Test Report: PMP30805

Tiny Automotive SEPIC Reference Design

Description

This tiny automotive SEPIC reference design contains a 6 W auxiliary power supply and is designed for a 12 V bias rail. The wide input accepts cranking down to 4.5 Vmin and surge up to 40 Vmax. Due to switching frequency of 2 MHz, the dual inductor is fairly small, resulting in excellent dynamic behavior. TI controller LM5155x-Q1 is cost effective and its housekeeping currents are minimized. The optional input filter attenuates reflected ripple, and the SEPIC topology supports fine EMI behavior by continuous input current.

![Tiny Automotive SEPIC Reference Design Board](image-url)
1 Test Prerequisites

1.1 Voltage and Current Requirements

Table 1. Voltage and Current Requirements

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range</td>
<td>6.0 V-18 V, 12.0 V nom., 4.5 V cranking, 40.0 V peak</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>12 V @ 500 mA</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>2 MHz</td>
</tr>
<tr>
<td>Topology</td>
<td>Nonsynchronous SEPIC</td>
</tr>
</tbody>
</table>

1.2 Considerations

- Due to availability BSZ340N08NS3 was used as Q1A.
- The circuit started up at 5.7 V input voltage and shut down at 4.4 V.
- Switching frequency has been verified at 2.022MHz for this prototype.
- Current sense trips at load current 670mA at minimum input voltage 4.5V, margin 30%+.
- At nominal input 12V the converter has been tested up to 800mA.

Unless otherwise indicated, the input voltage was set to 12 V and the output current was adjusted to full load 500 mA with a variable resistor.
2 Testing and Results

2.1 Efficiency Graphs

![Efficiency vs Output Current](image)

Figure 1 Efficiency vs Output Current

2.2 Loss

![Loss vs Output Current](image)

Figure 2 Loss vs Output Current
2.3 Load Regulation

Figure 3 Output Voltage vs Output Current
2.4 Line Regulation

Figure 4 Output Voltage vs Input Voltage

Efficiency and Loss were also calculated.

Figure 5 Efficiency and Loss vs Input Voltage
2.5 Thermal Images

Figure 6 IR-Image @ 6 V Input Voltage

Figure 7 IR-Image @ 12 V Input Voltage – at nominal input dt < +35K (!)

Figure 8 IR-Image @ 18 V Input Voltage

2.6 Dimensions
The size of this PCB is 68.6 mm x 25.4 mm, two layers board 70um each and assembly is single sided
3 Waveforms

3.1 Switching

3.1.1 Q1 Drain to GND

3.1.1.1 6 V Input Voltage

![Figure 9 Waveform Q1 Drain to GND @ 6 Vin](image-url)
3.1.1.2 12 V Input Voltage

Figure 10 Waveform Q1 Drain to GND @ 12 Vin – almost neither overshoot nor ringing (!)
3.1.1.3 18 V Input Voltage

Figure 11 Waveform Q1 Drain to GND @ 18 Vin
3.1.2 Q1 Gate to GND

![Waveform Q1 Gate to GND @ 12 Vin](image)

Figure 12 Waveform Q1 Gate to GND @ 12 Vin
3.1.3 Diode D2 (referenced to VOUT)

3.1.3.1 6 V Input Voltage

Figure 13 Waveform D2 to VOUT @ 6 Vin
3.1.3.2 12 V Input Voltage

Figure 14 Waveform D2 to VOUT @ 12 Vin
3.1.3.3 18 V Input Voltage

Figure 15 Waveform D2 to VOUT @ 18 Vin
3.2 **Output Voltage Ripple**

![Output Voltage Ripple Graph]

Figure 16 Output Ripple @ 12 V Input Voltage, output ripple 90mVpp, <1% Vout (!)

3.3 **Input Voltage Ripple**

![Input Voltage Ripple Graph]

Figure 17 Filtered Input Ripple @ 12 V Input Voltage, reflected ripple 20mVpp (!)
3.4 **Bode Plot**

<table>
<thead>
<tr>
<th></th>
<th>4.5 Vin</th>
<th>6 Vin</th>
<th>12 Vin</th>
<th>18 Vin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth (kHz)</td>
<td>5.28</td>
<td>7.32</td>
<td>12.7</td>
<td>16.6</td>
</tr>
<tr>
<td>Phasemargin</td>
<td>74°</td>
<td>75°</td>
<td>76°</td>
<td>71°</td>
</tr>
<tr>
<td>slope (20dB/decade)</td>
<td>-0.98</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>gain margin (dB)</td>
<td>-13.3</td>
<td>-14.9</td>
<td>-17.4</td>
<td>-17.6</td>
</tr>
<tr>
<td>slope (20dB/decade)</td>
<td>-0.7</td>
<td>-0.74</td>
<td>-1.31</td>
<td>-1.45</td>
</tr>
<tr>
<td>freq (kHz)</td>
<td>33.1</td>
<td>45.1</td>
<td>72.4</td>
<td>84.6</td>
</tr>
</tbody>
</table>

Table 1 Summary of the Bode Plots

Figure 18 Bode Plot for 4.5 V Input Voltage

Loop bandwidth >5kHz ensures best dynamic behavior. Due to high Fsw 2MHz resulting in small magnetizing inductance the RHPZ is fairly high, so Fco could be increased.
Figure 19 Bode Plot for 6 V Input Voltage

Figure 20 Bode Plot for 12 V Input Voltage
Figure 21 Bode Plot for 18 V Input Voltage
3.5 Load Transients
The electronic load switches from 0.25 A to 0.5 A @ 100 Hz

3.5.1 6 V Input Voltage

Figure 22 Load Transient @ 6 V Input Voltage – worst case deviation 240mVpk, 2% of Vout (!)

3.5.2 12 V Input Voltage

Figure 23 Load Transient @ 12 V Input Voltage
3.5.3 18 V Input Voltage

Output Voltage => 100 mV / div
Output Current => 200 mA / div
10 kHz bw

Figure 24 Load Transient @ 18 V Input Voltage
3.6 Start-up Sequence, soft start time 10ms

Figure 25 Start-Up @ 12 V Input Voltage, tss 10ms ensures low inrush current during startup

3.7 Shutdown Sequence

Figure 26 Shutdown @ 12 V Input Voltage
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated