Description

The capacitor-inductor-inductor-inductor-capacitor (CLLCC) resonant converter with a symmetric tank, soft switching characteristics, and ability to switch at higher frequencies is a good choice for energy storage systems. This design illustrates control of this power topology using a C2000® MCU in closed voltage and closed current-loop mode. The hardware and software available with this design help accelerate time to market.

Features

- Vprim: 380–410 V DC; Vsec: 40–60 V DC
- Power Maximum: 3.6 kW, 97.6% peak efficiency
- Soft switching with Zero Voltage Switching (ZVS) on the primary, Zero Current Switching (ZCS), and ZVS on the secondary enable higher efficiency
- Active synchronous rectification scheme implementation using Rogowski coil sensor enables higher efficiency
- Software Frequency Response Analyzer (SFRA) and Compensation Designer for ease of tuning of control loops
- Software support for the TMS320F28004x device with the Control Law Accelerator (CLA), which enables integrated power conversion system design with AC-DC and DC-DC controlled using a single C2000 MCU

Applications

- Battery energy storage system
- Power conversion system (PCS)
- Portable power station
1 Test Prerequisites

1.1 Voltage and Current Requirements

Table 1-1. Voltage and Current Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range</td>
<td>380 VDC to 410 VDC (400 VDC typical)</td>
</tr>
<tr>
<td>Output Voltage Range</td>
<td>40 VDC to 60 VDC (48VDC typical)</td>
</tr>
<tr>
<td>Output Current</td>
<td>75 A MAX</td>
</tr>
<tr>
<td>Output Power</td>
<td>3.6 kW MAX</td>
</tr>
</tbody>
</table>

1.2 Required Equipment

- DC Voltage Source
- Electronic load
- Multimeters
- Oscilloscope
- Power meter

1.3 Test Setup

1.3.1 Hardware Setup

Figure 1-1 shows the board overview for hardware settings.

Figure 1-1. Board Overview

Use the following procedure when setting up the board:

- Make sure no power source is connected to the board.
- Insert the 280049C controlCARD in the J5 slot.
- Connect a power source for the primary and secondary side (+12 V, 1 A) at the test points
- Switch the power source on for both the primary and secondary side. A green LED on the control card lights up. This indicates the C2000 MCU device is powered.
- To connect JTAG, use a USB cable from the controlCARD and connect the cable to a host computer.
- Connect the DC power supply to the input connector (J1 and J2) and the electrical load to the output connector (J10 and J11).
1.3.2 Software Setup

1. Install Code Composer Studio from the Code Composer Studio (CCS) Integrated Development Environment (IDE) tools folder. Version 11.2 or above is recommended.
2. Go to View → Resource Explorer. Below the TI Resource Explorer, go to C2000Ware DigitalPower SDK. To open the reference design software as is (opens firmware as run on this design and hardware, requires the board to be exactly the same as this reference design).
3. Under C2000Ware DigitalPower SDK, select Development Kits → PMP41042, and click on Run Project. This action imports the project into the workspace environment.
4. To get started, click clllc_nonpowerSUITE_F28004x item in Project Explorer.
5. In the settings.h file, change the LAB number to select different LAB to run different function as shown in Figure 1-2.
6. Right click on the project name and click Rebuild Project. Then, click Run → Debug to launch a debugging session.
7. The project then loads on the device and the CCS debug view becomes active. The code halts at the start of the main routine.
8. To add the variables in the watch/expressions window, click View → Scripting Console to open the scripting console dialog box. On the upper right corner of this console, click on Open and then browse to the setupdebugenv_labx.js script file located inside the project folder. This populates the watch window with the appropriate variables needed to debug the system.

9. Click on the Continuous Refresh button on the watch window to enable continuous update of values from the controller. The watch window appears as shown in Figure 1-3.

1.4 Running the Code for Different Labs

Figure 1-4 illustrates the Expression Watch Window.

![Figure 1-4. Expression Watch Window](image)

1.4.1 Lab 1. Primary to Secondary Power Flow, Open Loop Check PWM Driver

This lab option is primarily provided as a focused test just for the PWM from a software perspective so that the lab can be run independent of the hardware connections of the reference design. With this lab, the code is executed on a C2000 controlCARD or LaunchPad™ Development Kit just to observe the PWM waveforms. This lab can be easily skipped and the user can go directly to Lab 2 if no changes to the PWM driver are anticipated. Hence, this lab procedure is not documented since this lab is primarily for PWM driver development and debug purposes.

1.4.2 Lab 2. Primary to Secondary Power Flow, Open Loop Check PWM Driver and ADC With Protection

In this lab, the board is excited in open-loop fashion with a specified frequency that can be changed through the watch window. The frequency is controlled with the CLLLC_pwmPeriodRef_pu variable. Set the load current above 1 A to avoid the unregulated output voltage in open loop.

1. Run the project by clicking Resume button in Tool Bar
2. Set the load current below 20 A during start up
3. Clear the trip by writing “1” to the CLLLC_clearTrip variable in the watch window
4. Change the CLLLC_pwmPhaseShiftPrimLegs_pu from 0.5 to 0
5. Now, slowly increase the input VPRIM DC voltage from 0 V to 400 V. Make sure CLLLC_vPrimSensed_Volts displays the correct values in the watch window
6. By default, the CLLLC_pwmPeriodRef_pu variable is set to 0.588, as shown in Figure 1-4, which is 170 kHz. This is close to the series resonant frequency of the converter; however, due to variation in the components on the actual hardware, it can be lower or higher than the series resonant frequency
7. The VSEC variable shows a voltage of close to 48 V per the tank gain designed. Verify that CLLLC_vSecSensed_Volts shows the correct voltage
8. Next, test to see operation under different frequencies (that is, above resonance, below resonance)
1.4.3 Lab 3. Primary to Secondary Power Flow, Closed Voltage Loop Check

In this lab, the voltage loop G_v, is closed with an electrical load (constant current mode) at the output.

1. Run the project by clicking the Resume button in Tool Bar
2. Set the load current below 20 A during start up
3. Increase the input PRIM DC voltage from 0 V to 400 V
4. Clear the trip by writing "1" to the $CLLLC_{start}$ variable in the watch window as shown in Figure 1-4, this closes the voltage loop and the converter performs soft-start until the output voltage ramps up to 48 V
5. Next, test the close loop operation by varying $CLLLC_{vSecRef_Volts}$ in the watch window with different load conditions

1.4.4 Lab 4. Primary to Secondary Power Flow, Closed Current Loop Check

In this lab, the output current control loop is closed. In this Lab, using the electrical load(constant voltage mode) to emulate the battery connection on secondary side.

1. Run the project by clicking the Resume button in the Tool Bar
2. Set the $CLLLC_{iSecRef_Amps}$ below 5 A during start up
3. Increase the input PRIM DC voltage from 0 V to 400 V
4. Clear the trip by writing "1" to the $CLLLC_{start}$ variable in the Watch window as shown in Figure 1-4, this closes the voltage loop and the converter performs soft-start until the output voltage ramps up to 48 V
5. Next, test the close loop operation by varying $CLLLC_{iSecRef_Amps}$ in the Watch window

1.4.5 Lab 6. Secondary to Primary Power Flow, Open Loop Check PWM Driver

This lab option is primarily provided as a focused test just for the PWM from a software perspective, so that the lab is run independent of the hardware connections of the reference design. With this lab the user can run the code on a C2000 controlCARD or LaunchPad™ just to observe the PWM waveforms.

1.4.6 Lab 7. Secondary to Primary Power Flow, Open Loop Check PWM Driver and ADC With Protection

In this build, the board is excited in open-loop fashion with a specified frequency that can be changed through the watch window. The frequency is controlled with the $CLLLC_{pwmPeriodRef_pu}$ variable. The power flow is from the secondary side to the primary side. Set the load current above 1 A to avoid the unregulated output voltage in open loop.

1. Run the project by clicking the Resume button in the Tool Bar
2. Set the load current below 2 A during start up
3. Clear the trip by writing “1” to the $CLLLC_{clearTrip}$ variable in the watch window
4. Now, slowly increase the input VSEC DC voltage from 0 V to 48 V. Make sure $CLLLC_{vSecSensed_Volts}$ displays the correct values in the watch window
5. The VPRIM variable shows a voltage of close to 400 V per the tank gain designed. Verify that $CLLLC_{vPrimSensed_Volts}$ shows the correct voltage.
6. Test to see operation under different frequencies (that is, above resonance, below resonance)

1.4.7 Lab 8. Secondary to Primary Power Flow, Closed Voltage Loop Check

In this lab, the voltage loop G_v, is closed with a electrical load (constant current mode) at the output.

1. Run the project by clicking the Resume button in the Tool Bar
2. Set the load current below 2 A during start up
3. Increase the input VSEC DC voltage from 0 V to 48 V
4. Clear the trip by writing "1" to the $CLLLC_{start}$ variable in the watch window as shown in Figure 1-4, this closes the voltage loop and the converter performs soft-start until the output voltage ramps up to 400 V
5. Test the close loop operation by varying "$CLLLC_{vSecRef_Volts}" in the watch window
2 Testing and Results

2.1 Efficiency Graphs

Efficiency is shown in the following figure. The data was created in charging mode under different load conditions.

![Figure 2-1. Efficiency Graph in Charging Mode](image1)

Figure 2-1. Efficiency Graph in Charging Mode

Figure 2-2 shows open loop efficiency in discharging mode under different load conditions.

![Figure 2-2. Efficiency Graph in Discharging Mode](image2)

Figure 2-2. Efficiency Graph in Discharging Mode
2.2 Efficiency Data

Efficiency data is shown in the following tables.

Table 2-1. Open-Loop Efficiency Data in Charging Mode

<table>
<thead>
<tr>
<th>V_{IN} (V)</th>
<th>I_{IN} (A)</th>
<th>V_{OUT} (V)</th>
<th>I_{OUT} (A)</th>
<th>P_{IN} (W)</th>
<th>P_{OUT} (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>399.17</td>
<td>0.639</td>
<td>46.96</td>
<td>4.976</td>
<td>255.07</td>
<td>233.673</td>
<td>91.61</td>
</tr>
<tr>
<td>398.93</td>
<td>1.222</td>
<td>46.84</td>
<td>9.955</td>
<td>487.492</td>
<td>466.292</td>
<td>95.651</td>
</tr>
<tr>
<td>398.75</td>
<td>1.791</td>
<td>46.21</td>
<td>14.935</td>
<td>714.161</td>
<td>690.146</td>
<td>96.637</td>
</tr>
<tr>
<td>398.72</td>
<td>2.366</td>
<td>46.14</td>
<td>19.904</td>
<td>943.372</td>
<td>918.371</td>
<td>97.35</td>
</tr>
<tr>
<td>398.45</td>
<td>2.946</td>
<td>46.03</td>
<td>24.885</td>
<td>1173.83</td>
<td>1145.46</td>
<td>97.583</td>
</tr>
<tr>
<td>398.33</td>
<td>3.525</td>
<td>45.94</td>
<td>29.865</td>
<td>1404.11</td>
<td>1372</td>
<td>97.713</td>
</tr>
<tr>
<td>398.13</td>
<td>4.104</td>
<td>45.85</td>
<td>34.847</td>
<td>1633.93</td>
<td>1597.73</td>
<td>97.785</td>
</tr>
<tr>
<td>398.11</td>
<td>4.682</td>
<td>45.79</td>
<td>39.823</td>
<td>1863.95</td>
<td>1823.5</td>
<td>97.83</td>
</tr>
<tr>
<td>399.33</td>
<td>5.284</td>
<td>45.86</td>
<td>44.966</td>
<td>2110.06</td>
<td>2026.14</td>
<td>97.729</td>
</tr>
<tr>
<td>399.26</td>
<td>5.865</td>
<td>45.78</td>
<td>49.964</td>
<td>2341.95</td>
<td>2287.35</td>
<td>97.669</td>
</tr>
<tr>
<td>399.23</td>
<td>6.446</td>
<td>45.7</td>
<td>54.967</td>
<td>2573.63</td>
<td>2511.99</td>
<td>97.605</td>
</tr>
<tr>
<td>399.18</td>
<td>7.028</td>
<td>45.62</td>
<td>59.964</td>
<td>2805.79</td>
<td>2735.56</td>
<td>97.497</td>
</tr>
<tr>
<td>399.06</td>
<td>7.607</td>
<td>45.52</td>
<td>64.97</td>
<td>3036.56</td>
<td>2957.43</td>
<td>97.394</td>
</tr>
<tr>
<td>399.05</td>
<td>8.189</td>
<td>45.44</td>
<td>69.98</td>
<td>3267.9</td>
<td>3179.89</td>
<td>97.307</td>
</tr>
</tbody>
</table>

Table 2-2. Close-Loop Efficiency Data in Charging Mode

<table>
<thead>
<tr>
<th>V_{IN} (V)</th>
<th>I_{IN} (A)</th>
<th>V_{OUT} (V)</th>
<th>I_{OUT} (A)</th>
<th>P_{IN} (W)</th>
<th>P_{OUT} (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>399.05</td>
<td>0.642</td>
<td>47.08</td>
<td>4.971</td>
<td>256.19</td>
<td>234.035</td>
<td>91.35</td>
</tr>
<tr>
<td>398.93</td>
<td>1.233</td>
<td>47.08</td>
<td>9.951</td>
<td>491.881</td>
<td>468.493</td>
<td>95.245</td>
</tr>
<tr>
<td>398.76</td>
<td>1.827</td>
<td>47.08</td>
<td>14.931</td>
<td>728.535</td>
<td>702.951</td>
<td>96.488</td>
</tr>
<tr>
<td>398.6</td>
<td>2.423</td>
<td>47.08</td>
<td>19.901</td>
<td>965.808</td>
<td>936.939</td>
<td>97.011</td>
</tr>
<tr>
<td>398.42</td>
<td>3.02</td>
<td>47.08</td>
<td>24.885</td>
<td>1203.23</td>
<td>1171.59</td>
<td>97.37</td>
</tr>
<tr>
<td>398.24</td>
<td>3.619</td>
<td>47.08</td>
<td>29.862</td>
<td>1441.23</td>
<td>1405.9</td>
<td>97.549</td>
</tr>
<tr>
<td>398.13</td>
<td>4.22</td>
<td>47.07</td>
<td>34.841</td>
<td>1680.11</td>
<td>1639.97</td>
<td>97.611</td>
</tr>
<tr>
<td>398</td>
<td>4.824</td>
<td>47.07</td>
<td>39.822</td>
<td>1919.95</td>
<td>1874.42</td>
<td>97.629</td>
</tr>
<tr>
<td>399.23</td>
<td>5.425</td>
<td>47.04</td>
<td>44.953</td>
<td>2165.82</td>
<td>2114.59</td>
<td>97.634</td>
</tr>
<tr>
<td>399.18</td>
<td>6.032</td>
<td>47.04</td>
<td>49.954</td>
<td>2407.85</td>
<td>2349.84</td>
<td>97.59</td>
</tr>
<tr>
<td>399.13</td>
<td>6.641</td>
<td>47.04</td>
<td>54.96</td>
<td>2650.62</td>
<td>2586.32</td>
<td>97.536</td>
</tr>
<tr>
<td>399.08</td>
<td>7.255</td>
<td>47.04</td>
<td>59.963</td>
<td>2895.33</td>
<td>2820.66</td>
<td>97.421</td>
</tr>
<tr>
<td>399.04</td>
<td>7.868</td>
<td>47.04</td>
<td>64.965</td>
<td>3139.65</td>
<td>3055.95</td>
<td>97.334</td>
</tr>
<tr>
<td>399.08</td>
<td>8.461</td>
<td>46.91</td>
<td>69.98</td>
<td>3376.62</td>
<td>3282.76</td>
<td>97.22</td>
</tr>
<tr>
<td>398.99</td>
<td>9.328</td>
<td>46.91</td>
<td>76.97</td>
<td>3721.78</td>
<td>3610.66</td>
<td>97.014</td>
</tr>
<tr>
<td>V_{IN} (V)</td>
<td>I_{IN} (A)</td>
<td>V_{OUT} (V)</td>
<td>I_{OUT} (A)</td>
<td>P_{IN} (W)</td>
<td>P_{OUT} (W)</td>
<td>Efficiency (%)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>45.98</td>
<td>5.44</td>
<td>401.6</td>
<td>0.498</td>
<td>250.131</td>
<td>199.997</td>
<td>79.96</td>
</tr>
<tr>
<td>45.98</td>
<td>9.56</td>
<td>392.57</td>
<td>0.998</td>
<td>439.569</td>
<td>391.785</td>
<td>89.13</td>
</tr>
<tr>
<td>45.97</td>
<td>13.4</td>
<td>376.35</td>
<td>1.498</td>
<td>615.998</td>
<td>563.772</td>
<td>91.52</td>
</tr>
<tr>
<td>45.97</td>
<td>17.45</td>
<td>373.94</td>
<td>1.998</td>
<td>802.177</td>
<td>747.132</td>
<td>93.14</td>
</tr>
<tr>
<td>46.96</td>
<td>21.61</td>
<td>381.51</td>
<td>2.498</td>
<td>1014.81</td>
<td>953.012</td>
<td>93.91</td>
</tr>
<tr>
<td>46.96</td>
<td>25.71</td>
<td>380.17</td>
<td>2.998</td>
<td>1207.34</td>
<td>1139.75</td>
<td>94.4</td>
</tr>
<tr>
<td>46.96</td>
<td>29.72</td>
<td>378.3</td>
<td>3.498</td>
<td>1395.65</td>
<td>1323.29</td>
<td>94.82</td>
</tr>
<tr>
<td>45.95</td>
<td>33.82</td>
<td>377.06</td>
<td>3.998</td>
<td>1587.85</td>
<td>1507.49</td>
<td>94.94</td>
</tr>
<tr>
<td>45.95</td>
<td>37.91</td>
<td>376.02</td>
<td>4.498</td>
<td>1779.87</td>
<td>1691.34</td>
<td>95.03</td>
</tr>
<tr>
<td>45.94</td>
<td>42.01</td>
<td>375.22</td>
<td>4.998</td>
<td>1971.95</td>
<td>1875.35</td>
<td>95.1</td>
</tr>
<tr>
<td>45.94</td>
<td>46.12</td>
<td>374.22</td>
<td>5.498</td>
<td>2164.87</td>
<td>2057.46</td>
<td>95.04</td>
</tr>
<tr>
<td>45.94</td>
<td>50.24</td>
<td>373.25</td>
<td>5.998</td>
<td>2358.27</td>
<td>2238.75</td>
<td>94.93</td>
</tr>
<tr>
<td>47.93</td>
<td>54.35</td>
<td>372.26</td>
<td>6.498</td>
<td>2550.65</td>
<td>2418.95</td>
<td>94.84</td>
</tr>
<tr>
<td>47.93</td>
<td>58.5</td>
<td>379.75</td>
<td>6.99</td>
<td>2803.91</td>
<td>2654.45</td>
<td>94.67</td>
</tr>
<tr>
<td>47.92</td>
<td>62.62</td>
<td>378.54</td>
<td>7.499</td>
<td>3000.75</td>
<td>2838.67</td>
<td>94.6</td>
</tr>
</tbody>
</table>
2.3 Thermal Images

The thermal test setup is illustrated in Figure 2-3.

The setup includes forced air using 3 × 12-V fans (Delta PFR0612XHE, operated at 12 V), blowing the secondary-side metal-oxide semiconductor field-effect transistors (MOSFETs), and with that, tests are carried out up to 3 kW across the rated load and voltage for the design.

Figure 2-3. Thermal Test Setup Overview
Thermal images and information is shown in the following figures.

Figure 2-4. Thermal Image of the Board Running at 3 kW, Vprim 400 V, Vsec 48 V, Charging Mode

Figure 2-5. Transformer Temperature (Without Heat Sink)

Figure 2-6. Thermal Image of the Board Running at 2 kW, Vprim 400 V, Vsec 48 V, Discharging Mode
2.4 Bode Plots

Bode plots are shown in the following figures.

Figure 2-7. SFRA Plant Measurement for the Voltage Loop at Vprim 400 V, Vsec 40 V, 1600 W, Charging Mode

Figure 2-8. SFRA Plant Measurement for the Voltage Loop at Vprim 400 V, Vsec 48 V, 1800 W, Charging Mode
Figure 2-9. SFRA Plant Measurement for the Voltage Loop at Vprim 400 V, Vsec 60 V, 1800 W, Charging Mode

Figure 2-10. SFRA Plant Measurement for the Current Loop at Vprim 400 V, Vsec 40 V, 1200 W, Charging Mode
Figure 2-11. SFRA Plant Measurement for the Current Loop at Vprim 400 V, Vsec 48 V, 1800 W, Charging Mode

Figure 2-12. SFRA Plant Measurement for the Current Loop at Vprim 400 V, Vsec 60 V, 1800 W, Charging Mode
3 Waveforms

3.1 Switching

Switching behavior is shown in the following figures.

Figure 3-1. Charging Mode, 400 V\textsubscript{IN}, 48 V\textsubscript{OUT}, 2000 W

Figure 3-2. Charging Mode, 400 V\textsubscript{IN}, 48 V\textsubscript{OUT}, 3000 W

Figure 3-3. Discharging Mode, 400 V\textsubscript{IN}, 48 V\textsubscript{OUT}, 1800 W

Figure 3-4. Discharging Mode, 400 V\textsubscript{IN}, 48 V\textsubscript{OUT}, 2800 W
3.2 Load Transients

Load transient response is shown in the following figures.

![Waveform Image 1](image1)

Figure 3-5. 400 V\textsubscript{IN}, 48 V\textsubscript{OUT}, 50\% Load to 5\% Load Transient

![Waveform Image 2](image2)

Figure 3-6. 400 V\textsubscript{IN}, 48 V\textsubscript{OUT}, 5\% Load to 50\% Load Transient

3.3 Start-Up Sequence

Start-up behavior is shown in the following figures.

![Waveform Image 3](image3)

Figure 3-7. Start-Up in Charging Mode With 15-A Load Current

![Waveform Image 4](image4)

Figure 3-8. Start-Up in Charging Mode With 0-A Load Current
3.4 Dynamic Response

The dynamic response waveform is shown in the following figure.

Figure 3-9. 400 V_{IN}, 48 V_{OUT}, 0\% Load to 50\% Load
3.5 Mode Transition

Phase shift mode and frequency mode transition waveforms are shown in the following figures.

Figure 3-10. Frequency Mode With 48 V\textsubscript{OUT}, 5-A Load Current, 169-kHz Switching Frequency

Figure 3-11. Phase Shift Mode With 48 V\textsubscript{OUT}, 1-A Load Current, 380-kHz Switching Frequency

Figure 3-12. Frequency Mode With 48 V\textsubscript{OUT}, 2-A Load Current, 179-kHz Switching Frequency

Figure 3-13. Phase Shift Mode With 42 V\textsubscript{OUT}, 2-A Load Current, 380-kHz Switching Frequency
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated