Test Report: PMP40980

Multiple Output Isolated SiC Driver Bias Supply Reference Design for Onboard Charger Applications

Description

This reference design is an open-loop LLC converter, which provides four 18 V and 2.5 V outputs, up to 2.4 W for onboard charger applications. The UCC25800-Q1 device is used here as the controller. The LLC topology allows the transformer to have significant leakage inductance, but a much smaller primary-secondary capacitance, which significantly reduces common-mode current injection through the bias transformer.

Features

- Small size, open-loop LLC
- Reinforced insulation
- Compact PCB size (55 mm × 45 mm)

Applications

- On-board (OBC) and wireless charger
- IGBT and SiC gate transformer driver bias supply

![Top of Board](image1)

![Bottom of Board](image2)

![Block Diagram](image3)
1 Test Prerequisites

1.1 Voltage and Current Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range</td>
<td>12 V</td>
</tr>
<tr>
<td>Output voltage and current</td>
<td>4 × (18 V and −2.5 V, 30 mA), 2.4 W maximum</td>
</tr>
<tr>
<td>Nominal switching frequency</td>
<td>400 kHz</td>
</tr>
<tr>
<td>Isolation</td>
<td>Yes, 3000 V_{AC}, 1 min</td>
</tr>
<tr>
<td>Topology</td>
<td>Open-loop LLC</td>
</tr>
</tbody>
</table>

1.2 Required Equipment

- Multimeter (voltage): Fluke 287C
- Multimeter (current): Fluke 287C
- DC Source: Chroma 62012P-100-50
- E-Load: Chroma 63110 module
- Oscilloscope: Tektronix DPO3054
- Electrical Thermography: Fluke TiS65

1.3 Dimensions

The board dimensions are 55 mm (length) × 45 mm (width) × 25 mm (height).

Figure 1-1. Dimensions
2 Testing and Results

2.1 Efficiency Graphs

Efficiency is shown in the following figure.

![Efficiency Graph](image)

Figure 2-1. Efficiency Graph

2.2 Efficiency Data

Efficiency data is shown in the following table.

<table>
<thead>
<tr>
<th>V_{IN}/V</th>
<th>I_{IN}/A</th>
<th>V_{OUT1}/V</th>
<th>I_{OUT1}/A</th>
<th>V_{OUT2}/V</th>
<th>I_{OUT2}/A</th>
<th>V_{OUT3}/V</th>
<th>I_{OUT3}/A</th>
<th>P_{IN}/W</th>
<th>P_{OUT}/W</th>
<th>P_{Loss}/W</th>
<th>Eff/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.036</td>
<td>0.0621</td>
<td>21.492</td>
<td>0.0038</td>
<td>21.505</td>
<td>0.0043</td>
<td>21.52</td>
<td>0.0035</td>
<td>21.521</td>
<td>0.0037</td>
<td>0.7474</td>
<td>0.3291</td>
</tr>
<tr>
<td>12.033</td>
<td>0.0911</td>
<td>21.277</td>
<td>0.0081</td>
<td>21.297</td>
<td>0.0076</td>
<td>21.31</td>
<td>0.0077</td>
<td>21.314</td>
<td>0.0078</td>
<td>1.0962</td>
<td>0.6645</td>
</tr>
<tr>
<td>12.028</td>
<td>0.1241</td>
<td>21.015</td>
<td>0.0123</td>
<td>21.029</td>
<td>0.0128</td>
<td>21.05</td>
<td>0.012</td>
<td>21.059</td>
<td>0.0122</td>
<td>1.4927</td>
<td>1.0372</td>
</tr>
<tr>
<td>12.024</td>
<td>0.1525</td>
<td>20.737</td>
<td>0.0165</td>
<td>20.761</td>
<td>0.0162</td>
<td>20.783</td>
<td>0.0162</td>
<td>20.793</td>
<td>0.0163</td>
<td>1.8337</td>
<td>1.3541</td>
</tr>
<tr>
<td>12.018</td>
<td>0.1834</td>
<td>20.496</td>
<td>0.0208</td>
<td>20.519</td>
<td>0.0205</td>
<td>20.549</td>
<td>0.0205</td>
<td>20.562</td>
<td>0.0205</td>
<td>2.2041</td>
<td>1.6897</td>
</tr>
<tr>
<td>12.015</td>
<td>0.2067</td>
<td>20.32</td>
<td>0.0241</td>
<td>20.344</td>
<td>0.0238</td>
<td>20.377</td>
<td>0.0236</td>
<td>20.396</td>
<td>0.0237</td>
<td>2.4835</td>
<td>1.9382</td>
</tr>
<tr>
<td>12.009</td>
<td>0.2376</td>
<td>20.072</td>
<td>0.0282</td>
<td>20.098</td>
<td>0.028</td>
<td>20.142</td>
<td>0.0278</td>
<td>20.159</td>
<td>0.0277</td>
<td>2.8533</td>
<td>2.2471</td>
</tr>
<tr>
<td>12.01</td>
<td>0.2529</td>
<td>19.955</td>
<td>0.0301</td>
<td>19.982</td>
<td>0.0301</td>
<td>20.023</td>
<td>0.03</td>
<td>20.05</td>
<td>0.0298</td>
<td>3.0373</td>
<td>2.4003</td>
</tr>
</tbody>
</table>

Copyright © 2022 Texas Instruments Incorporated
2.3 Load Regulation

Load regulation is shown in the following table.

<table>
<thead>
<tr>
<th>V_{IN}(V)</th>
<th>I_{OUT}(mA)</th>
<th>$\text{V}_{\text{OUT1,18}}$(V)</th>
<th>$\text{V}_{\text{OUT2,18}}$(V)</th>
<th>$\text{V}_{\text{OUT1,2.5}}$(V)</th>
<th>$\text{V}_{\text{OUT2,2.5}}$(V)</th>
<th>$\text{V}_{\text{OUT3,18}}$(V)</th>
<th>$\text{V}_{\text{OUT3,2.5}}$(V)</th>
<th>$\text{V}_{\text{OUT4,18}}$(V)</th>
<th>$\text{V}_{\text{OUT4,2.5}}$(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.028</td>
<td>12</td>
<td>18.983</td>
<td>18.983</td>
<td>2.0452</td>
<td>2.0452</td>
<td>18.98</td>
<td>2.0707</td>
<td>19.025</td>
<td>2.0363</td>
</tr>
<tr>
<td>12.024</td>
<td>16</td>
<td>18.715</td>
<td>18.728</td>
<td>2.0354</td>
<td>2.0354</td>
<td>18.725</td>
<td>2.0605</td>
<td>18.764</td>
<td>2.0276</td>
</tr>
<tr>
<td>12.018</td>
<td>20</td>
<td>18.478</td>
<td>18.492</td>
<td>2.0316</td>
<td>2.0316</td>
<td>18.495</td>
<td>2.0567</td>
<td>18.541</td>
<td>2.0239</td>
</tr>
<tr>
<td>12.015</td>
<td>24</td>
<td>18.301</td>
<td>18.316</td>
<td>2.0284</td>
<td>2.0284</td>
<td>18.325</td>
<td>2.0539</td>
<td>18.375</td>
<td>2.0213</td>
</tr>
<tr>
<td>12.009</td>
<td>28</td>
<td>18.058</td>
<td>18.075</td>
<td>2.0248</td>
<td>2.0248</td>
<td>18.091</td>
<td>2.0505</td>
<td>18.146</td>
<td>2.0169</td>
</tr>
<tr>
<td>12.01</td>
<td>30</td>
<td>17.945</td>
<td>17.963</td>
<td>2.0229</td>
<td>2.0229</td>
<td>17.979</td>
<td>2.0482</td>
<td>18.038</td>
<td>2.0155</td>
</tr>
</tbody>
</table>

2.4 Voltage Regulation

The following figure shows the total rectified secondary output voltage of the converter with a 12-V$_{\text{DC}}$ input voltage.

![Figure 2-2. Voltage Regulation](image-url)
2.5 Thermal Images

The thermal image is shown in the following figure.

Figure 2-3. Thermal Image
3 Waveforms

3.1 Switching

Switching behavior is shown in the following figures.

Figure 3-1. Switching, No Load

Figure 3-2. Switching, Full Load
3.2 Output Voltage Ripple

Output voltage ripple is shown in the following figures.

Figure 3-3. Output Voltage Ripple (18 V Channel), $V_{IN} = 12$ V

Figure 3-4. Output Voltage Ripple (–2.5 V Channel), $V_{IN} = 12$ V
3.3 Short-Circuit Protection

Short-circuit protection is shown in the following figures.

Figure 3-5. Short-Circuit Protection

Figure 3-6. Short-Circuit Protection
3.4 Load Transients

Load transient response is shown in the following figures. The slew rate is set to 0.16 A/μs. The figure shows the load transient of OUTPUT1 with the other outputs at full load and the input voltage at 12 V. The load current is sourced from the 18 V directly to the –2.5 V with no COM connection.

Figure 3-7. Load Transient From 30 mA to 0 mA
3.5 Start-up Sequence

Start-up behavior is shown in the following figure.

Figure 3-8. Start-up
3.6 Undervoltage Protection

Undervoltage protection is shown in the following figure.

![Undervoltage Waveforms](image)

Figure 3-9. Undervoltage
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated