Test Report: PMP22087
336-W Auxless AC/DC Power Supply Reference Design With 80 PLUS Platinum Compatible Performance

Description

This reference design is an AC to DC power supply design with critical conduction mode (CRM) PFC and half-bridge LLC series resonant converter that provides 24V, 240W continuous, 336W peak output from universal input AC voltage (90VAC to 264VAC). This design uses UCC28056 CRM/DCM PFC controller, UCC256404 enhanced LLC controller, and UCC24612-2 synchronous rectifier controller with burst mode enabled for low standby power losses. 87mW @ 115VAC and 124mW @ 230VAC is achieved in this design. Moreover, 93.4% peak efficiency at 115-Vac input and 95.3% peak efficiency at 230-Vac input are achieved in this design. The efficiency and power factor numbers also meet both 115-V and 230-V internal 80 PLUS Platinum specifications and DoE level VI requirement.
1 System Specification

1.1 Board Dimension:
75mm x 180mm x 30mm.

1.2 Input Characteristics

1.2.1 AC Input Voltage and Frequency Limitations:

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAC</td>
<td>90</td>
<td>100~240</td>
<td>265</td>
</tr>
<tr>
<td>Hz</td>
<td>47</td>
<td>50~60</td>
<td>63</td>
</tr>
</tbody>
</table>

1.2.2 AC Input Current:
- 4A Max. at 100VAC.
- 2A Max. at 200VAC.
- Current total harmonic distortion should be less than 20% from 5A to 10A load.

1.2.3 Power Factor:
Power factor should be greater than 0.95 at 50% load with either 115VAC/60Hz or 230VAC/50Hz input.

1.2.4 Inrush Current:
- Cold start: <50A at both 100VAC and 230VAC input and 25degC ambient temperature.
- Hot start: no component damage.

1.3 Output Characteristics
The power supply unit should be able to supply 24V+/−5%, 240W output power continuously and 24V+/−5%, 336W peak power for 20second with 10% duty cycle.
2 Testing and Results

2.1 Board Photos
The photographs below show the top and bottom view of the PMP22087Rev A board. PMP22087Rev A circuit is built on PMP21160Rev B PCB board.

2.1.1 Top Side

2.1.2 Bottom Side
2.2 Efficiency Data
4-point average efficiency: 92.38% @ 115VAC/60Hz and 94.16% @ 230VAC/50Hz

![Total Efficiency Graph](chart)

2.2.1 100VAC/60Hz Efficiency Measurement

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin (A)</th>
<th>Pin (W)</th>
<th>P.F.</th>
<th>THD (%)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Pout(W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.09</td>
<td>0.288</td>
<td>15.71</td>
<td>0.546</td>
<td>19.31</td>
<td>23.92</td>
<td>0.493</td>
<td>11.79</td>
<td>75.07%</td>
</tr>
<tr>
<td>100.06</td>
<td>0.391</td>
<td>29.56</td>
<td>0.754</td>
<td>18.01</td>
<td>23.92</td>
<td>1.002</td>
<td>23.97</td>
<td>81.08%</td>
</tr>
<tr>
<td>100.05</td>
<td>0.439</td>
<td>42.17</td>
<td>0.961</td>
<td>8.26</td>
<td>23.92</td>
<td>1.496</td>
<td>35.78</td>
<td>84.86%</td>
</tr>
<tr>
<td>100.02</td>
<td>0.561</td>
<td>54.65</td>
<td>0.974</td>
<td>9.36</td>
<td>23.92</td>
<td>1.989</td>
<td>47.58</td>
<td>87.06%</td>
</tr>
<tr>
<td>100.11</td>
<td>0.682</td>
<td>66.94</td>
<td>0.981</td>
<td>9.02</td>
<td>23.92</td>
<td>2.497</td>
<td>59.73</td>
<td>89.23%</td>
</tr>
<tr>
<td>100.18</td>
<td>0.806</td>
<td>79.59</td>
<td>0.985</td>
<td>8.04</td>
<td>23.92</td>
<td>2.998</td>
<td>71.71</td>
<td>90.10%</td>
</tr>
<tr>
<td>100.14</td>
<td>1.059</td>
<td>104.86</td>
<td>0.989</td>
<td>7.47</td>
<td>23.92</td>
<td>3.997</td>
<td>95.61</td>
<td>91.18%</td>
</tr>
<tr>
<td>100.10</td>
<td>1.315</td>
<td>130.57</td>
<td>0.992</td>
<td>6.26</td>
<td>23.92</td>
<td>5.003</td>
<td>119.67</td>
<td>91.65%</td>
</tr>
<tr>
<td>100.07</td>
<td>1.581</td>
<td>156.13</td>
<td>0.987</td>
<td>14.73</td>
<td>23.92</td>
<td>6.002</td>
<td>143.57</td>
<td>91.95%</td>
</tr>
<tr>
<td>100.02</td>
<td>1.839</td>
<td>182.08</td>
<td>0.990</td>
<td>13.39</td>
<td>23.92</td>
<td>7.000</td>
<td>167.44</td>
<td>91.96%</td>
</tr>
<tr>
<td>100.01</td>
<td>1.971</td>
<td>195.22</td>
<td>0.990</td>
<td>12.86</td>
<td>23.92</td>
<td>7.500</td>
<td>179.40</td>
<td>91.90%</td>
</tr>
<tr>
<td>100.18</td>
<td>2.099</td>
<td>208.40</td>
<td>0.991</td>
<td>12.36</td>
<td>23.92</td>
<td>8.000</td>
<td>191.36</td>
<td>91.82%</td>
</tr>
<tr>
<td>100.13</td>
<td>2.364</td>
<td>235.00</td>
<td>0.992</td>
<td>11.47</td>
<td>23.92</td>
<td>9.000</td>
<td>215.28</td>
<td>91.61%</td>
</tr>
<tr>
<td>100.10</td>
<td>2.633</td>
<td>261.70</td>
<td>0.993</td>
<td>10.83</td>
<td>23.92</td>
<td>10.000</td>
<td>239.20</td>
<td>91.40%</td>
</tr>
</tbody>
</table>
2.2.2 115VAC/60Hz Efficiency Measurement

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin (A)</th>
<th>Pin (W)</th>
<th>P.F.</th>
<th>THD (%)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Pout (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115.10</td>
<td>0.254</td>
<td>16.02</td>
<td>0.550</td>
<td>26.86</td>
<td>23.92</td>
<td>0.497</td>
<td>11.89</td>
<td>74.21%</td>
</tr>
<tr>
<td>115.07</td>
<td>0.394</td>
<td>29.91</td>
<td>0.640</td>
<td>32.60</td>
<td>23.92</td>
<td>0.997</td>
<td>23.85</td>
<td>79.73%</td>
</tr>
<tr>
<td>115.06</td>
<td>0.471</td>
<td>42.20</td>
<td>0.775</td>
<td>18.11</td>
<td>23.92</td>
<td>1.497</td>
<td>35.81</td>
<td>84.85%</td>
</tr>
<tr>
<td>115.04</td>
<td>0.497</td>
<td>55.02</td>
<td>0.962</td>
<td>6.74</td>
<td>23.92</td>
<td>1.989</td>
<td>47.58</td>
<td>86.47%</td>
</tr>
<tr>
<td>115.03</td>
<td>0.599</td>
<td>67.12</td>
<td>0.973</td>
<td>7.48</td>
<td>23.92</td>
<td>2.490</td>
<td>59.56</td>
<td>88.74%</td>
</tr>
<tr>
<td>115.01</td>
<td>0.705</td>
<td>79.36</td>
<td>0.979</td>
<td>8.30</td>
<td>23.92</td>
<td>2.990</td>
<td>71.52</td>
<td>90.12%</td>
</tr>
<tr>
<td>115.08</td>
<td>0.923</td>
<td>104.72</td>
<td>0.985</td>
<td>8.73</td>
<td>23.92</td>
<td>4.001</td>
<td>95.70</td>
<td>91.39%</td>
</tr>
<tr>
<td>115.14</td>
<td>1.140</td>
<td>129.86</td>
<td>0.989</td>
<td>6.97</td>
<td>23.92</td>
<td>4.993</td>
<td>119.43</td>
<td>91.97%</td>
</tr>
<tr>
<td>115.11</td>
<td>1.364</td>
<td>155.60</td>
<td>0.991</td>
<td>6.89</td>
<td>23.92</td>
<td>6.002</td>
<td>143.57</td>
<td>92.27%</td>
</tr>
<tr>
<td>115.07</td>
<td>1.595</td>
<td>181.14</td>
<td>0.987</td>
<td>14.31</td>
<td>23.92</td>
<td>7.000</td>
<td>167.44</td>
<td>92.44%</td>
</tr>
<tr>
<td>115.07</td>
<td>1.709</td>
<td>194.26</td>
<td>0.988</td>
<td>13.81</td>
<td>23.92</td>
<td>7.510</td>
<td>179.64</td>
<td>92.47%</td>
</tr>
<tr>
<td>115.04</td>
<td>1.821</td>
<td>207.20</td>
<td>0.989</td>
<td>13.22</td>
<td>23.92</td>
<td>8.000</td>
<td>191.36</td>
<td>92.36%</td>
</tr>
<tr>
<td>115.01</td>
<td>2.049</td>
<td>233.40</td>
<td>0.991</td>
<td>12.30</td>
<td>23.92</td>
<td>9.000</td>
<td>215.28</td>
<td>92.24%</td>
</tr>
<tr>
<td>114.97</td>
<td>2.278</td>
<td>259.80</td>
<td>0.992</td>
<td>11.59</td>
<td>23.92</td>
<td>10.000</td>
<td>239.20</td>
<td>92.07%</td>
</tr>
</tbody>
</table>

2.2.3 230VAC/50Hz Efficiency Measurement

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin (A)</th>
<th>Pin (W)</th>
<th>P.F.</th>
<th>THD (%)</th>
<th>Vout (V)</th>
<th>Iout (A)</th>
<th>Pout (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>230.50</td>
<td>0.195</td>
<td>14.60</td>
<td>0.322</td>
<td>22.98</td>
<td>23.93</td>
<td>0.496</td>
<td>11.87</td>
<td>81.30%</td>
</tr>
<tr>
<td>230.40</td>
<td>0.246</td>
<td>27.70</td>
<td>0.505</td>
<td>36.95</td>
<td>23.93</td>
<td>1.004</td>
<td>24.03</td>
<td>86.74%</td>
</tr>
<tr>
<td>230.50</td>
<td>0.292</td>
<td>40.56</td>
<td>0.608</td>
<td>35.24</td>
<td>23.93</td>
<td>1.500</td>
<td>35.90</td>
<td>88.50%</td>
</tr>
<tr>
<td>230.40</td>
<td>0.329</td>
<td>53.31</td>
<td>0.705</td>
<td>14.09</td>
<td>23.93</td>
<td>1.995</td>
<td>47.74</td>
<td>89.55%</td>
</tr>
<tr>
<td>230.40</td>
<td>0.358</td>
<td>65.46</td>
<td>0.794</td>
<td>11.56</td>
<td>23.92</td>
<td>2.501</td>
<td>59.82</td>
<td>91.39%</td>
</tr>
<tr>
<td>230.40</td>
<td>0.391</td>
<td>77.68</td>
<td>0.862</td>
<td>10.03</td>
<td>23.92</td>
<td>2.996</td>
<td>71.66</td>
<td>92.26%</td>
</tr>
<tr>
<td>230.40</td>
<td>0.491</td>
<td>102.68</td>
<td>0.909</td>
<td>8.14</td>
<td>23.92</td>
<td>4.003</td>
<td>95.75</td>
<td>93.25%</td>
</tr>
<tr>
<td>230.40</td>
<td>0.587</td>
<td>127.51</td>
<td>0.942</td>
<td>7.60</td>
<td>23.92</td>
<td>4.997</td>
<td>119.53</td>
<td>93.74%</td>
</tr>
<tr>
<td>230.40</td>
<td>0.692</td>
<td>152.66</td>
<td>0.957</td>
<td>7.09</td>
<td>23.92</td>
<td>5.998</td>
<td>143.47</td>
<td>93.98%</td>
</tr>
<tr>
<td>230.40</td>
<td>0.799</td>
<td>177.94</td>
<td>0.967</td>
<td>6.57</td>
<td>23.92</td>
<td>7.000</td>
<td>167.44</td>
<td>94.10%</td>
</tr>
<tr>
<td>230.40</td>
<td>0.853</td>
<td>190.67</td>
<td>0.970</td>
<td>6.52</td>
<td>23.92</td>
<td>7.510</td>
<td>179.64</td>
<td>94.21%</td>
</tr>
<tr>
<td>230.30</td>
<td>0.907</td>
<td>203.50</td>
<td>0.973</td>
<td>6.61</td>
<td>23.92</td>
<td>8.010</td>
<td>191.60</td>
<td>94.15%</td>
</tr>
<tr>
<td>230.30</td>
<td>1.016</td>
<td>228.90</td>
<td>0.978</td>
<td>7.61</td>
<td>23.92</td>
<td>9.010</td>
<td>215.52</td>
<td>94.15%</td>
</tr>
<tr>
<td>230.30</td>
<td>1.127</td>
<td>254.40</td>
<td>0.981</td>
<td>7.07</td>
<td>23.92</td>
<td>10.000</td>
<td>239.20</td>
<td>94.03%</td>
</tr>
</tbody>
</table>
2.3 **No Load Power Consumption**
No load power consumption was measured with Voltech PM1000+ power meter using 5-minute-average and Chroma 61605 AC source.

2.3.1 No Part Change (Test as is):

115VAC/60Hz: $P_{in}=113\text{mW}$.

230VAC/50Hz: $P_{in}=157\text{mW}$.

2.3.2 Test With Following Parts Change: Disconnect Vout to SR controllers (U200, U201), short RT100 and remove C117 and R121.

115VAC/60Hz: $P_{in}=80\text{mW}$.

230VAC/50Hz: $P_{in}=121\text{mW}$.
2.4 Thermal Images
The thermal images below show a top view and bottom view of the board. The board is placed vertically during the test. The ambient temperature was 25°C with no air flow. The output was loaded with 24V/10A.

2.4.1 100V_{AC}/60Hz, Top Side

![Thermal Image]

<table>
<thead>
<tr>
<th>Component</th>
<th>Max</th>
<th>Min</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bx1</td>
<td>101.2°C</td>
<td>25.5°C</td>
<td>62.4°C</td>
</tr>
<tr>
<td>Bx2</td>
<td>89.1°C</td>
<td>58.1°C</td>
<td>79.9°C</td>
</tr>
<tr>
<td>Bx3</td>
<td>91.3°C</td>
<td>29.1°C</td>
<td>69.6°C</td>
</tr>
<tr>
<td>Bx4</td>
<td>66.7°C</td>
<td>50.4°C</td>
<td>56.6°C</td>
</tr>
<tr>
<td>Sp2</td>
<td>30.2°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4.2 100V_{AC}/60Hz, Bottom Side

<table>
<thead>
<tr>
<th></th>
<th>Max</th>
<th>Min</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bx1</td>
<td>90.2 °C</td>
<td>33.7 °C</td>
<td>75.7 °C</td>
</tr>
<tr>
<td>Bx2</td>
<td>89.7 °C</td>
<td>32.7 °C</td>
<td>72.2 °C</td>
</tr>
<tr>
<td>Bx3</td>
<td>62.2 °C</td>
<td>37.8 °C</td>
<td>57.1 °C</td>
</tr>
<tr>
<td>Bx4</td>
<td>61.5 °C</td>
<td>34.0 °C</td>
<td>55.9 °C</td>
</tr>
<tr>
<td>Bx5</td>
<td>61.5 °C</td>
<td>33.9 °C</td>
<td>55.9 °C</td>
</tr>
<tr>
<td>Bx6</td>
<td>59.8 °C</td>
<td>38.7 °C</td>
<td>54.3 °C</td>
</tr>
<tr>
<td>Bx7</td>
<td>59.3 °C</td>
<td>33.9 °C</td>
<td>51.2 °C</td>
</tr>
<tr>
<td>Sp1</td>
<td>61.0 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sp2</td>
<td>24.0 °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4.3 115V_{AC}/60Hz, Top Side

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bx1</td>
<td>Max</td>
<td>91.9 °C</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>23.1 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>57.2 °C</td>
</tr>
<tr>
<td>Bx2</td>
<td>Max</td>
<td>78.5 °C</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>54.6 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>70.8 °C</td>
</tr>
<tr>
<td>Bx3</td>
<td>Max</td>
<td>86.0 °C</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>29.9 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>70.5 °C</td>
</tr>
<tr>
<td>Bx4</td>
<td>Max</td>
<td>68.0 °C</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>50.5 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>57.3 °C</td>
</tr>
<tr>
<td>Sp1</td>
<td></td>
<td>32.4 °C</td>
</tr>
</tbody>
</table>

5/13/2019 1:16:20 AM

[Image: FLIR2761.jpg, FLIR E75, 78503305]
2.4.4 115V_{AC}/60Hz, Bottom Side

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bx1</td>
<td>Max</td>
<td>81.9 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>28.2 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>65.1 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bx2</td>
<td>Max</td>
<td>58.1 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>39.9 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>54.6 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bx3</td>
<td>Max</td>
<td>60.1 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>41.2 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>51.5 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bx4</td>
<td>Max</td>
<td>60.7 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>24.8 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>53.1 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bx5</td>
<td>Max</td>
<td>59.5 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>37.3 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>55.0 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bx6</td>
<td>Max</td>
<td>58.6 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>32.0 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>50.4 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sp1</td>
<td></td>
<td>22.5 °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5/13/2019 1:16:03 AM

FLIR2760.jpg FLIR E75 78503305
2.4.5 230V_{AC}/50Hz, Top Side

Thermography Image

![Flir Image](FLIR2763.jpg)

<table>
<thead>
<tr>
<th>Location</th>
<th>Max</th>
<th>Min</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bx1</td>
<td>69.5 °C</td>
<td>24.9 °C</td>
<td>49.4 °C</td>
</tr>
<tr>
<td>Bx2</td>
<td>70.7 °C</td>
<td>27.7 °C</td>
<td>60.3 °C</td>
</tr>
<tr>
<td>Bx3</td>
<td>67.3 °C</td>
<td>50.0 °C</td>
<td>57.1 °C</td>
</tr>
<tr>
<td>Sp1</td>
<td>29.3 °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4.6 230V_{AC}/50Hz, Bottom Side

<table>
<thead>
<tr>
<th>Bx1</th>
<th>Max</th>
<th>61.5 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>28.1 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>53.5 °C</td>
</tr>
<tr>
<td>Bx2</td>
<td>Max</td>
<td>50.4 °C</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>43.5 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>48.7 °C</td>
</tr>
<tr>
<td>Bx3</td>
<td>Max</td>
<td>56.5 °C</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>37.7 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>53.5 °C</td>
</tr>
<tr>
<td>Bx4</td>
<td>Max</td>
<td>60.0 °C</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>34.3 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>55.3 °C</td>
</tr>
<tr>
<td>Bx5</td>
<td>Max</td>
<td>58.0 °C</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>44.3 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>51.5 °C</td>
</tr>
<tr>
<td>Bx6</td>
<td>Max</td>
<td>59.1 °C</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>35.9 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>55.2 °C</td>
</tr>
<tr>
<td>Bx7</td>
<td>Max</td>
<td>58.8 °C</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>33.1 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>50.6 °C</td>
</tr>
</tbody>
</table>

Sp1 | 22.5 °C
2.5 **Startup**
The voltages at startup are shown in the images below, where Channel 1 is output voltage, Channel 3 is HV to GND, and Channel 4 is T200 Primary winding current (200mV/A).

2.5.1 100V\textsubscript{AC}/60Hz – No Load

![Graph 1](image1)

2.5.2 100V\textsubscript{AC}/60Hz – 24V/10A

![Graph 2](image2)
2.5.3 115V_{AC}/60Hz – No Load

2.5.4 115V_{AC}/60Hz – 24V/10A
2.5.5 230V_{AC}/50Hz – No Load

2.5.6 230V_{AC}/50Hz – 24V/10A
2.6 Ripple Voltages

Ripple voltages are shown in the images below, where Channel 1 is V_{out} to GND voltage in AC level and Channel 3 is HV to GND voltage in AC level.

2.6.1 $100\text{V}_{\text{AC}}/60\text{Hz}$ – $24\text{V}/0\text{A}$

![Image of ripple voltage for 100V AC/60Hz - 24V/0A](image)

2.6.2 $100\text{V}_{\text{AC}}/60\text{Hz}$ – $24\text{V}/10\text{A}$

![Image of ripple voltage for 100V AC/60Hz - 24V/10A](image)
2.6.3 115V_{AC}/60Hz – 24V/0A

2.6.4 115V_{AC}/60Hz – 24V/10A
2.6.5 230V_{AC}/50Hz – 24V/0A

2.6.6 230V_{AC}/50Hz – 24V/10A
2.7 **Load Response**
Load response is tested at 230V\textsubscript{AC}/50Hz input, where Channel 3 is the output voltage in AC level and Channel 4 is output current.

2.7.1 Load step from 0.1A to 7A:

![Load step from 0.1A to 7A](image1)

2.7.2 Load step from 7A to 14A:

![Load step from 7A to 14A](image2)
2.8 Frequency Response

Frequency response of the LLC-SRC stage is tested with 230V_{AC}/50Hz input at 10A load. Signal was injected on R215.
2.9 Key Waveforms

2.9.1 SR FET conduction at 100VAC/60Hz input, 24V/0A output: C1: Q203 \(V_{DS} \), C2: Q201 \(V_{GS} \), C3: Q203 \(V_{GS} \), C4: \(I_{PRI} \).

2.9.2 SR FET conduction at 100VAC/60Hz input, 24V/0.1A output: C1: Q203 \(V_{DS} \), C2: Q201 \(V_{GS} \), C3: Q203 \(V_{GS} \), C4: \(I_{PRI} \).
2.9.3 SR FET conduction at 100VAC/60Hz input, 24V/0.5A output: C1: Q203 V_{DS}, C2: Q201 V_{GS}, C3: Q203 V_{GS}, C4: I_{PRI}.

2.9.4 SR FET conduction at 100VAC/60Hz input, 24V/5A output: C1: Q203 V_{DS}, C2: Q201 V_{GS}, C3: Q203 V_{GS}, C4: I_{PRI}.

![Waveform Diagrams](image-url)
2.9.5 SR FET conduction at 100VAC/60Hz input, 24V/10A output: C1: Q203 V_{DS}, C2: Q201 V_{GS}, C3: Q203 V_{GS}, C4: I_{PRI}.

![Diagram showing SR FET conduction](image.png)
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated