Test Report: PMP23338

3-kW, 180-W/in3 Single-Phase Totem-Pole Bridgeless PFC Reference Design With E-Meter Functionality

Description

This reference design is a Gallium nitride (GaN) based, 3-kW, single-phase, continuous conduction mode (CCM) totem-pole power factor correction (PFC) converter targeting maximum power density. This design includes E-meter functionality with 1% accuracy, eliminating the need for external power metering ICs. The supply is designed to support a maximum input current of 16-A RMS and peak power of 3.6 kW. The power stage is followed by a baby boost converter, which helps to greatly reduce the size of the bulk capacitor. The LMG3522 top-side cooled GaN device with integrated driver and protection, enables higher efficiency and reduces power supply size and complexity. The F28003x C2000™ real-time microcontroller is used for all the advanced controls including fast relay control, baby boost operation during AC drop out event, reverse current flow protection, and communication between PFC and house-keeping controller. The PFC operates at a switching frequency of 100 kHz and achieves peak efficiency of 98.7%.

Features

- > 180 W/in3 power density in an x-y dimension of less than 68-mm × 121-mm space and maximum height of 32 mm
- E-metering with 1% accuracy, meets Server power supply M-CRPS spec
- Peak efficiency of 98.7%
- Semiconductor relay increases power density and reliability
- GaN-optimized with driver integration

Applications

- Rack and server PSU with 48-V output
- Server PSU with 12-V output
- Merchant telecom rectifiers
- Industrial AC-DC
- Single phase online UPS

Board Side View

Board Top View
3-kW, 180-W/in³ Single-Phase Totem-Pole Bridgeless PFC Reference Design
With E-Meter Functionality

Copyright © 2023 Texas Instruments Incorporated
1 Test Prerequisites

1.1 Voltage and Current Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>85–265</td>
<td>VAC</td>
</tr>
<tr>
<td>Line Frequency</td>
<td>47–63</td>
<td>Hz</td>
</tr>
<tr>
<td>Input Current (Max)</td>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>380</td>
<td>V</td>
</tr>
<tr>
<td>High Line Output Power</td>
<td>3</td>
<td>kW</td>
</tr>
<tr>
<td>Low Line Output Power</td>
<td>1.5</td>
<td>kW</td>
</tr>
</tbody>
</table>

1.2 Required Equipment

- AC Source: 250 V, 20 A
- Electronic load
- Digital Power Meter
- Isolated probes

1.3 Considerations

Due to the totem-pole topology, the PFC ground (PGND) is floating. This can lead to common-mode current issues with improper test equipment setups. Use differential voltage probes when using an oscilloscope. Use isolated sources for the 12Vp and 12V1 auxiliary supplies. TI recommends using the PMP20306 isolated bias supply reference design.
2 Testing and Results

2.1 THD Performance

![THD Graph at 120-V AC Input](image1)

![THD Graph at 240-V AC Input](image2)

Figure 2-1. THD Graph at 120-V AC Input

Figure 2-2. THD Graph at 240-V AC Input
2.2 E-meter Performance

Figure 2-3. E-meter Graph at 115-V AC Input

Figure 2-4. E-meter Graph at 230-V AC Input
2.3 Power Factor

The following images show the power factor graphs.

![Figure 2-5. Power Factor at 120-V AC input](image1)

![Figure 2-6. Power Factor at 240-V AC Input](image2)
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated