Test Report: PMP22165
Power for Xilinx Versal Adaptive Compute Acceleration Platform (ACAP) Reference Design

Description

PMP22165 reference design addresses Xilinx Versal Adaptive Compute Acceleration Platform (ACAP) platform requirements and consists of a Power Management Integrated Circuit (PMIC) for system-rails, plus a multiphase controller and power stages to support higher current processor loads. On board dynamic loads on the critical outputs allow testing to Xilinx’s demanding power requirements. PMP22165 along with the TPS53681 EVM is a tested solution offering performance with cost-optimized components to meet processor requirements for Versal’s most common use cases 1 & 3.

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.
1 Test Prerequisites

1.1 Voltage and Current Requirements

Table 1. Voltage and Current Requirements

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>7-14 VDC</td>
</tr>
<tr>
<td>Output Voltage Range</td>
<td>Various outputs 0.8V thru 3.3V</td>
</tr>
<tr>
<td>Max Load Current</td>
<td>165A on main, up to 4.8A on 1.2V</td>
</tr>
<tr>
<td>Max Output Power (electrical peak / for thermal purposes)</td>
<td>150W electrical peak</td>
</tr>
</tbody>
</table>

1.2 Required Equipment

- Lab 12 V 20 A source if testing with main 0.8V 165A, otherwise 12V 3A source OK
- Electronic loads rated to carry maximum static load
- Signal generator to drive on-board dynamic load. Example Tektronix AFG3102
- Thermal camera
- Oscilloscope and voltage / current meters or current shunts

1.3 Programming the TPS650861

The TPS650861 needs to be programmed for this application thru the PMB_CLK (J401-9) and PMB_DIO (J401-10) pins with J401-6 as ground. Also, during programming CTL4 (J50-1) needs to be pulled to 7V. Also, when “burning in” the program, IRQB (J50-2) also needs to be pulled to 7V.

See TPS65086100 Non-Volatile Memory Programming Guide for details. The following script was used on the PMP22165 boards.

```javascript
var custom_program_199 = {
    {group: 'PART_NUMBER', value: 0x199},
    {register: 'DEVICEID2', value: 0x01},
    {register: 'BUCK1CTRL', value: 0xE8},
    {register: 'BUCK2CTRL', value: 0xDC},
    {register: 'BUCK3DECAY', value: 0x38},
    {register: 'BUCK3VID', value: 0x38},
    {register: 'BUCK3SLPCTRL', value: 0x38},
    {register: 'BUCK4CTRL', value: 0x0F},
    {register: 'BUCK5CTRL', value: 0x0F},
    {register: 'BUCK6CTRL', value: 0x0F},
    {register: 'LDOA2CTRL', value: 0x0C},
    {register: 'LDOA3CTRL', value: 0x0C},
    {register: 'DISCHCTRL1', value: 0x55},
    {register: 'DISCHCTRL2', value: 0x55},
    {register: 'DISCHCTRL3', value: 0x15},
};
```
{register: 'PG_DELAY1', value: 0x06},
{register: 'BUCK1SLPCTRL', value: 0xE8},
{register: 'BUCK2SLPCTRL', value: 0xDC},
{register: 'BUCK4VID', value: 0xA8},
{register: 'BUCK4SLPVID', value: 0xA8},
{register: 'BUCK5VID', value: 0x26},
{register: 'BUCK5SLPVID', value: 0x26},
{register: 'BUCK6VID', value: 0xA0},
{register: 'BUCK6SLPVID', value: 0xA0},
{register: 'LDOA2VID', value: 0xFF},
{register: 'LDOA3VID', value: 0xAA},
{register: 'BUCK123CTRL', value: 0x3F},
{register: 'PG_DELAY2', value: 0x00},
{register: 'SWVTT_DIS', value: 0x60},
{register: 'I2C_RAIL_EN1', value: 0x80},
{register: 'I2C_RAIL_EN2', value: 0x0D},
{register: 'PWR_FAULT_MASK1', value: 0x80},
{register: 'PWR_FAULT_MASK2', value: 0x31},
{register: 'GPO1PG_CTRL1', value: 0xFE},
{register: 'GPO1PG_CTRL2', value: 0xFF},
{register: 'GPO4PG_CTRL1', value: 0xFF},
{register: 'GPO4PG_CTRL2', value: 0xFF},
{register: 'GPO2PG_CTRL1', value: 0xFF},
{register: 'GPO2PG_CTRL2', value: 0xFF},
{register: 'GPO3PG_CTRL1', value: 0x80},
{register: 'GPO3PG_CTRL2', value: 0x7D},
{register: 'MISCSYSPG', value: 0x7F},
{register: 'VTT_DISCH_CTRL', value: 0x5F},
{register: 'LDOA1_SWB2_CTRL', value: 0x54},
{register: 'BUCK1_CTRL_EN1', value: 0xFF},
{register: 'BUCK1_CTRL_EN2', value: 0xFB},
{register: 'BUCK1_CTRL_EN3', value: 0x10},
{register: 'BUCK2_CTRL_EN1', value: 0xFE},
{register: 'BUCK2_CTRL_EN2', value: 0xCB},
{register: 'BUCK2_CTRL_EN3', value: 0x01},
{register: 'BUCK3_CTRL_EN1', value: 0xC4},
{register: 'BUCK3_CTRL_EN2', value: 0x6B},
{register: 'BUCK3_CTRL_EN3', value: 0x09},
{register: 'BUCK4_CTRL_EN1', value: 0xC4},
{register: 'BUCK4_CTRL_EN2', value: 0xEB},
{register: 'BUCK4_CTRL_EN3', value: 0x10},
{register: 'BUCK5_CTRL_EN1', value: 0xFC},
{register: 'BUCK5_CTRL_EN2', value: 0x6B},
{register: 'BUCK5_CTRL_EN3', value: 0x08},
{register: 'BUCK6_CTRL_EN1', value: 0xCC},
{register: 'BUCK6_CTRL_EN2', value: 0xCB},
{register: 'BUCK6_CTRL_EN3', value: 0x01},
{register: 'SWA1_CTRL_EN1', value: 0xEC},
{register: 'SWA1_CTRL_EN2', value: 0x0B},
{register: 'SWA1_CTRL_EN3', value: 0x01},
{register: 'LDOA2_CTRL_EN1', value: 0xFF},
{register: 'LDOA2_CTRL_EN2', value: 0x5F},
{register: 'LDOA2_CTRL_EN3', value: 0x00},
{register: 'LDOA3_CTRL_EN1', value: 0xFF},
{register: 'LDOA3_CTRL_EN2', value: 0x1F},
{register: 'LDOA3_CTRL_EN3', value: 0x80},
{register: 'SWB1_CTRL_EN1', value: 0x8C},
1.4 Considerations

Tests herebelow focus on the meeting the demanding Xilinx Versal power requirements, especially in terms of output ripple and transient load response, and on the customized PMP22165 board designed specifically for the Xilinx Versal platform to provide all the outputs except for the main high current (165A max) VCCINT rail. For more details of operation of that rail, refer to the TPS53681 EVM user’s guide. The main 6 phase rail was used with no hardware changes, only 2 GUI settings as described below for Vout and dynamic response were changed. Switching frequency remains the same at 500 kHz. Hence, the detailed efficiency data taken for 900mV can be extrapolated to 800mV by subtracting 1% from the values shown.

With the conservative assumption that losses at 800mV output are the same as losses at 900mV with switching frequency the same 500 kHz, the 93% peak efficiency at 900mV becomes 92% at 800mV. This is slightly conservative as transformer AC / core losses are slightly less at 800mV than 900mV due to lower peak to peak flux. From the EVM User’s guide:

![Efficiency Graph](image-url)
Section 1.5: PMP22165 Top & Bottom Images
3.75 inches × 3 inches

Top image

Bottom image
Section 1.5 TPS53681 EVM image
Testing and Results (Tests done by Josh Mandelcorn & Mitchell Spears)

Section 2 overall will be output ripple and dynamics

Section 2.1 Main 800mV channel on the TPS53681 EVM: ripple & dynamics

Only changes from default GUI settings are Vout from 0.9V to 0.8V and AC_LL from 0.5mOhm to 0.375mOhm. This AC_LL setting of 0.375 is the midpoint between 0.5 conservative default setting and 0.25mOhms used in the TPS53681 EVM for dynamic response and Bode plot. Same 500 kHz / phase operation maintained.

Output ripple with main channel loaded at 138A static load: 7.7mV peak to peak vs. 10mV max spec
Section 2.1 Main 800mV channel on the TPS53681 EVM continued:

Dynamic load response:
First shown is test pulse across 1 of 45 300mOhm dynamic load resistors
640/300 is 2.13A times 45 is 96A or 60% of 160A
Based upon fall / rise times (10% to 90%) step di/dt is 450A/usec and dump -190A per usec

Results across Vout are within 779mV and 821mV vs. 776mV and 824mV spec (800mV +/- 3%)
Now to the channels on the PMP22165 board itself

Section 2.2 1.5V 4.2A channel ripple & dynamics

1.5V 4.2A full load ripple: Xilinx requires at least 80 MHz bandwidth for this channel's measurements.

Scope Channel 2 Red is Vout with 110 MHz effective bandwidth by probe R*C of 1.4E-9 scope BW full model t2

Spec is 10mV p-p max, measured 7.2mV p-p over 1000usec

1.5V output with 1 A static load and 3 A step load:

Scope Channel 2 Red is Vout with 110 MHz effective bandwidth, channel 3 green is voltage across 3x 1 ohm load resistors for 3 A in all at 6A/usec slew. Undershoot less than 30mV vs. 45mV spec limit

& dump.

Scope Channel 2 Red is Vout with 110 MHz effective bandwidth, channel 3 green is voltage across 3x 1 ohm load resistors for 3 A in all at -6A/usec slew. Overshoot less than 40mV vs. 45mV spec limit
Section 2.3 1.5V 200mA channel ripple & dynamics

1.5V MGTAVAUX: 200mA max 10mV p-p max at 80MHz BW +/-3% @ 25% step / dump

1V5 Transient at 150mA static and 50mA dynamic to 200mA min 1.460V vs. 1.455 spec min limit (1.5V -3%)
4.7uF size 0603 bypass cap near test point. (C472 on PCB) Full load ripple less than 5mV p-p
Scope Channel 2 Red is Vout with 110 MHz effective bandwidth by probe R*C of 1.4E-9 scope BW 200MHz
Section 2.4 1.2V 4.8A channel ripple & dynamics

1.2V 4.8A full load ripple TP460 removed and trace to it cut model t1
Scope Channel 2 Red is Vout with 110 MHz effective bandwidth by probe R*C of 1.4E-9 scope BW 200MHz

Spec is 10mV p-p max, measured 9.3mV p-p over 1000usec

1.2V output with 3 A static load and 1.2 A step load:
Scope Channel 2 Red is Vout with 110 MHz effective bandwidth, channel 3 green is voltage across 2x 1 ohm load resistors for 1.2 A in all at >2.4A/usec slew. Undershoot max about 5mV

& dump.
Scope Channel 2 Red is Vout with 110 MHz effective bandwidth, channel 3 green is voltage across 2x 1 ohm load resistors for 1.2 A in all at -2.4A/usec slew.
Overshoot less than 15mV vs. +/-36mV allowed band
Section 2.5 0.88V 3.1A channel ripple & dynamics

0.88V testing for ripple / dynamics Model T3:
Made the following modifications to the board:
Added 47uF capacitor under U50 near PVIN5 Pin 21 with 3x 47uF at the output of the 3V3.

Output ripple on the 0.88V ~100MHz measurement spec 10mV p-p max @ 80 MHz BW
Scope Channel 2 Red is Vout with 110 MHz effective bandwidth by probe R*C of 1.4E-9 scope BW 200MHz

0.88V rail is loaded with 3A.
Section 2.5 0.88V 3.1A channel ripple & dynamics (continued)

0.88V transient response 1.5 static load 0.8A dynamic load (400mV across 2x 1.0 ohm for 800mA)
Step load response: +/-3% band allowed 856mV to 904mV range
Scope Channel 2 Red is Vout with 110 MHz effective bandwidth by probe R*C of 1.4E-9 scope BW 200MHz

And load dump
Section 2.6 3.3V main and 3.3V I/O ripple

3.3V: 3V3 Main Output ripple at 4A 20MHz BW

<table>
<thead>
<tr>
<th>Measure</th>
<th>P1:top(C2)</th>
<th>P2:base(C2)</th>
<th>P3:skew(C2)</th>
<th>P4:--</th>
<th>P5:--</th>
<th>P6:--</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>-3.3267V</td>
<td>-3.3386V</td>
<td>12.7mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3V3IO Output ripple at 1A: output at 1A ~60mV lower due to switch & copper path resistance

<table>
<thead>
<tr>
<th>Measure</th>
<th>P1:top(C2)</th>
<th>P2:base(C2)</th>
<th>P3:skew(C2)</th>
<th>P4:--</th>
<th>P5:--</th>
<th>P6:--</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>-3.2627V</td>
<td>-3.2430V</td>
<td>17.7mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trailing number(s) in the filename were truncated to allow auto-numbering.
Section 2.7 2.5V I/O and 1.1V I/O ripple:
2V5 IO Output ripple at 1A

<table>
<thead>
<tr>
<th>Measure</th>
<th>P1top</th>
<th>P2base</th>
<th>P3peak</th>
<th>P4---</th>
<th>P5---</th>
<th>P6---</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>2.5107 V</td>
<td>2.3920 V</td>
<td>15.7 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q
1V1 IO Output ripple at 1A

<table>
<thead>
<tr>
<th>Measure</th>
<th>P1top</th>
<th>P2base</th>
<th>P3peak</th>
<th>P4----</th>
<th>P5----</th>
<th>P6----</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>1.1197 V</td>
<td>1.1000 V</td>
<td>12.7 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section 3: thermal images page 1 of 3

1.2V at 4.8V converter off 12Vin: No fan

3.3V at 4A off 12Vin No fan
Section 3: thermal images continued page 2 of 3

0.88V off 3.3V TPS650861

Same, but also 550mA off 1.1V and 446mA off 2.5V
Section 3: thermal images continued page 3 of 3
1.5V 4.2A off 12Vin No fan

max 55.9°C

51.7

23.0

FLIR
Section 4: major switching waveforms

Off 12V: 1.5V loaded to 4.8A

Off 3.3V 0.88V loaded to 3100mA
Section 5: Start up and sequencing page 1 of 2

Power up sequencing: This uses the on board 5V bias supply and fake main 0.8V. 5V for bias first and then main 3.3V and then "main 0.8V" and then main 1.5V

Power up sequencing with PMP22165 mated with TPS53681EVM:
Similar to above, but enable shown instead of 5V for channel 1: then 3.3V, then 0.8V main and then 1.5V
Section 5: Start up and sequencing continued: page 2 of 2
Main 1.5V then 0.88V then 1.5V aux and finally 1.2V

I/O voltages coming up after 1.2V is up (2.5V, 3.3V_IO & 1.1V)
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated