Test Report: PMP30428
85-VAC - 400-VAC Input Multiple Output Flyback Reference Design

Description
The PMP30428_RevB reference design uses the UCC28700 valley switching flyback controller to generate 12V@1.1A. The controller provides accurate voltage and constant current regulation with primary-side feedback, eliminating the need for opto-coupler feedback circuits.

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.
1 Test Prerequisites

1.1 Voltage and Current Requirements

Table 1. Voltage and Current Requirements

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>85VAC-400VAC</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>12V@1.1A; -3.3V@10mA</td>
</tr>
<tr>
<td>Nominal switching frequency</td>
<td>90kHz</td>
</tr>
</tbody>
</table>
2 Testing and Results

2.1 Efficiency Graphs

Figure 1. Efficiency

2.2 Load Regulation

Figure 2. Load Regulation 12Vout

2.3 Thermal Images

The images below show the infrared images taken from the FlexCam after 15min at full load output power.
Figure 3. Thermal Pic Top View

<table>
<thead>
<tr>
<th>Name</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosfet Q1</td>
<td>75.1°C</td>
</tr>
<tr>
<td>Diode D1</td>
<td>64.8°C</td>
</tr>
<tr>
<td>Transformer T1</td>
<td>61.1°C</td>
</tr>
</tbody>
</table>

110VAC I_{12}V_{out}=1.1A I_{3.3}V_{out}=10mA
Top.is2

Input voltage = 110VAC
Output power = full load
Ambient temperature = 25°C
No heatsink, no airflow

Figure 4. Thermal Pic Bottom View

<table>
<thead>
<tr>
<th>Name</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode D101</td>
<td>88.6°C</td>
</tr>
<tr>
<td>Rectifier D3</td>
<td>52.1°C</td>
</tr>
</tbody>
</table>

110VAC I_{12}V_{out}=1.1A I_{3.3}V_{out}=10mA
Bottom.is2

Input voltage = 110VAC
Output power = full load
Ambient temperature = 25°C
No heatsink, no airflow
Figure 5. Thermal Pic Top View

<table>
<thead>
<tr>
<th>Name</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformer T1</td>
<td>60.9°C</td>
</tr>
<tr>
<td>Diode D1</td>
<td>64.3°C</td>
</tr>
<tr>
<td>Mosfet Q1</td>
<td>74.1°C</td>
</tr>
</tbody>
</table>

230VAC | 1.2Vout=1.1A | 3.3Vout=10mA
Top.is2

Input voltage = 230VAC
Output power = full load
Ambient temperature = 25°C
No heatsink, no airflow

Figure 6. Thermal Pic Bottom View

<table>
<thead>
<tr>
<th>Name</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode D101</td>
<td>83.4°C</td>
</tr>
<tr>
<td>Rectifier D3</td>
<td>42.3°C</td>
</tr>
</tbody>
</table>

230VAC | 1.2Vout=1.1A | 3.3Vout=10mA
Bottom.is2

Input voltage = 230VAC
Output power = full load
Ambient temperature = 25°C
No heatsink, no airflow
3 Waveforms

3.1 Switching

Figure 7. Switchnode

Input voltage = 325VDC
Output power = full load
Figure 8. Switchnode

Input voltage = 565VDC
Output power = full load
3.2 **Output Voltage Ripple**

Figure 9. Output Voltage Ripple

Input voltage = 325VDC
Load current 12Vout = 1.1A
Load current -3.3V = 10mA
3.3 Load Transients

Figure 10. Load Transient Response 12Vout

Input voltage = 110VAC
Load current 12Vout = 0.5A to 1.1A
Figure 11. Load Transient Response 12Vout

Input voltage = 230VAC
Load current 12Vout = 0.5A to 1.1A
3.4 Start-up Sequence

Figure 12. Start-up

Input voltage = 85VAC
Load current 12Vout = 1.1A
Load current -3.3V = 10mA
Figure 13. Start-up

Input voltage = 273VAC
Load current 12Vout = 1.1A
Load current -3.3V = 10mA
Figure 14. Start-up

Input voltage = 565VDC
Load current 12Vout = 1.1A
Load current -3.3V = 10mA
3.5 Input Ripple

Figure 15. Input Bulk Voltage

Input voltage = 85VAC
Load current 12Vout = 1.1A
Load current -3.3V = 10mA
3.6 Short Circuit Recovery

Figure 16. Short Circuit Test

<table>
<thead>
<tr>
<th>input voltage [VAC]</th>
<th>output 12Vout [V]</th>
<th>output 1-12Vout[A]</th>
<th>power [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>12.01</td>
<td>1.154</td>
<td>13.86</td>
</tr>
<tr>
<td>230</td>
<td>10.94</td>
<td>1.165</td>
<td>12.75</td>
</tr>
<tr>
<td>230</td>
<td>8.52</td>
<td>1.176</td>
<td>10.02</td>
</tr>
<tr>
<td>230</td>
<td>7.35</td>
<td>1.179</td>
<td>8.66</td>
</tr>
<tr>
<td>230</td>
<td>5.58</td>
<td>1.181</td>
<td>6.59</td>
</tr>
<tr>
<td>230</td>
<td>0.01</td>
<td>>1.19</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>11.99</td>
<td>1.144</td>
<td>13.71</td>
</tr>
<tr>
<td>110</td>
<td>11.50</td>
<td>1.149</td>
<td>13.21</td>
</tr>
<tr>
<td>110</td>
<td>9.59</td>
<td>1.160</td>
<td>11.12</td>
</tr>
<tr>
<td>110</td>
<td>7.32</td>
<td>1.168</td>
<td>8.55</td>
</tr>
<tr>
<td>110</td>
<td>5.60</td>
<td>1.171</td>
<td>6.55</td>
</tr>
<tr>
<td>110</td>
<td>0.01</td>
<td>>1.18</td>
<td></td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated