Test Report: PMP30491
Tiny SEPIC Reference Design With 12-V/2.5-A Output

Description
This reference design uses the LM5122 device. The output voltage is 12 V and has a 3-A_{max} output current. The input voltage range is from 6 V to 12 V. The circuit is designed to withstand input voltages as low as 5 V (automotive cranking) and load dump up to 36 V. Switching frequency (F_{SW}) has been measured for this board at 210 kHz.

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.
1 Test Prerequisites

1.1 Voltage and Current Requirements

Table 1. Voltage and Current Requirements

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>6 V - 18 V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>12 V</td>
</tr>
<tr>
<td>I_{OUT}</td>
<td>2.5 I_{core} / 3 I_{max}</td>
</tr>
</tbody>
</table>

1.2 Considerations

The switching frequency is approximately 210 kHz. With an output current of 1.13 A, the circuit switches on at 5.99 V and switches off at 4.78 V. All measurements were done using the MODE diode emulation that improves light load efficiency (LLE).

The output current was adjusted to a full load of 3 A with the resistor as the load.
2 Testing and Results

2.1 Efficiency Graphs

Figure 1. Efficiency vs Output Current

Figure 2. Loss vs Output Current
2.2 Load Regulation

Figure 3. Output Current vs Output Voltage

- 6Vin
- 12Vin

Output Voltage (V) vs Output Current (A) chart showing the relationship between output voltage and output current for 6Vin and 12Vin inputs.
2.3 Thermal Images

2.3.1 6-V Input Voltage

Figure 4 shows the thermal image at 6-V input voltage and 3-A output current. This enables short-term cranking of less than 60 seconds. This measurement was taken after 30 minutes of operation.

![Figure 4. 6 V_in / 3-A_max Output](image)

<table>
<thead>
<tr>
<th>NAME</th>
<th>TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>92.6°C</td>
</tr>
<tr>
<td>L1</td>
<td>105.7°C</td>
</tr>
<tr>
<td>Q2</td>
<td>116.9°C</td>
</tr>
<tr>
<td>Q2</td>
<td>91.5°C</td>
</tr>
<tr>
<td>R2</td>
<td>97.3°C</td>
</tr>
</tbody>
</table>
2.3.2 12-V Input Voltage

2.3.2.1 3-A Output Current

Figure 5. 12 V\textsubscript{in} at 3-A\textsubscript{max} Output

<table>
<thead>
<tr>
<th>NAME</th>
<th>TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>66.1°C</td>
</tr>
<tr>
<td>L1</td>
<td>75.2°C</td>
</tr>
<tr>
<td>Q1</td>
<td>66.1°C</td>
</tr>
<tr>
<td>Q2</td>
<td>69.0°C</td>
</tr>
<tr>
<td>R2</td>
<td>63.9°C</td>
</tr>
</tbody>
</table>
2.3.2.2 2.5-A Output Current

Figure 6. 12 V\textsubscript{in} at 2.5 A\textsubscript{out}

<table>
<thead>
<tr>
<th>NAME</th>
<th>TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>58.3°C</td>
</tr>
<tr>
<td>L1</td>
<td>66.5°C</td>
</tr>
<tr>
<td>Q1</td>
<td>57.6°C</td>
</tr>
<tr>
<td>Q2</td>
<td>60.6°C</td>
</tr>
<tr>
<td>R2</td>
<td>55.9°C</td>
</tr>
</tbody>
</table>
2.3.2.3 2-A Output Current

Figure 7. 12 V_{in} at 2 A_{out}

<table>
<thead>
<tr>
<th>NAME</th>
<th>TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>53.8°C</td>
</tr>
<tr>
<td>L1</td>
<td>61.3°C</td>
</tr>
<tr>
<td>Q1</td>
<td>52.5°C</td>
</tr>
<tr>
<td>Q2</td>
<td>55.3°C</td>
</tr>
<tr>
<td>R2</td>
<td>51.4°C</td>
</tr>
</tbody>
</table>
2.3.2.4 1.5-A Output Current

![Image of thermography](image)

Table 1: Temperature Measurement

<table>
<thead>
<tr>
<th>NAME</th>
<th>TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>49.0°C</td>
</tr>
<tr>
<td>L1</td>
<td>56.5°C</td>
</tr>
<tr>
<td>Q1</td>
<td>48.1°C</td>
</tr>
<tr>
<td>Q2</td>
<td>50.1°C</td>
</tr>
<tr>
<td>R2</td>
<td>48.1°C</td>
</tr>
</tbody>
</table>

Figure 8. 12 V_{in} at 1.5 A_{out}
2.3.2.5 1-A Output Current

Figure 9. 12 V_in at 1 A_out

<table>
<thead>
<tr>
<th>NAME</th>
<th>TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>61.9°C</td>
</tr>
<tr>
<td>L1</td>
<td>58.1°C</td>
</tr>
<tr>
<td>Q1</td>
<td>54.8°C</td>
</tr>
<tr>
<td>Q2</td>
<td>52.5°C</td>
</tr>
<tr>
<td>R2</td>
<td>47.9°C</td>
</tr>
</tbody>
</table>
3 Waveforms

3.1 Switching

All switching waveforms in this section were measured with full bandwidth setting.

3.1.1 Q1 (HiSide FET) Source-Drain

3.1.1.1 6-V Input Voltage

Figure 10. Q1 Source to V_{OUT} at 6-V Input Voltage

- 5 V/div
- 1 µs/div

- 50 ns/major div
3.1.1.2 12-V Input Voltage

Figure 11. Q1 Source to V_out at 12-V Input Voltage

- 10 V/div
- 1 μs/div
- 50 ns/major div
3.1.2 Q1 Gate

3.1.2.1 6-V Input Voltage

Figure 12. Q1 Gate to Secondary Switch Node at 6-V Input Voltage

- 5 V/div
- 1 µs/div

- 50 ns/major div
3.1.2.2 12-V Input Voltage

Figure 13. Q1 Gate to Secondary Switch Node at 12-V Input Voltage

- 5 V/div
- 50 ns/major div

- 50 ns/major div
3.1.3 Q2 (LoSide FET) Drain-Source

3.1.3.1 6-V Input Voltage

Figure 14. Q2 Drain to GND at 6-V Input Voltage

- 10 V/div
- 1 µs/div
- 50 ns/major div

- 50 ns/major div
3.1.3.2 12-V Input Voltage

Figure 15. Q2 Drain to GND at 12-V Input Voltage

- 10 V/div
- 1 μs/div

- 50 ns/major div
3.1.4 Q2 Gate

3.1.4.1 6-V Input Voltage

- 2 V/div
- 1 µs/major div

- 50 ns/major div
3.1.4.2 12-V Input Voltage

Figure 16. Q2 Gate to GND at 12-V Input Voltage

- 2 V/div
- 1 µs/div

- 50 ns/major div
3.2 Output Voltage Ripple (AC)

Figure 17. Output Voltage Ripple

- Ch1 (blue): 200 mV/div at 6 V_{IN}
- Ch2 (brown): 200 mV/div at 12 V_{IN}
- 2 µs/div
- 20-MHz bandwidth setting
3.3 Input Voltage Ripple (AC)

- Ch1 (blue): 500 mV/div at 6 V_{IN}
- Ch2 (brown): 500 mV/div at 12 V_{IN}
- 2 µs/div
- 20-MHz bandwidth setting
3.4 **Control Loop Frequency Response**

Table 2. Summary of the Following Figures

<table>
<thead>
<tr>
<th>V_{in}</th>
<th>6 V</th>
<th>12 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth (kHz)</td>
<td>1.71</td>
<td>3.92</td>
</tr>
<tr>
<td>Phase margin</td>
<td>67.8°</td>
<td>69.6°</td>
</tr>
<tr>
<td>Slope (20 dB/decade)</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Gain margin (dB)</td>
<td>-14.2</td>
<td>-17.6</td>
</tr>
<tr>
<td>Slope (20 dB/decade)</td>
<td>-0.7</td>
<td>-1.4</td>
</tr>
<tr>
<td>Frequency (kHz)</td>
<td>11.6</td>
<td>21.9</td>
</tr>
</tbody>
</table>

3.4.1 **6-V Input Voltage**

Figure 19. Bode Plot at 6-V Input Voltage
3.4.2 12-V Input Voltage

Figure 20. Bode Plot at 12-V Input Voltage
3.5 **Load Transients**

Electronic load was used in this measurement. The load switches from 1.5 A to 3 A with a frequency of 100 Hz.

3.5.1 **6-V Input Voltage**

![Waveform 1](image)

- Ch1 (blue): output voltage (AC) = 100 mV/div, 10-kHz bandwidth
- Ch2 (red): output current = 1 A/div, 20-MHz bandwidth
- 2 ms/div
3.5.2 12-V Input Voltage

Figure 22. 1.5-A to 3-A Load Transient at 12-V Input Voltage

- Ch1 (blue): output voltage (AC) = 100 mV/div, 10-kHz bandwidth
- Ch2 (red): output current = 1 A/div, 20-MHz bandwidth
- 2 ms/div
3.6 Start-up Sequence

3.6.1 6-V Input Voltage

Figure 23. Start-up With 6-V Input Voltage

- Ch1 (violet): input voltage = 2 V/div
- Ch2 (green): output voltage = 5 V/div
- 4 ms/div
3.6.2 12-V Input Voltage

Figure 24. Start-up With 12-V Input Voltage

- Ch1 (violet): input voltage = 5 V/div
- Ch2 (green): output voltage = 5 V/div
- 4 ms/div
3.7 **Shut-down Sequence**

The power supply was disconnected in the following measurements. The waveforms were done with a 20-MHz bandwidth setting.

3.7.1 **6-V Input Voltage**

![Figure 25. Shut-down With 6-V Input Voltage](image)

- Ch1 (violet): input voltage = 2 V/div
- Ch2 (green): output voltage = 5 V/div
- 2 ms/div
3.7.2 12-V Input Voltage

Figure 26. Shut-down With 12-V Input Voltage

- Ch1 (violet): input voltage = 5 V/div
- Ch2 (green): output voltage = 5 V/div
- 2 ms/div
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated