Technical Conference Oct 2011

Using Active Clamp Technology to Maximize Efficiency in a Telecom Bus Converter

Bernd Geck
Agenda

1. Basic Operation of Flyback and Forward Converters
2. Active Clamp Operation and Benefits
3. Active Clamp Forward Design
4. Design Review PMP5711
Basic Power Stages

Flyback
- Transformer stores energy
- R1 dissipates leakage and some magnetizing energy
 - Typically 2 to 5% of output power

Forward
- Transformer transfers energy
 - Storage is in L1
- R1 dissipates magnetizing plus leakage energy
 - Typically 3 to 10% of output power

How can we avoid loss in R1?
Secondary Winding Currents

- Assuming 50% duty cycle and CCM
 - Synchronous rectifiers force CCM

- RMS flyback current = 2 X RMS forward current

- For low voltage/high current output, forward is best choice
Output Capacitor Currents

- Flyback output capacitors see much higher current
 - Higher RMS current increases heating
 - Higher peak current requires much lower ESR

- Result is more, higher quality capacitors in flyback
Agenda

1. Basic Operation of Flyback and Forward Converters

2. Active Clamp Operation and Benefits

3. Active Clamp Forward Design

4. Design Review PMP5711
Active Clamp Operation

L_{mag} and $L_{leakage}$ are energized

Current commutes to Q2 body diode

Current resonates, changes direction

Current commutes to Q1 body diode or C_{oss}

\[D \times T_{sw} \rightarrow t_{delay} \rightarrow (1-D) \times T_{sw} \rightarrow t_{delay} \]
Active Clamp Configurations

- Easy to drive clamp FET
- Higher capacitor voltage
- P-channel FET

- Floating gate drive
- Lower capacitor voltage
- N-channel FET
Active Clamp Benefits

RCD Clamp
- Most of leakage energy is dissipated as heat
- “Hard” switching results in power losses
- More difficult implementation of self-driven synchronous rectifiers with Forward
- Voltage spike on Q1 drain at turn off can be EMI issue

Active Clamp
- Most of leakage energy is reclaimed
- Zero voltage switching reduces losses
- Simple Implementation of self-driven synchronous rectifiers with forward
- No voltage spike on Q1 drain at turn off
- Nearly lossless recovery of magnetizing energy in forward
Agenda

1. Basic Operation of Flyback and Forward Converters
2. Active Clamp Operation and Benefits
3. Active Clamp Forward Design
4. Design Review PMP5711
Active Clamp Forward Design

- Reflected primary voltage during reset time allows self driven sync rectifiers
- No leakage spike at Q1 turn off
- Primary current resets to third quadrant resulting in better core utilization
- Unlike flyback, clamp resonant frequency is determined by magnetizing inductance and C_{clamp}
Forward Clamp Circuit

\[f_{\text{clamp}} = \frac{1}{2 \times \pi \times \sqrt{L_{\text{magnetizing}} \times C_{\text{clamp}}}} \]

\[V_{\text{hump}} = \frac{V_{\text{in}} \times D \times (1 - D)}{8 \times L_{\text{magnetizing}} \times f_{\text{SW}}^2 \times C_{\text{clamp}}} \]

\[I_{Q2_\text{RMS}} = \frac{V_{\text{in}} \times D \times \sqrt{1 - D}}{2 \times \sqrt{3} \times L_{\text{magnetizing}} \times f_{\text{SW}}} \]

(Peak current is \(I_{\text{mag}} \); RMS clamp current is much less than flyback)
Forward Soft Switching – Q1 Turn-Off

- Magnetizing and reflected load current flowing in Q1
- Transfers to Q2 body diode
 - Delay from Q1 turn-off to Q2 turn-on
- Zero voltage switching of Q2
- Not load or line dependent
Forward Soft Switching – Q1 Turn-On

Light Loads

- No current in Q4 or Q5 during delay time
- Allows Q1 to achieve ZVS
Forward Soft Switching – Q1 Turn-On

- Current flows in body diodes of Q4 and Q5 during delay time
- Q1 drain voltage = V_{IN} when Q1 turns On
- Partial zero voltage switching

Heavy Loads

![Circuit Diagram]

- V_{IN}
- L_{mag}
- V_{OUT}
- $V_{DS_{Q1}}$ (50 V/div)
- I_{Q1} (1 A/div)
- $V_{DS_{Q2}}$ (50 V/div)
- I_{Q2} (1 A/div)
Forward Synchronous Rectifiers

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>PRI:SEC Turn Ratio</th>
<th>MAX Sync FET V_{DS} Stress</th>
<th>Sync FET V_{DS} Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 V</td>
<td>6:1</td>
<td>12.5 V</td>
<td>20 V</td>
</tr>
<tr>
<td>5 V</td>
<td>4.5:1</td>
<td>17 V</td>
<td>30 V</td>
</tr>
<tr>
<td>12 V</td>
<td>1.88:1</td>
<td>40 V</td>
<td>60 V</td>
</tr>
</tbody>
</table>

- Turn ratios and voltages for telecom 35- to 75-VDC input
- FET gate rating of 20 V or less
- 3.3-V output can be driven directly from transformer winding
- Outputs >3.3 V require gate protection
Agenda

1. Basic Operation of Flyback and Forward Converters
2. Active Clamp Operation and Benefits
3. Active Clamp Forward Design
4. Design Review PMP5711
Physical Size – 5.0V/35A Forward Converter

$L \times W \times H = 93mm \times 31mm \times 19mm$
Waveforms – 5.0V/35A Forward Converter

Vds primary NFETs

Vds sync. rectifiers

Vds freewheeling FET

Vds clamping PFET

Vgs sync. rectifiers

Vgs freewheeling FET
Efficiency – 5.0V/35A Forward Converter

Effcy > 94% in a range of 13A to 35A, 95% around 20A
Dynamic Behavior – 5.0V/35A Forward Conv.

small signal analysis of outer loop w/ network analyzer at 30Amps load, results in:
bandwidth > 2kHz, phasemargin >70degs, gain margin <=-12dB
Dynamic Behavior – 5.0V/35A Forward Conv.

large signal analysis with load step 50%, 15Amps / 30Amps
Ripple & Noise – 5.0V/35A Forward Conv.

Ripple: 40mVpp, Noise: 110mVp at max. load 35Amps
Thermal Behavior – 5.0V/35A Forward Conv.

Top side at max. load 35A at forced cooling 400lfm

<table>
<thead>
<tr>
<th>Name</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q5</td>
<td>38.8°C</td>
</tr>
<tr>
<td>Q4</td>
<td>38.6°C</td>
</tr>
<tr>
<td>Q3</td>
<td>35.2°C</td>
</tr>
</tbody>
</table>

Bottom side at max. load 35A at forced cooling 400lfm

<table>
<thead>
<tr>
<th>Name</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>R101</td>
<td>65.8°C</td>
</tr>
<tr>
<td>D10</td>
<td>59.1°C</td>
</tr>
<tr>
<td>D9</td>
<td>52.3°C</td>
</tr>
<tr>
<td>Q1</td>
<td>55.4°C</td>
</tr>
<tr>
<td>D3</td>
<td>55.0°C</td>
</tr>
<tr>
<td>Q9</td>
<td>47.8°C</td>
</tr>
<tr>
<td>Q10</td>
<td>52.1°C</td>
</tr>
<tr>
<td>Q11</td>
<td>51.1°C</td>
</tr>
</tbody>
</table>
Active Clamp Forward 5.0V/35A, 175-W Bus Converter Using UCC2897A
Summary

• Adding active clamp and sync rectifiers improves efficiency of forward (and flyback) up to 5% (Efficiencies >90%, here up to 95%)

• Forward provides best efficiency due to lower conduction losses than flyback

• Forward can be scaled to higher output power with similar results

• Flyback for multiple outputs or when cost is most important
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated