registering to all of these routines and handling the different events. Registering these routines is optional, and
might be changed from one host application implementation to another.

The following asynchronous event handlers can be registered:
• slcb_DeviceFatalErrorEvtHdlr – Handles fatal errors from the device or the host driver. After this routine is

called, the host application must restart the driver and the device (call to sl_Stop and sl_Start) to continue
using the device.

• slcb_DeviceGeneralEvtHdlr – Handles general errors from the device.
• slcb_WlanEvtHdlr – Handles events and errors of the WLAN silo
• slcb_SockEvtHdlr – Handles events and errors of the Socket silo.
• slcb_NetAppEvtHdlr – Handles events and errors of the NetApp silo.
• slcb_NetAppHttpServerHdlr – Handles events of the HTTP server.
• slcb_NetAppRequestHdlr – Handles NetApp requests.
• slcb_NetAppRequestMemFree – Frees a buffer used in a NetApp request. Allows the use of a dynamic

memory buffer in these requests.

Porting the Host Driver www.ti.com

278 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

20.1 Capture NWP Logs... 280

Chapter 20
Debug

www.ti.com Debug

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 279

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

20.1 Capture NWP Logs
20.1.1 Overview

NWP logs can help TI engineers to debug various types of issues. They can be read from a dedicated UART pin
as an encrypted binary content.

If you have been requested by TI engineers to capture NWP (Network Processor) logs, please follow the
following instructions and send the log file to the TI support.

20.1.2 Instructions
20.1.2.1 Configuring Pin Mux for CC32xx

Add the following lines to your initialization code (for example, in your main thread next to SPI_init()):

// If your application already has UART0 configured, no need for this line
MAP_PRCMPeripheralClkEnable(PRCM_UARTA0, PRCM_RUN_MODE_CLK);
 // Mux Pin 62 to mode 1 for outputting NWP logs
MAP_PinTypeUART(PIN_62, PIN_MODE_1);

The following header files must be included to enable a clean compilation:

#include <ti/devices/cc32xx/inc/hw_types.h>
#include <ti/devices/cc32xx/driverlib/rom_map.h>
#include <ti/devices/cc32xx/driverlib/pin.h>
#include <ti/devices/cc32xx/driverlib/prcm.h>

Make sure there are no conflicts with pin 62.

Extract P1.62 and connect it to a serial-to-USB convertor. If you have a CC31XXEMUBOOT, connect the signal
to pin P4.7.

If you are using the CC3120 BoosterPack module and it is mounted on the CC31XXEMUBOOT, no action is
required in this step.

20.1.2.2 Terminal Settings

Open a serial connection application like TeraTerm or Putty (any other terminal emulator program can be used),
and configure the settings:

Table 20-1. Terminal Settings
Parameter Value
Baud Rate 921600

Data Bits 8

Stop Bits 1

Parity None

Flow Control None

If you are using a CC31XXEMUBOOST, connect the fourth port in Device Manager.

Debug www.ti.com

280 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Configure the terminal emulation to work in binary mode (and not textual/ASCII mode) and record the log. Here
are some examples:

Tera Term

Setup → Serial Port…

Figure 20-1. Tera Term Port Settings

File → Log...

Figure 20-2. Tera Term Log Settings

www.ti.com Debug

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 281

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Putty

On the left side of the screen, select Connection → Serial:

Figure 20-3. Putty Port Settings

In the menu screen before connecting to the port:

Figure 20-4. Putty Log Settings

Debug www.ti.com

282 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

20.1.2.3 Run Your Program

Run your application and make sure the logs are being recorded and saved. The log can be taken at any period
of time as long as there is output on the console. The console output should be non-readable.

20.1.2.4 Send to TI Engineer

Deliver the log file to your TI engineer for investigation.

www.ti.com Debug

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 283

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Debug www.ti.com

284 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

This page intentionally left blank.

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

A.1 Host APIs
Table A-1 provides a brief description of the different host APIs.

Table A-1. Host APIs
Module API Description

Device

sl_Start CC31xx: Start the SimpleLink device by initializing the communication
interface, setting the enable pin, allocating resources and calling the init
complete callback if provided.

CC32xx: Start the networking subsystem, initialize the internal
communication interface, allocate resources and call the init complete
callback if provided.

sl_Stop CC31xx: Stop the SimpleLink device by clearing the enable pin of the
device, closing the communication and releasing all resources allocated by
the driver.

CC32xx: Stop the networking subsystem, close the internal communication
interface and release all resources allocated by the driver.

sl_Task The SimpleLink task entry function. This function must be called from the
main loop in non-OS platform or otherwise from dedicated thread if the
internal spawn is used.

sl_DeviceGet Retrieves device configurations and status.

sl_DeviceSet Sets device configurations and status.

sl_DeviceEventMaskGet Retrieves the current asynchronous events bit mask of the device.

sl_DeviceEventMaskSet Sets the asynchronous event bit mask of the device. Masked events do not
generate asynchronous messages to the host. By default all events are
active.

sl_DeviceUartSetMode Relevant for CC31xx only when the UART host interface is used. Used to
change the baud rate of the UART after the device was started.

sl_RegisterEventHandler This API enables registration of the SimpleLink host driver in runtime.

sl_DeviceStatStart Start collecting device statistics (including RX statistics) for an unlimited
time. Must be followed with a call to sl_DeviceStatGet. This API is part of
the device statistics APIs.

sl_DeviceStatGet Retrieves device statistics (could be also RX statistics with the right flag).
This API is part of the device statistics APIs.

sl_DeviceStatStop Stops collecting device statistics. This API is part of the device statistics
APIs.

Wlan

sl_WlanConnect Initiates a connection to Wi-Fi network.

sl_WlanDisconnect Initiates a disconnection from the current connected Wi-Fi network. If the
Auto connection policy is active, a new connection is initiated immediately.

sl_WlanProfileAdd Adds a preferred network profile.

sl_WlanProfileGet Retrieves the nonconfidential data of existing preferred network profile.

sl_WlanProfileDel Deletes a preferred network profile.

sl_WlanProfileUpdate (CC313x and
CC323x only)

Updates one or more parameters of existing profile: SSID, BSSID, priority,
security parameters.

Appendix A
Host APIs

www.ti.com Host APIs

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 285

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table A-1. Host APIs (continued)
Module API Description

sl_WlanSet Sets Wlan configurations.

sl_WlanGet Retrieves Wlan configurations.

sl_WlanPolicySet Sets Wlan policy configurations.

sl_WlanPolicyGet Retrieves Wlan policy configurations.

sl_WlanGetNetworkList Gets the latest Wlan scan results.

sl_WlanGetExtNetworkList (CC313x
and CC323x only)

Gets the latest Wlan scan results with extended information (for example,
Country info).

sl_WlanRxStatStart Starts collecting wlan RX statistics in promiscuous mode. Must be followed
with a call to sl_WlanRxStatGet.

sl_WlanRxStatStop Stops collecting wlan RX statistics.

sl_WlanRxStatGet Retrieves Wlan RX statistics. Upon calling this function, the statistics are
cleared and collected from beginning. Call sl_WlanRxStatStart first for
promiscuous mode. For connected mode, call this API only.

sl_WlanSetMode Sets the Wlan mode.

sl_WlanProvisioning Starts the provisioning process.

sl_WlanRxFilterAdd Adds a new receive filter rule to the system.

Socket

sl_Socket Creates an endpoint for communication.

sl_Listen Listens for connections on a socket.

sl_Accept Accepts a connection on a socket.

sl_Bind Assigns an address to a socket.

sl_Close Closes an endpoint socket. If the socket is connected, it gracefully closes
the socket.

sl_Connect Initiates a connection on a socket.

sl_Select Monitors set of sockets activities.

sl_Send Writes a data buffer to a socket. Used especially in stream sockets.

sl_SendTo Writes a data buffer to a socket. Used especially in datagram sockets.

sl_Recv Reads a data buffer from a socket. Used especially in stream sockets.

sl_RecvFrom Reads a data buffer from a socket. Used especially in datagram sockets.

sl_GetSockOpt Retrieves a socket options.

sl_SetSockOpt Sets a socket options.

sl_StartTLS Initiate TLS connection on a socket.

NetApp

sl_NetAppStart Starts network applications (bitmask).

sl_NetAppStop Stops network applications (bitmask).

sl_NetAppDnsGetHostByName Retrieves the IP address of a host on the network.

sl_NetAppDnsGetHostByService Retrieves service attributes like IP address, port and text according to
service name.

sl_NetAppGetServiceList Retrieves the cached services of the peer.

sl_NetAppMDNSUnRegisterService Unregisters mDNS service.

sl_NetAppMDNSRegisterService Registers a new mDNS service.

sl_NetAppPing Sends Ping request (ICMP ECHO REQUEST) to a host on the network.

sl_NetAppSet Sets configuration for a network application.

sl_NetAppGet Retrieves configuration for a network application.

sl_NetAppSend Sending Netapp response or data following a Netapp request event.

sl_NetAppRecv Retrieving data from the network processor following a Netapp request
event.

NetCfg
sl_NetCfgSet Sets the network configuration of the device.

sl_NetCfgGet Retrieves the network configuration of the device.

Host APIs www.ti.com

286 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table A-1. Host APIs (continued)
Module API Description

NetUtil

sl_NetUtilSet Sets configurations of a network utility.

sl_NetUtilGet Retrieves configurations of a network utility.

sl_NetUtilCmd Activates a network utility-related command.

FS

sl_FsOpen Opens a file for read or write.

sl_FsClose Closes a file.

sl_FsRead Reads a block of data from a file.

sl_FsWrite Writes a block of data to a file.

sl_FsGetInfo Retrieves information of a file.

sl_FsDel Deletes specific file from the file system.

sl_FsCtl Controls various file system operations.

sl_FsProgram Enables to format and configure the device with prepared configuration.

sl_FsGetFileList Retrieves the list of stored files and their basic attributes.

www.ti.com Host APIs

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 287

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Host APIs www.ti.com

288 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

This page intentionally left blank.

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

B.1 Persistency
The SimpleLink device supports a few different persistency types for settings and configurations:
• Nonpersistent: Effective immediately, but returned to default after reset
• System-persistent: Effective immediately, and kept after reset according to the system-persistent mode
• Persistent: Effective immediately, and kept after reset, regardless of the system-persistent mode
• Optionally persistent: Effective immediately, and kept after reset, according to a parameter in the API call
• Reset: Persistent, but effective only after reset

Table B-1 lists the different configurations and settings of the device, and their persistency type.

Table B-1. Persistency Settings
API Functionality Parameter Type Comments CC3120/

CC3220
CC313x/
CC323x

sl_DeviceEventMas
kSet

Set events mask System persistent + +

sl_DeviceSet Set time and date SL_DEVICE_GENE
RAL_DATE_TIME

System persistent * The original set
value is kept as
System
Persistence. The
updated date and
time, however, is
kept during
hibernate only.

+ +

Set system
persistent
configuration

SL_DEVICE_GENE
RAL_PERSISTENT

Persistent + +

sl_DeviceUartSetM
ode

Set UART baud rate Non-persistent + +

sl_NetAppMDNSRe
gisterService

Register mDNS
service

Optionally
persistent

+ +

sl_NetAppMDNSUn
RegisterService

Unregister mDNS
service

Optionally
persistent

+ +

sl_NetAppSet Set device name SL_NETAPP_DEVI
CE_NAME

System persistent +

Enable/disable DNS
caching

SL_NETAPP_DNS_
CLIENT_CACHE_E
NABLE

System persistent +

Configure HTTP
timeout

SL_NETAPP_HTTP
_TIMEOUT

Non-persistent +

Set Http port
number

SL_NETAPP_HTTP
_PRIMARY_PORT_
NUMBER

System persistent + +

Enable/disable Http
authentication
check

SL_NETAPP_HTTP
_AUTH_CHECK

System persistent + +

Appendix B
Persistency

www.ti.com Persistency

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 289

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table B-1. Persistency Settings (continued)
API Functionality Parameter Type Comments CC3120/

CC3220
CC313x/
CC323x

sl_NetAppSet Set Http
authentication name

SL_NETAPP_HTTP
_AUTH_NAME

System persistent + +

Set Http
authentication
password

SL_NETAPP_HTTP
_AUTH_PASSWOR
D

System persistent + +

Set Http
authentication realm

SL_NETAPP_HTTP
_AUTH_REALM

System persistent + +

Enable/Disable Http
ROM pages access

SL_NETAPP_HTTP
_ROM_PAGES_AC
CESS

System persistent + +

Set secondary port
number

SL_NETAPP_HTTP
_SECONDARY_PO
RT_NUMBER

System persistent + +

Enable /disable of
secondary port

SL_NETAPP_HTTP
_SECONDARY_PO
RT_ENABLE

System persistent + +

Enable/disable
security on the
primary port

SL_NETAPP_HTTP
_PRIMARY_PORT_
SECURITY_MODE

System persistent + +

Set private key file
name

SL_NETAPP_HTTP
_PRIVATE_KEY_FI
LENAME

System persistent + +

Set device
certificate file name

SL_NETAPP_HTTP
_DEVICE_CERTIFI
CATE_FILENAME

System persistent + +

Set CA certificate
file name

SL_NETAPP_HTTP
_CA_CERTIFICATE
_FILE_NAME

System persistent + +

Set http temporary
mDNS service
name

SL_NETAPP_HTTP
_TEMP_REGISTER
_MDNS_SERVICE_
NAME

Non-persistent + +

Unset http
temporary mDNS
service name

SL_NETAPP_HTTP
_TEMP_UNREGIS
TER_MDNS_SERVI
CE_NAME

Non-persistent + +

Set DHCP server
parameters

SL_NETAPP_DHC
P_SRV_BASIC_OP
T

Reset + +

Set mDNS
continues query

SL_NETAPP_MDN
S_CONT_QUERY_
OPT

System persistent + +

Set mDNS event
mask

SL_NETAPP_MDN
S_QEVETN_MASK
_OPT

System persistent + +

Set mDNS timing
parameters

SL_NETAPP_MDN
S_TIMING_PARAM
S_OPT

System persistent + +

Set device URN SL_NETAPP_DEVI
CE_URN

System persistent MDNS restarts
internally

+ +

Set domain name SL_NETAPP_DEVI
CE_DOMAIN

Reset + +

sl_NetAppSet Start NetApp
applications

System persistent Setting effective to
current Wi-Fi Mode

+ +

Persistency www.ti.com

290 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table B-1. Persistency Settings (continued)
API Functionality Parameter Type Comments CC3120/

CC3220
CC313x/
CC323x

Stop NetApp
applications

System persistent Setting effective to
current Wi-Fi Mode

+ +

sl_NetCfgSet Setting a STA IPv6
Global static
address

SL_NETCFG_IPV6
_ADDR_GLOBAL

System persistent + +

Setting a STA IPv6
Local static address

SL_NETCFG_IPV6
_ADDR_LOCAL

System persistent + +

Setting/releasing a
DHCP/DHCP LLA /
STATIC STA IP
address

SL_NETCFG_IPV4
_STA_ADDR_MOD
E

System persistent + +

Enable\disable IPV6
interface

SL_NETCFG_IF System persistent + +

Setting a static IP
address to the
device working in
AP mode or P2P go

SL_NETCFG_IPV4
_AP_ADDR_MODE

Reset + +

Set additional IPv6
DNS address

SL_NETCFG_IPV6
_DNS_CLIENT

System persistent +

Set MAC address SL_NETCFG_MAC
_ADDRESS_SET

Reset + +

Disconnet AP
station by mac
address

SL_NETCFG_AP_S
TATION_DISCONN
ECT

Non-persistent + +

sl_WlanPolicySet Set connection
policy

SL_WLAN_POLICY
_CONNECTION

System persistent + +

Set system scan
time interval and
start scan

SL_WLAN_POLICY
_SCAN

System persistent * Interval and policy
are system
persistent, but the
hidden SSID option
is not

+ +

Set PM policy for
STA mode only

SL_WLAN_POLICY
_PM

System persistent + +

Set negotiation
policy parameters
for P2P role

SL_WLAN_POLICY
_P2P

System persistent + +

sl_WlanProfileAdd Add profile Persistent + +

sl_WlanProfileDel Delete profile Persistent + +

sl_WlanProfileUpda
te

Update profile Persistent +

sl_WlanRxFilterAdd Add new filter rule
to the system

Optionally
persistent

Save the filters for
persistent can be
done by calling with
SL_WLAN_RX_FIL
TER_STORE

+ +

sl_WlanSet Enables to skip
server
authentication

SL_WLAN_GENER
AL_PARAM_DISAB
LE_ENT_SERVER_
AUTH

Non-persistent +

Configure which
pad to use for each
antenna

WLAN_GENERAL_
PARAM_ANT_SEL
ECTION_CONFIG

System persistent +

Configure co-
existing to work with
both Wi-Fi and BLE

WLAN_GENERAL_
PARAM_COEX_CO
NFIG

System persistent +

www.ti.com Persistency

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 291

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table B-1. Persistency Settings (continued)
API Functionality Parameter Type Comments CC3120/

CC3220
CC313x/
CC323x

Receive events
regarding the link
quality

WLAN_GENERAL_
PARAM_REGISTE
R_LINK_QUALITY_
EVENT

System persistent +

Set suspended
profiles mask

SL_WLAN_GENER
AL_PARAM_OPT_
SUSPEND_PROFIL
ES

System persistent +

Enable/disable 5-
Ghz functionality

SL_WLAN_GENER
AL_PARAM_OPT_
ENABLE_5G

System persistent +

Configure 5G scan
parameters

SL_WLAN_GENER
AL_PARAM_OPT_
SCAN_PARAMS_5
G

System persistent +

Set user country
region attributes

SL_WLAN_GENER
AL_PARAM_OPT_
USER_COUNTRY_
ATTRIB

System persistent +

Delete MAC
address from index
in the AP access list

SL_WLAN_AP_AC
CESS_LIST_DEL_I
DX

Reset + +

Del MAC address
from the AP access
list

SL_WLAN_AP_AC
CESS_LIST_DEL_
MAC

Reset + +

Add MAC address
to the AP access list

SL_WLAN_AP_AC
CESS_LIST_ADD_
MAC

Reset + +

Set max station
ageing time

SL_WLAN_AP_OP
T_MAX_STA_AGIN
G

Reset + +

Set SSID for AP
mode

SL_WLAN_AP_OP
T_SSID

Reset + +

Set channel for AP
mode

SL_WLAN_AP_OP
T_CHANNEL

Reset + +

Set hidden SSID
mode for AP mode

SL_WLAN_AP_OP
T_HIDDEN_SSID

Reset + +

Set security type for
AP mode

SL_WLAN_AP_OP
T_SECURITY_TYP
E

Reset + +

Set password for for
AP mode

SL_WLAN_AP_OP
T_PASSWORD

Reset + +

Set scan
parameters

SL_WLAN_GENER
AL_PARAM_OPT_
SCAN_PARAMS

System persistent + +

sl_WlanSet Set country code for
AP mode

SL_WLAN_GENER
AL_PARAM_OPT_
COUNTRY_CODE

System persistent + +

Set STA mode Tx
power level

SL_WLAN_GENER
AL_PARAM_OPT_
STA_TX_POWER

System persistent + +

Set AP mode Tx
power level

SL_WLAN_GENER
AL_PARAM_OPT_
AP_TX_POWER

System persistent + +

Persistency www.ti.com

292 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table B-1. Persistency Settings (continued)
API Functionality Parameter Type Comments CC3120/

CC3220
CC313x/
CC323x

Set AP mode Info
element

SL_WLAN_GENER
AL_PARAM_OPT_I
NFO_ELEMENT

System persistent + +

Set P2P device type SL_WLAN_P2P_O
PT_DEV_TYPE

System persistent + +

Set P2P channels SL_WLAN_P2P_O
PT_CHANNEL_N_
REGS

System persistent + +

Set maximum
supported stations

SL_WLAN_AP_OP
T_MAX_STATIONS

Reset + +

Set AP access list
mode

SL_WLAN_AP_AC
CESS_LIST_MODE

Reset + +

sl_WlanSetMode Set WLAN mode Persistent + +

www.ti.com Persistency

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 293

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Persistency www.ti.com

294 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

This page intentionally left blank.

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

C.1 Regulatory Domain
Table C-1 lists the country codes that the system supports and the supported channels in the different modes.

Table C-1. Country Codes and Channels
Country

Code Country Region
STA Supported Channels AP Supported Channels

2.4 GHz 5 GHz 5 GHz DFS 2.4 GHz 5 GHz
"00" World wide ETSI 1,2,3,4,5,6,7,8,9,

10,11,12,13
36,40,44,48,52,5
6,60,64,100,104,
108,112,116,120,
124,128,132,136
,140,149,153,15
7,161,165

1,2,3,4,5,6,7,8,9,
10,11

"AD" Andorra ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"AE" United Arab
Emirates

FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"AF" Afghanistan ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"AI" Anguilla ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"AL" Albania ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"AM" Armenia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"AN" Netherlands
Antilles

ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"AR" Argentina FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"AS" American Samoa FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

Appendix C
Regulatory Domain

www.ti.com Regulatory Domain

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 295

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table C-1. Country Codes and Channels (continued)
Country

Code Country Region
STA Supported Channels AP Supported Channels

2.4 GHz 5 GHz 5 GHz DFS 2.4 GHz 5 GHz
"AT" Austria ETSI 1,2,3,4,5,6,7,8,9,

10,11,12,13
36,40,44,48 52,56,60,64,100,

104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"AU" Australia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"AW" Aruba ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"AZ" Azerbaijan ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"BA" Bosnia and
Herzegovina

ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"BB" Barbados FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"BD" Bangladesh JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

149,153,157,161
,165

1,2,3,4,5,6,7,8,9,
10,11,12,13

"BE" Belgium ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"BF" Burkina Faso FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"BG" Bulgaria ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"BH" Bahrain JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"BL" Saint-Barthélemy ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"BM" Bermuda FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"BN" Brunei
Darussalam

JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,

"BO" Bolivia JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

149,153,157,161
,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

"BR" Brazil FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"BS" Bahamas FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

Regulatory Domain www.ti.com

296 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table C-1. Country Codes and Channels (continued)
Country

Code Country Region
STA Supported Channels AP Supported Channels

2.4 GHz 5 GHz 5 GHz DFS 2.4 GHz 5 GHz
"BT" Bhutan ETSI 1,2,3,4,5,6,7,8,9,

10,11,12,13
36,40,44,48 52,56,60,64,100,

104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"BY" Belarus ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"BZ" Belize JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

149,153,157,161
,165

1,2,3,4,5,6,7,8,9,
10,11,12,13

"CA" Canada FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
132,136,140

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"CF" Central African
Republic

FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"CH" Switzerland ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"CI" Côte d'Ivoire FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"CL" Chile JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"CN" China FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"CO" Colombia FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"CR" Costa Rica FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"CU" Cuba FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

1,2,3,4,5,6,7,8,9,
10,11,12,13

"CX" Christmas Island FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"CY" Cyprus ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"CZ" Czech Republic ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"DE" Germany ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

www.ti.com Regulatory Domain

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 297

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table C-1. Country Codes and Channels (continued)
Country

Code Country Region
STA Supported Channels AP Supported Channels

2.4 GHz 5 GHz 5 GHz DFS 2.4 GHz 5 GHz
"DK" Denmark ETSI 1,2,3,4,5,6,7,8,9,

10,11,12,13
36,40,44,48 52,56,60,64,100,

104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"DM" Dominica FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"DO" Dominican
Republic

FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"DZ" Algeria JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"EC" Ecuador FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"EE" Estonia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"EG" Egypt ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"ES" Spain ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"ET" Ethiopia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"EU" Europe ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"FI" Finland ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"FM" Micronesia,
Federated States
of

FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"FR" France ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"GB" Gabon ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"GD" Grenada FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"GE" Georgia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

Regulatory Domain www.ti.com

298 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table C-1. Country Codes and Channels (continued)
Country

Code Country Region
STA Supported Channels AP Supported Channels

2.4 GHz 5 GHz 5 GHz DFS 2.4 GHz 5 GHz
"GF" French Guiana ETSI 1,2,3,4,5,6,7,8,9,

10,11,12,13
36,40,44,48 52,56,60,64,100,

104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"GH" Ghana FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"GL" Greenland ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"GP" Guadeloupe ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"GR" Greece ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"GT" Guatemala FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"GU" Guam FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"GY" Guyana FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

149,153,157,161
,165

1,2,3,4,5,6,7,8,9,
10,11,12,13

149,153,157,161
,165

"HK" Hong Kong, SAR
China

ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"HN" Honduras FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"HR" Croatia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"HT" Haiti FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"HU" Hungary ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"ID" Indonesia JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

149,153,157,161 1,2,3,4,5,6,7,8,9,
10,11,12,13

"IE" Ireland ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"IL" Israel ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

www.ti.com Regulatory Domain

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 299

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table C-1. Country Codes and Channels (continued)
Country

Code Country Region
STA Supported Channels AP Supported Channels

2.4 GHz 5 GHz 5 GHz DFS 2.4 GHz 5 GHz
"IN" India JP 1,2,3,4,5,6,7,8,9,

10,11,12,13
36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"IR" Iran, Islamic
Republic of

JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

149,153,157,161
,165

1,2,3,4,5,6,7,8,9,
10,11,12,13

"IS" Iceland ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"IT" Italy ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"JM" Jamaica FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"JO" Jordan JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"JP" Japan JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,184,
188,192,196

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,184,
188,192,196

"KE" Kenya JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153

100,104,108,112 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"KH" Cambodia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"KN" Saint Kitts and
Nevis

ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"KP" Korea (North) JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161

52,56,60,64,100,
104,108,112,116,
120,124

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"KR" Korea (South) JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"KW" Kuwait ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"KY" Cayman Islands FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"KZ" Kazakhstan FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

1,2,3,4,5,6,7,8,9,
10,11,12,13

"LB" Lebanon FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"LC" Saint Lucia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

Regulatory Domain www.ti.com

300 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table C-1. Country Codes and Channels (continued)
Country

Code Country Region
STA Supported Channels AP Supported Channels

2.4 GHz 5 GHz 5 GHz DFS 2.4 GHz 5 GHz
"LI" Liechtenstein ETSI 1,2,3,4,5,6,7,8,9,

10,11,12,13
36,40,44,48 52,56,60,64,100,

104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"LK" Sri Lanka FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"LS" Lesotho ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"LT" Lithuania ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"LU" Luxembourg ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"LV" Latvia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"MA" Morocco ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"MC" Monaco ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"MD" Moldova ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"ME" Montenegro ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"MF" Saint-Martin
(French part)

ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"MH" Marshall Islands FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"MK" Macedonia,
Republic of

ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"MN" Mongolia FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

www.ti.com Regulatory Domain

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 301

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table C-1. Country Codes and Channels (continued)
Country

Code Country Region
STA Supported Channels AP Supported Channels

2.4 GHz 5 GHz 5 GHz DFS 2.4 GHz 5 GHz
"MO" Macao, SAR

China
FCC 1,2,3,4,5,6,7,8,9,

10,11,12,13
36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"MP" Northern
Mariana Islands

FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"MQ" Martinique ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"MR" Mauritania ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"MT" Malta ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"MU" Mauritius FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"MV" Maldives ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"MW" Malawi ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"MX" Mexico FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"MY" Malaysia FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"NG" Nigeria ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

149,153,157,161
,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

"NI" Nicaragua FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"NL" Netherlands ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"NO" Norway ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140,149,15
3,157,165

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"NP" Nepal JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

Regulatory Domain www.ti.com

302 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table C-1. Country Codes and Channels (continued)
Country

Code Country Region
STA Supported Channels AP Supported Channels

2.4 GHz 5 GHz 5 GHz DFS 2.4 GHz 5 GHz
"NZ" New Zealand ETSI 1,2,3,4,5,6,7,8,9,

10,11,12,13
36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"OM" Oman ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"PA" Panama FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"PE" Peru FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"PF" French Polynesia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"PG" Papua New
Guinea

FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"PH" Philippines FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"PK" Pakistan JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

149,153,157,161
,165

1,2,3,4,5,6,7,8,9,
10,11,12,13

"PL" Poland ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"PM" Saint Pierre and
Miquelon

ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"PR" Puerto Rico FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"PT" Portugal ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"PW" Palau FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"PY" Paraguay FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"QA" Qatar JP 1,2,3,4,5,6,7,8,9,
10,11,12,13

149,153,157,161
,165

1,2,3,4,5,6,7,8,9,
10,11,12,13

www.ti.com Regulatory Domain

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 303

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table C-1. Country Codes and Channels (continued)
Country

Code Country Region
STA Supported Channels AP Supported Channels

2.4 GHz 5 GHz 5 GHz DFS 2.4 GHz 5 GHz
"RE" Réunion ETSI 1,2,3,4,5,6,7,8,9,

10,11,12,13
36,40,44,48 52,56,60,64,100,

104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"RO" Romania ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"RS" Serbia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,52,5
6,60,64

100,104,108,112,
116,120,124,128,
132,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"RU" Russian
Federation

ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,132,
136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"RW" Rwanda FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"SA" Saudi Arabia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"SE" Sweden ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"SG" Singapore FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"SI" Slovenia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"SK" Slovakia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"SN" Senegal FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"SR" Suriname ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"SV" El Salvador FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"SY" Syrian Arab
Republic (Syria)

FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

1,2,3,4,5,6,7,8,9,
10,11,12,13

"TC" Turks and Caicos
Islands

FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"TD" Chad ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

Regulatory Domain www.ti.com

304 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table C-1. Country Codes and Channels (continued)
Country

Code Country Region
STA Supported Channels AP Supported Channels

2.4 GHz 5 GHz 5 GHz DFS 2.4 GHz 5 GHz
"TG" Togo ETSI 1,2,3,4,5,6,7,8,9,

10,11,12,13
36,40,44,48 52,56,60,64,100,

104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"TH" Thailand FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"TN" Tunisia ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"TR" Turkey ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"TT" Trinidad and
Tobago

FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"TW" Taiwan, Republic
of China

FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"TZ" Tanzania, United
Republic of

FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

149,153,157,161
,165

1,2,3,4,5,6,7,8,9,
10,11,12,13

149,153,157,161
,165

"UA" Ukraine ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"UG" Uganda FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"US" United States of
America

FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"UY" Uruguay FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"UZ" Uzbekistan ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"VC" Saint Vincent
and Grenadines

ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"VE" Venezuela
(Bolivarian
Republic)

FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"VI" Virgin Islands,
US

FCC 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,149,
153,157,161,165

"VN" Viet Nam FCC 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

www.ti.com Regulatory Domain

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 305

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table C-1. Country Codes and Channels (continued)
Country

Code Country Region
STA Supported Channels AP Supported Channels

2.4 GHz 5 GHz 5 GHz DFS 2.4 GHz 5 GHz
"VU" Vanuatu FCC 1,2,3,4,5,6,7,8,9,

10,11,12,13
36,40,44,48,149,
153,157,161,165

52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,149,
153,157,161,165

"WF" Wallis and
Futuna Islands

ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"WS" Samoa ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"XX" ETSI 1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48,52,5
6,60,64,100,104,
108,112,116,120,
124,128,132,136
,140,149,153,15
7,161,165

1,2,3,4,5,6,7,8,9,
10,11

36,40,44,48

"YE" Yemen ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

1,2,3,4,5,6,7,8,9,
10,11,12,13

"YT" Mayotte ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"ZA" South Africa ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48,100,
104,108,112,116,
120,124,128,132
,136,140

52,56,60,64 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

"ZW" Zimbabwe ETSI 1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48 52,56,60,64,100,
104,108,112,116,
120,124,128,132
,136,140

1,2,3,4,5,6,7,8,9,
10,11,12,13

36,40,44,48

Regulatory Domain www.ti.com

306 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

The purpose of this chapter is to describe the details of SimpleLink™ CC31XX™ host interface. This appendix
provides complementary information to the data sheet. It covers the main properties of the host interface
protocol for SPI (Serial Port Interface) and UART, including supported modes, structure of different commands,
and communication flow.
D.1 SPI Host Interface

D.1.1 Introduction

The chapter provides guidelines for SPI configuration at the host side. It should be used by programmers during
early integration stages.

The SPI bus is typically comprised of four lines, plus one interrupt line from the device to the host controller:

Figure D-1. Basic SPI Configuration

The CC31XX has two SPI interfaces. One for the auxiliary serial flash device (that bus is labeled FLASH_SPI),
and one for the host interface (labeled HOST_SPI). This document only refers to the latter.

D.1.2 Abbreviations

• MISO - Master In Slave Out SPI line
• MOSI - Master Out Slave In SPI line
• CS – Chip Select
• SYNC - Synchronization word

D.1.3 SPI Modes

There are four modes of operation defined in the SPI standard. For communication to be successful, the master
and slave devices must be configured in the same way.

The four SPI modes are shown in Table D-1.

Appendix D
Supported Host Interfaces

www.ti.com Supported Host Interfaces

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 307

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table D-1. SPI Modes
Mode Polarity Phase Description
0 0 0 SPI_CLK is active high and sample commences on the

rising edge

1 0 1 SPI_CLK is active high and sample commences on the
falling edge

2 1 0 SPI_CLK is active low and sample commences on the
rising edge

3 1 1 SPI_CLK is active low and sample commences on the
falling edge

Figure D-2 shows the four different timing configurations.

Figure D-2. SPI Modes Timings

CC31XX is working in Mode 0. This means that data is sampled on the rising edge of the clock and changed on
the falling edge of the clock. The first bit of each word must be output by the master at least half a clock cycle
prior to the first clock edge.

A single 1 byte transaction in mode 0 is described in Figure D-3.

Supported Host Interfaces www.ti.com

308 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure D-3. SPI Mode 0 Detailed Timings

tLead should be at least half a clock cycle long, and thus its value depends on the host clock frequency.

D.1.4 SPI Configurations (Shared SPI)

The CC31XX may share the SPI bus with other slaves, all connected to a single master. In this case, the CLK,
MOSI, and MISO lines are shared with the other slaves, and the CC31XX has its own CSn to signal which
messages are directed to the CC31XX. The MISO line goes into HiZ state between words the CC31XX is
transmitting, to avoid possible contention with the other slaves.

Figure D-4 shows a typical multi-slave configuration.

www.ti.com Supported Host Interfaces

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 309

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure D-4. Shared SPI Block Diagram

The other slaves must also have their MISO lines tri-stated between data writing cycles to prevent the risk of line
contention or data corruption.

Note

When a single SPI slave configuration is used (not shared SPI mode) and in the case of a pin limited
platform, the user may want to eliminate the CS line and tie it to GND. This option is NOT supported
by the current CC3100 revision.

Table D-2 summarizes the different supported configurations.

Table D-2. Supported Configurations
Property Supported CC3100 Configuration
Clock polarity Data is output on the clock’s falling edge, sampled on the rising edge

Clock phase Clock idles at logical 0

Word size 32/16/8 bits

Host Endianity Little Endian / Big Endian

Bit order MSBit first

Chip select polarity Active low

Host Interrupt polarity Active high

Host Interrupt mode Rising edge or level ‘1’

Clock Frequency Up to 20MHz

Chip select assertion between words Optional (CSn can be kept asserted for entire message)

3-Wires mode Not supported

Supported Host Interfaces www.ti.com

310 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Table D-2. Supported Configurations (continued)
Property Supported CC3100 Configuration
Shared SPI Supported

The host Endianity and word size are automatically detected by the SimpleLink™ device with no special
configuration or handling in the host application.

For exact timing requirements, refer to the CC31XX data sheet.

D.1.5 SPI Initialization

During initialization, the nHIB pin is asserted (to enable the device), while the nRESET pin is kept high. At this
stage, the HOST_IRQ pin should be driven low by the device until initialization is complete. During this time, and
until HOST_IRQ is asserted for the first time, the host must not communicate with the device, otherwise the
communication with the device might not be established.

www.ti.com Supported Host Interfaces

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 311

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure D-5. SPI Initialization Flow

After the Host IRQ has been asserted for the first time, the host writes a sync word to the device. This causes
the host interrupt to prepare the message to the host and clear the IRQ line. The process is described in Figure
D-6.

Supported Host Interfaces www.ti.com

312 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure D-6. CC3100 Host to Device Synchronization Word

When the sync word has been written by the host, the device knows the host will now read the message that
caused the IRQ to rise (in this case, initialization complete).

Because the host may precede the device’s data readiness, there is another synchronization word that the host
is looking for before parsing the response. All data before the data ready synchronization word is discarded by
the driver. In some or even most cases, the first word read from the device is the synchronization word, and no
superfluous reads are made.

Figure D-7. CC3100 Device to Host Synchronization Word

If the host sends a sync word for read while there is no message to send from the SimpleLink device to the host,
the SimpleLink device sends a dummy message to avoid synchronization loss.

D.1.6 Host Interface Protocol - SPI Perspective

As described on Message Types in CC31xx Host Interface, the communication between the host and the
CC3100 device is comprised of several types of messages:
• Command
• Command complete
• Data
• Asynchronous events

Figure D-8 describes the flow of a command from the host to the device, along with the command complete
indication from the device to the host (covering 1 and 2 in the list above).

www.ti.com Supported Host Interfaces

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 313

Copyright © 2020 Texas Instruments Incorporated

https://processors.wiki.ti.com/index.php/CC31xx_Host_Interface#Message_Types
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure D-8. CC31XX SPI Host Command Flow

As seen in Figure D-8, when the host writes to the device, the data from the device on the MISO line should be
disregarded by the host, and vice versa – when the host reads from the device, the data on the MOSI line is
disregarded by the CC31XX device. TI recommends keeping the data to the device as all 0xFFs when reading
from it.

The communication starts with the host sending the write SYNC word (for information regarding the SYNC
words, see Synchronization words in CC31xx Host Interface), followed by header information, and then payload,
when applicable. When the command has been analyzed by the device, it asserts the IRQ interrupt line. The
host then writes the read SYNC word. The device clears the interrupt line and prepares the response. The host
then reads continuously until the D2H SYNC pattern is detected. All data until that point is discarded. The SYNC
word is then followed by headers and then payload, when applicable.

A data write sequence (#3 in the list above) looks like a subset of a command sequence, consisting of the host
write alone (data write does not get acknowledged by the device).

Figure D-9. CC31XX SPI Host Data TX Flow

An asynchronous event from the device to the host (item 4 in the list above) is also a subset of the command
sequence, starting from an asynchronous interrupt from the device to the host.

Supported Host Interfaces www.ti.com

314 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://processors.wiki.ti.com/index.php/CC31xx_Host_Interface#Synchronization_words
http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure D-10. CC31XX SPI Device Asynchronous Event Flow

D.2 UART Host Interface

D.2.1 Introduction

The UART is a standard asynchronous serial communication that works between two entities and supports
hardware flow control. In the UART interface, there is no Master/Slave relationship defined by the hardware, and
each entity can send data to the other side independently in full duplex mode. The hardware flow control makes
use of two hardware lines, RTS (Request to Send) and CTS (Clear to Send), to allow each side indicate to the
other side if it is ready to handle data.

Figure D-11 illustrates a typical UART setup.

Figure D-11. Typical UART Configuration

The perspectives of the lines’ names further in this document are from the host to the SimpleLink device:

TX – used to send the UART serial data from the host to the CC31XX device

RX - used to send the UART serial data from the CC31XX device to the host

RTS - used to instruct the CC31XX device to stop sending data (host cannot handle more data)

CTS – used to instruct the host to stop sending data (the SimpleLink device cannot handle more data)

www.ti.com Supported Host Interfaces

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 315

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

D.2.2 Host Low Power Modes

The SimpleLink device can send a message to the host at any given time. The SimpleLink host protocol does
not allow data loss. When the host enters into a low power mode, it must raise the RTS line to signal the
SimpleLink device that it cannot receive data.

However, when RTS line is raised, the SimpleLink device is not able to wake up the host. In this case, to allow
the host to wake up by the SimpleLink device, the auxiliary HOST_IRQ line should be used.

D.2.3 UART Host Topologies

D.2.3.1 5-Wire UART Topology

Figure D-12 shows the typical 5-wire UART topology which is comprised of 4 standard UART lines, plus one IRQ
line from the device to the host controller to allow efficient low power mode.

Figure D-12. Typical 5-Wire UART Configuration

This is the typical and recommended UART topology, as it gives the maximum communication reliability and
flexibility between the host and the SimpleLink device.

D.2.3.2 4-Wire UART Topology

In this topology, the host IRQ line is omitted. Using this topology is allowed only if one of the following conditions
is met:
1. Host always stays awake/active.
2. Host goes to sleep but its UART module has receiver start-edge detection for auto wake up and does not

lose data in this case.

Figure D-13. 4-Wire UART Configuration

D.2.3.3 3-Wire UART Topology

In this topology, only the RX, TX, and CTS lines are required. In this mode, the host is always able to receive any
amount of data transmitted by the SimpleLink device because there is no flow control in this direction. Using this
topology is allowed only if one of the following conditions is met:
1. Host always stays awake/active.
2. Host goes to sleep but its UART module has receiver start-edge detection for auto wake up and does not

lose data in this case.

Supported Host Interfaces www.ti.com

316 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure D-14. 3-Wire UART Configuration

Because there is no full flow control, the host cannot stop the SimpleLink device to send its data; thus, the
following parameters must be considered:
• Max baud rate
• RX character interrupt latency and low level driver jitter buffer
• Time consumed by user’s application

D.2.4 UART Configuration

The SimpleLink device requires the following UART configuration shown in Table D-3.

Table D-3. UART Configuration
Property Supported CC31XX Configuration
Baud rate 115200bps, No auto-baud rate detection, could be changed by the Host up to 3Mbps

using special command

8 bits

Flow Control CTS/RTS

Data bits None

Stop bits 1

Bit order LSBit first

Host Interrupt polarity Active high

Host Interrupt mode Rising edge or level ‘1’

Endianness Little Endian only1

1. The SimpleLink device does not support automatic detection of the host length while using the UART
interface.

D.2.5 UART Initialization

The UART module is initialized upon calling to the sl_start() API, which calls the function sl_IfOpen.

Figure D-15 illustrates the UART initialization sequence.

www.ti.com Supported Host Interfaces

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 317

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure D-15. UART Initialization Sequence

D.2.5.1 Changing the UART Baud Rate

Changing the baud rate can be done using the host sl_DeviceUartSetMode() command. This command may be
called by the application following the sl_Start as shown in Figure D-16.

sl_DeviceUartSetMode
Description Update the UART Mode

Prototype _i16 sl_DeviceUartSetMode(const SlDeviceUartIfParams_t *pUartParams)

Supported Host Interfaces www.ti.com

318 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

sl_DeviceUartSetMode
Parameter typedef struct

{

_u32 BaudRate;

_u8 FlowControlEnable;

_u8 CommPort;

} SlDeviceUartIfParams_t;

Comment For UART Host Interface only

www.ti.com Supported Host Interfaces

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 319

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Figure D-16. UART Change Baud Rate Sequence

Supported Host Interfaces www.ti.com

320 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

D.2.6 Implementing the UART Driver - Concept and Terminology

The user implementing the low level UART driver must consider the following components in mind:
• Jitter buffer - An internal buffer (minimum of 4 bytes size) responsible to store the bytes sent by the

SimpleLink device until the host read operation starts. The host driver is informed on new data reception
upon character detection on the RX UART line, and is expected to start its read operation immediately
afterwards.

• SW Flow Control Manager – The SimpleLink device requires the UART to use hardware flow control. In some
low-cost controllers, there is no support for hardware flow control in their UART peripheral. In these cases,
the user must implement software flow control that protects the jitter buffer from being overridden, by
asserting the RTS line before it gets full, and follows the CC31XX device flow control state by testing the CTS
line before sending any data.

• Active Buffer – points to the current buffer to accept the incoming bytes. At the beginning of received
message points to the jitter buffer, and upon UART read operation start is switched to the host driver supplied
one.

D.2.6.1 UART Read API Implementation

This API reads bytes from an opened communication port into a buffer starting at pBuff. The read operation is
blocked until all the expected data is received.

Table D-4 lists the required parameters for this function.

Table D-4. Parameters
Name Type Description
Fd Fd_t Handle to the Uart control block, This structure could be changed by the

user to include the required parameters in the target platform

pBuff char* Pointer to the first location of a buffer that contains enough space for all
expected data

Len unsigned int Number of bytes to read from the communication port

The UART read API should implement the following logic:
1. Disable RX interrupt and switch the active buffer to point to the supplied buffer (pBuff).
2. Copy all bytes from the jitter buffer to the active buffer.
3. Clear the RTS line as the user provide buffer to accept the remaining data.
4. Enable RX interrupt and wait until all bytes (length) are fully written to the supplied buffer (pBuff). These bytes

are expected to be read from the UART RX FIFO upon UART RX interrupt service routine.
5. When length bytes received, switch back to the active buffer to point to the jitter buffer.

D.2.6.2 UART Write API Implementation

This API writes all required bytes to the opened communication port.

Table D-5 lists the required parameters for this function.

Table D-5. Parameters
Name Type Description
Fd Fd_t Handle to the Uart control block, This structure could be changed by the

user to include the required parameters in the target platform

pBuff char* Pointer to the first location of a buffer that contains the data to send to
the communication port

Len unsigned int Number of bytes to write to the communication port

The UART write implementation has no special behavior. The function sends the bytes from the buffer on the
UART lines. The function must ensure that the actual transmission is executed only if the following conditions
are met:

www.ti.com Supported Host Interfaces

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 321

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

1. The host UART hardware is ready to transmit data.
2. The CTS line is low, meaning the SimpleLink device is ready to accept data from the host.

If these conditions are not met, the function should wait until they are (blocked).

D.2.7 Register/Unregister Interrupt Handler API Implementation

This API registers or unregisters an interrupt service routine that is called upon detection of new a UART
message from the SimpleLink device. The service routine might be registered directly to the interrupt vector
table, or can be registered internally as a callback that is called by another function on the UART driver.

The UART driver will call the handler only once, at the beginning of every UART message. This handler is
expected to be masked by the host SimpleLink driver (by calling the sl_IfMaskIntHdlr API), before the driver
starts to handle the message received. The handler is unmasked when the SimpleLink driver finishes handling
the message (by calling the sl_IfUnMaskIntHdlr API).

D.2.8 Host Interface Protocol – UART Perspective

As described on Message Types, the communication between the host and the CC31XX device is comprised of
several types of messages:
1. Command
2. Command complete
3. Data
4. Asynchronous events

D.2.8.1 UART Host Command Flow

Figure D-17 describes the flow of a command from the host to the device, along with the command complete
indication from the device to the host followed by an async event. It also illustrates the behavior as it appears in
the sample code provided with the SimpleLink SDK for MSP430 processors.

Figure D-17. CC31XX UART Host Command Flow

As seen in Figure D-17, the communication starts with the host sending the long (8 bytes) SYNC word, followed
by the command itself which includes header information and payload (when applicable).

When the command has been analyzed by the device, it asserts the RTS line for the sleep exit transition
duration (if was in sleep mode). The device then begins to transmit the command response, which starts with the
short (4 bytes) SYNC word, which is suspended by the host flow control RTS line (due to its very small 4 bytes
jitter buffer). When the host de-asserts the RTS line, the command response transmission is resumed. Later, the
device may enter (if required) again to sleep mode.

The last transmission shown in Figure D-17 is an independent async event sent by the CC31XX device.

Supported Host Interfaces www.ti.com

322 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

D.2.8.2 Synchronization Words

The communication between the host and the network processor uses synchronization words to keep the host
and CC31XX device in sync.

There are 2 types of synchronization words in use:
• Host to Device (8 bytes)
• Device to host (4 bytes)

The patterns are given in Table D-6.

Table D-6. Sync Word Patterns
Sync Word Pattern (Hex)
Host to Device (Long Sync) 12 34 43 21 BB DD EE FF

Device to Host (Short Sync) AB CD DC BA

The first 4 bytes of the Long sync are dummy bytes and have no meaning to the CC31XX device. The long sync
is required to prevent data loss if the host does not stop the transmission immediately on the next byte when the
RTS is raised.

www.ti.com Supported Host Interfaces

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 323

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Supported Host Interfaces www.ti.com

324 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

This page intentionally left blank.

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision L (August 2020) to Revision M (October 2020) Page
• Added Agile Multiband and Triggered Roaming information to Key Features table... 14
• Added Agile Multiband and Triggered Roaming information to Key Features table... 44
• Added Agile Multiband section... 54
• Added Triggered Roaming section... 54
• Added Supported Host Interfaces...307

www.ti.com Revision History

SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor 325

Copyright © 2020 Texas Instruments Incorporated

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

Revision History www.ti.com

326 SimpleLink™ Wi-Fi® CC3x20, CC3x3x Network Processor SWRU455M – FEBRUARY 2017 – REVISED OCTOBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

This page intentionally left blank.

http://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SWRU455M&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	Overview
	Trademarks

	1 Introduction
	1.1 Features
	1.2 Key Features
	1.3 Block Diagram
	1.4 Host Driver Overview
	1.4.1 Host Interface
	1.4.2 OS versus Non-OS
	1.4.3 Quick Reference
	1.4.4 Porting to Different Platforms

	1.5 Acronyms and Terminologies

	2 Networking Application
	2.1 Introduction
	2.1.1 Wi-Fi Connectivity
	2.1.2 Traffic Types
	2.1.3 Security
	2.1.4 User Experience
	2.1.5 Power Consumption
	2.1.6 Provisioning

	2.2 Basic Examples
	2.2.1 Wi-Fi Doorbell
	2.2.1.1 Description
	2.2.1.2 Design Considerations

	2.2.2 Power Socket
	2.2.2.1 Description
	2.2.2.2 Design Constraints

	2.2.3 Wi-Fi Tag
	2.2.3.1 Description
	2.2.3.2 Design Consideration

	3 Device
	3.1 Introduction
	3.2 Key Features
	3.3 Start and Stop
	3.3.1 Start
	3.3.2 Stop
	3.3.3 Hibernate and Shutdown
	3.3.4 Lock State
	3.3.5 Initialization Sequence

	3.4 Host Interface
	3.4.1 SPI Interface
	3.4.2 UART Interface
	3.4.2.1 Change UART Baud Rate

	3.5 Version
	3.6 Event Mask
	3.7 Time and Date
	3.8 MAC Address
	3.9 Device Name
	3.10 Domain Name
	3.11 Device Status
	3.12 Persistent Configuration
	3.13 Device Statistics
	3.14 Errors

	4 WLAN
	4.1 Introduction
	4.2 Key Features
	4.3 Station (STA)
	4.3.1 General Description
	4.3.2 Configurations and Settings
	4.3.2.1 Set Mode
	4.3.2.2 Set General STA Parameters

	4.3.3 Connection
	4.3.3.1 Connection Policies
	4.3.3.2 Preferred Networks (Profiles)
	4.3.3.3 Manual Connection

	4.3.4 Events and Errors
	4.3.5 RSSI Trigger
	4.3.6 Soft-Roaming
	4.3.7 Beacon Interval and DTIM Period
	4.3.8 Agile Multiband
	4.3.9 Triggered Roaming

	4.4 Access Point
	4.4.1 General Description
	4.4.2 Configurations and Settings
	4.4.2.1 Set Mode
	4.4.2.2 Set General AP Parameters
	4.4.2.3 Get General AP Parameters
	4.4.2.4 Black List

	4.4.3 Set Network Configuration
	4.4.3.1 Set AP IP Parameters

	4.4.4 Station Management
	4.4.4.1 Get Connected Stations
	4.4.4.2 Disconnect a Station

	4.4.5 Events and Errors
	4.4.6 Limitations

	4.5 Wi-Fi Direct
	4.5.1 General Description
	4.5.2 Supported Features
	4.5.3 Configurations and Settings
	4.5.3.1 Configuring Wi-Fi Direct General Parameters
	4.5.3.2 Set Wi-Fi Direct Policy
	4.5.3.3 Configure Connection Policy

	4.5.4 Connection
	4.5.5 Events and Errors
	4.5.6 Limitations

	4.6 WLAN Security
	4.6.1 Personal Security
	4.6.2 Enterprise Security
	4.6.3 WPS

	4.7 Scan
	4.7.1 General Description
	4.7.2 Connection Scan
	4.7.3 Configuration (AP/STA)
	4.7.4 Usage
	4.7.5 Miscellaneous

	4.8 Antenna Diversity
	4.8.1 Overview
	4.8.2 Configuration
	4.8.3 Pad Selection

	4.9 Calibrations
	4.9.1 2.4-GHz Wi-Fi Calibration Modes
	4.9.2 5-GHz Wi-Fi Calibration Modes
	4.9.2.1 Serving Channel Calibrations
	4.9.2.2 Non-Serving Channel Calibrations
	4.9.2.3 Storing Calibration Data
	4.9.2.4 Transceiver Socket

	4.10 BLE / 2.4-GHz Radio Coexistence
	4.10.1 Key Features
	4.10.2 Configuration and Settings
	4.10.3 Operation
	4.10.3.1 Calibration

	5 Network Addresses
	5.1 Introduction
	5.2 Key Features
	5.3 Addressing
	5.3.1 IPv4 Addresses
	5.3.2 IPv6 Addresses
	5.3.2.1 Local Link
	5.3.2.2 Link-Global

	5.3.3 DNS Addresses

	5.4 DHCPv4 Client
	5.4.1 Modes
	5.4.2 Address Release

	5.5 DHCPv4 Server
	5.5.1 Enable and Disable the DHCP Server
	5.5.2 Set DHCP Server Parameters

	5.6 DNS Server
	5.7 Errors and Asynchronous Events

	6 Socket
	6.1 Introduction
	6.2 Key Features
	6.3 Socket Types
	6.4 BSD API
	6.5 Socket Working Flow
	6.5.1 TCP
	6.5.1.1 Client Side
	6.5.1.2 Server Side
	6.5.1.3 TCP Keep Alive

	6.5.2 UDP
	6.5.2.1 Multicast
	6.5.2.2 Packet Boundary

	6.5.3 RAW
	6.5.3.1 Layer 4: Transport
	6.5.3.2 Layer 3: Network
	6.5.3.3 Layer 2: Data Link (Transceiver Mode, Not Connected)

	6.5.4 Network Bypass Mode

	6.6 DNS
	6.7 Operation Modes
	6.7.1 Nonblocking Mode
	6.7.2 Trigger Mode
	6.7.2.1 Trigger Mode for Accept
	6.7.2.2 Trigger Mode for Data Reception

	6.7.3 Multiple Select

	6.8 IP Fragmentation
	6.9 Errors

	7 Secure Socket
	7.1 Introduction
	7.2 Key Features
	7.3 Opening a Secure Socket
	7.4 Trusted Root-Certificate Catalog
	7.5 Options and Features Use
	7.5.1 Set TLS Version
	7.5.2 Set Cipher Suites
	7.5.3 Set Certificates, Root CA, Private Key, and DH Files
	7.5.4 Disable the Use of the Trusted Root-Certificate Catalog
	7.5.5 Set ALPN List
	7.5.5.1 ALPN Fixed List
	7.5.5.2 ALPN Generic

	7.5.6 Set Domain Name for Verification and SNI
	7.5.7 Enable OCSP Check
	7.5.8 Upgrade Nonsecured Socket to Secured
	7.5.9 Get Connection Parameters

	7.6 Supported Cryptographic Algorithms
	7.7 Common Errors and Asynchronous Events
	7.7.1 Using Socket Asynchronous Events in TLS
	7.7.2 Common Errors

	8 File System
	8.1 Introduction
	8.2 Key Features
	8.3 File System Characteristics
	8.4 Write a File
	8.4.1 Introduction
	8.4.2 Create a File versus Open for Write
	8.4.3 Create a File
	8.4.3.1 Secure File Creation Notes
	8.4.3.2 Forced Creation Flags

	8.4.4 Open a File for Write
	8.4.5 Write an Opened File
	8.4.6 Close an Opened File (for Write)
	8.4.7 Close an Opened Secure-Signed File (for Write)

	8.5 Read a File
	8.5.1 Open a File for Read
	8.5.2 Read an Opened File
	8.5.3 Close an Opened File (for Read)

	8.6 Delete a File
	8.7 Rename a File
	8.8 File System Helper Functions
	8.8.1 Get File Information
	8.8.2 Get Storage Information
	8.8.3 Get List of Files

	8.9 Bundle Protection
	8.9.1 Bundle File States
	8.9.2 Bundle States
	8.9.2.1 STOPPED
	8.9.2.2 STARTED
	8.9.2.3 PENDING_COMMIT

	8.9.3 Commit a Bundle
	8.9.4 Rollback a Bundle
	8.9.5 Retrieve the Bundle and Files State
	8.9.6 M4 Host Application Bundle Aspects

	8.10 File Commit Feature
	8.10.1 File Commit Process

	8.11 File Rollback Process
	8.12 Programming
	8.12.1 Creation of the Programming Image
	8.12.1.1 Programming Image Types
	8.12.1.2 Program the Device
	8.12.1.2.1 Image Creator Tool (UART) Programming
	8.12.1.2.2 Host Programming
	8.12.1.2.3 External Tool Programming

	8.13 Restore to Factory
	8.13.1 Restore to Factory by the Host
	8.13.2 Restore to Factory by Using the SOP
	8.13.2.1 CC31xx
	8.13.2.2 CC32xx

	8.14 Security Alerts
	8.15 Design Consideration
	8.15.1 Choosing SFLASH Type
	8.15.2 Software Design Consideration
	8.15.3 Retrieving Info Regarding SFLASH Usage
	8.15.4 SFLASH Size
	8.15.4.1 Restore to Factory is Disabled
	8.15.4.2 Restore to Factory is Enabled

	8.15.5 Storage Usage Information

	9 HTTP Server
	9.1 Introduction
	9.1.1 Built-in Configuration Pages
	9.1.2 RESTful APIs
	9.1.2.1 Changing Configuration
	9.1.2.2 Reading Configuration

	9.1.3 Custom Static Pages
	9.1.3.1 Custom Pages With Device Tokens
	9.1.3.2 Static Pages With Host Tokens

	9.1.4 Host Application Interface

	9.2 Key Features
	9.3 Configurations and Settings
	9.4 RESTful API Processing
	9.4.1 Ping
	9.4.2 IP Configuration
	9.4.3 URN Configuration
	9.4.4 WLAN Profiles
	9.4.5 WLAN Scan
	9.4.6 Provisioning Confirmation
	9.4.7 Connection Policy
	9.4.8 Station Action
	9.4.9 AP Black List
	9.4.10 Date and Time

	9.5 Device Parameter Querying Through HTTP (Device Tokens)
	9.5.1 Retrieving Tokens Through GET Request
	9.5.2 Embedded Tokens
	9.5.3 System Information
	9.5.4 Version Information
	9.5.5 Network Information
	9.5.6 Ping Results
	9.5.7 Connection Policy Status
	9.5.8 Provisioning
	9.5.9 Display Profile Information
	9.5.10 P2P Information
	9.5.11 Host Tokens

	9.6 Resource Search Order
	9.6.1 GET Request Search Order
	9.6.2 POST Request Search Order
	9.6.3 PUT and DELETE Request Search Order

	9.7 Host HTTP Requests Processing
	9.7.1 Metadata (TLVs) Description
	9.7.2 GET Processing
	9.7.2.1 Fragmentation

	9.7.3 POST Processing
	9.7.3.1 Long Requests and Delayed Responses

	9.7.4 PUT Processing
	9.7.5 DELETE Processing

	9.8 Security
	9.8.1 Authentication
	9.8.1.1 HTTP Realm

	9.8.2 Secure Connection

	9.9 Processing of Parallel Requests

	10 mDNS
	10.1 Introduction
	10.2 Key Features
	10.3 Configurations and Settings
	10.4 Query
	10.4.1 One Shot Query
	10.4.2 Continuous Query
	10.4.3 Mask Services

	10.5 Get Service List
	10.6 Advertisement
	10.6.1 Registering mDNS Services
	10.6.2 Unregistering mDNS Services
	10.6.3 Advertisement Settings
	10.6.3.1 Timing
	10.6.3.2 Update Text

	10.7 Limitations

	11 Rx Filters
	11.1 Introduction
	11.2 Matching Process
	11.2.1 Filter Matching
	11.2.2 Tree Traversal

	11.3 Examples of Filter Use
	11.3.1 Example 1
	11.3.2 Example 2

	11.4 Filter Creation
	11.4.1 Filter Type
	11.4.2 Filter Flags
	11.4.3 Rule Structure for Header Filters
	11.4.3.1 Field
	11.4.3.2 Compare Functions
	11.4.3.3 Rule Fields
	11.4.3.4 Pattern-Matching Rule Fields

	11.4.4 Rule Structure for Combined Filters
	11.4.5 Filter Trigger
	11.4.5.1 Parent Filter ID
	11.4.5.2 Connection State and Role
	11.4.5.3 Filter During Transceiver Mode

	11.4.6 Rx Filter Action
	11.4.6.1 Send Events Action
	11.4.6.2 Multiple Bits Set on the Same Event
	11.4.6.3 Multiple Events From the Same Rx Frame
	11.4.6.4 Code Example
	11.4.6.5 Counter Action

	11.5 Managing Filters
	11.5.1 Enable and Disable Filters
	11.5.2 Get Filter Status
	11.5.3 Removing a Filter
	11.5.4 Storing Filters into the SFLASH
	11.5.5 Update Filter Arguments

	12 Ping
	12.1 General Description
	12.2 Start and Stop Ping
	12.3 Limitations

	13 Transceiver
	13.1 Introduction
	13.2 Key Features
	13.3 Configurations and Setting
	13.3.1 Open Transceiver Socket
	13.3.2 Close Transceiver Socket
	13.3.3 Send Data
	13.3.4 Receive Data

	13.4 Internal Packet Generator
	13.5 CW
	13.6 Changing Socket Properties
	13.6.1 Change Operating Channel
	13.6.2 Change Default PHY Data Rate
	13.6.3 Change Tx Power
	13.6.4 Change Number of Frames to Transmit (Internal Packet Generator)
	13.6.5 Change 802.11b Preamble
	13.6.6 Set CCA Threshold
	13.6.7 Set Tx Frames Time-out
	13.6.8 Enable or Disable Sending ACKs

	13.7 Limitations

	14 Real-Time RSSI
	14.1 Introduction
	14.2 Data Structure
	14.3 Configurations and Settings
	14.3.1 Connect to an AP
	14.3.2 Opening Real-Time RSSI Socket
	14.3.3 Example Code

	14.4 Constraints

	15 Power Management
	15.1 Introduction
	15.1.1 Key Features
	15.1.2 LPDS
	15.1.3 802.11 Power Save
	15.1.3.1 LSI (Long Sleep Interval)

	15.1.4 WFA IoT Low Power
	15.1.5 Low Power versus Latency
	15.1.6 Power Modes versus Device Modes

	15.2 Configurations and Settings
	15.2.1 Changing Power Policy
	15.2.2 Enabling Fast Connect

	15.3 Network Applications and Power Consumption
	15.3.1 mDNS
	15.3.2 HTTP Server

	15.4 Design Guidelines
	15.4.1 LSI and Packet Loss
	15.4.2 PHY Calibration Mode

	16 Provisioning
	16.1 Introduction
	16.2 Key Features
	16.3 Provisioning Process Overview
	16.3.1 Configuring a Profile
	16.3.2 Confirming a Profile

	16.4 Host Provisioning Application Flow
	16.5 Configuration Modes
	16.5.1 AP Provisioning
	16.5.2 SC Provisioning
	16.5.3 AP and SC Provisioning
	16.5.4 AP and SC and External Configuration Provisioning

	16.6 Starting and Stopping the Provisioning Process
	16.7 Auto-Provisioning
	16.8 Delivering Feedback to the User
	16.8.1 External Confirmation

	16.9 External Configuration
	16.10 Common Events and Errors
	16.10.1 Provisioning Status Event
	16.10.2 Provisioning Profile-Added Event
	16.10.3 Reset Request Event
	16.10.4 Errors
	16.10.5 Host Commands During Provisioning

	16.11 Usage Examples
	16.11.1 Successful SmartConfig Provisioning
	16.11.2 Unsuccessful SmartConfig Provisioning
	16.11.3 Successful SmartConfig Provisioning With AP Fallback
	16.11.4 Successful AP Provisioning
	16.11.5 Successful AP Provisioning With Cloud Confirmation
	16.11.6 Using External Configuration Method: WAC
	16.11.7 Successful SmartConfig Provisioning While External Configuration Enabled

	17 Crypto Utilities
	17.1 Introduction
	17.1.1 API and Usage
	17.1.1.1 Install and Uninstall Key-Pairs and Certificates
	17.1.1.2 Create or Remove Temporary Key
	17.1.1.3 Get Public Key
	17.1.1.4 Certificate Creation
	17.1.1.5 Sign Buffer
	17.1.1.6 Verify Buffer
	17.1.1.7 True Random Number

	17.1.2 Limitations and Constraints
	17.1.3 Errors

	17.2 Secured Content Delivery
	17.2.1 SimpleLink Wi-Fi Side Process Flow
	17.2.2 Encrypted File Format

	18 Hostless Mode
	18.1 Introduction
	18.2 Script Overview
	18.3 Conditions
	18.3.1 Pre-Initialization
	18.3.2 System Event
	18.3.3 Timer Expiration
	18.3.4 Counter Threshold
	18.3.5 Internal Errors

	18.4 Sub-Conditions
	18.5 Actions
	18.5.1 Pre-Initialization Actions
	18.5.1.1 Set Role
	18.5.1.2 Delete All Profiles
	18.5.1.3 Hardware GPIO

	18.5.2 Run-Time Actions
	18.5.2.1 Send Transceiver Packet
	18.5.2.2 Send UDP Packet
	18.5.2.3 Send TCP Packet
	18.5.2.4 Set/Increment Counter
	18.5.2.5 Timer Control
	18.5.2.6 Set GPIO
	18.5.2.7 Enter Hibernate

	19 Porting the Host Driver
	19.1 Introduction
	19.2 Create Platform Porting File
	19.3 Select Capabilities Set
	19.4 Bind the Device Enable/Disable Line
	19.5 Implement the Interface Communication Abstract Layer
	19.6 Choose Memory-Management Model
	19.7 Implement OS Adaptation Layer
	19.7.1 Sync Objects
	19.7.2 Locking Objects

	19.8 Implement Timestamp Services
	19.9 Set Asynchronous Event Handler Routines

	20 Debug
	20.1 Capture NWP Logs
	20.1.1 Overview
	20.1.2 Instructions
	20.1.2.1 Configuring Pin Mux for CC32xx
	20.1.2.2 Terminal Settings
	20.1.2.3 Run Your Program
	20.1.2.4 Send to TI Engineer

	A Host APIs
	A.1 Host APIs

	B Persistency
	B.1 Persistency

	C Regulatory Domain
	C.1 Regulatory Domain

	D Supported Host Interfaces
	D.1 SPI Host Interface
	D.1.1 Introduction
	D.1.2 Abbreviations
	D.1.3 SPI Modes
	D.1.4 SPI Configurations (Shared SPI)
	D.1.5 SPI Initialization
	D.1.6 Host Interface Protocol - SPI Perspective

	D.2 UART Host Interface
	D.2.1 Introduction
	D.2.2 Host Low Power Modes
	D.2.3 UART Host Topologies
	D.2.3.1 5-Wire UART Topology
	D.2.3.2 4-Wire UART Topology
	D.2.3.3 3-Wire UART Topology

	D.2.4 UART Configuration
	D.2.5 UART Initialization
	D.2.5.1 Changing the UART Baud Rate

	D.2.6 Implementing the UART Driver - Concept and Terminology
	D.2.6.1 UART Read API Implementation
	D.2.6.2 UART Write API Implementation

	D.2.7 Register/Unregister Interrupt Handler API Implementation
	D.2.8 Host Interface Protocol – UART Perspective
	D.2.8.1 UART Host Command Flow
	D.2.8.2 Synchronization Words

	Revision History

