This document introduces the operation mode of the touch wheel and LED tracking demo board, including the designs for the touch sensor and LED tracking.

Contents
1 Hardware Block Diagram ... 2
2 How to Program the Touch Wheel and LED-Tracking PCBA.......................... 3
3 Schematic.. 4
4 Touch Sensor Design ... 4
5 LED Tracking .. 6

List of Figures
1 Hardware Block Diagram .. 2
2 PCBA .. 3
3 Connect With MSP430 USB-FET JTAG .. 3
4 Schematic ... 4
5 PIN Relaxation Oscillator Measurement .. 4
6 Touch Wheel Sensor Layout ... 5
7 Touch Wheel With LED Tracking .. 6

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.
1 Hardware Block Diagram

Figure 1. Hardware Block Diagram
2 How to Program the Touch Wheel and LED-Tracking PCBA

2.1 Spy-Bi-Wire Programming Interface

Figure 2 illustrates that there is a 2-wire JTAG communication interface to debug or program the on-board MSP430G2955. Connect at least three signals on J1 to a MSP430USB-FET (TDO, TEST, or GND). Choose to power the PCBA from a 5-V USB or from the \textit{V}_{cc} tool, depending on which resistor you solder: R56 or R57.

2.2 MSP430 USB-FET JTAG Interface

Figure 3. Connect With MSP430 USB-FET JTAG
4 Touch Sensor Design

4.1 Touch Detect Method

MSP430 microcontrollers offer a number of peripherals that, when configured properly, can be used to perform a capacitance measurement. Because the platform has several different capacitive touch sensing algorithms, this design uses the PINRO method as shown in Figure 5. For other methods, visit the TI website at www.ti.com for more information.
The relaxation oscillator can be realized with the PinOsc feature. The frequency of the oscillation is the function of the resistance and the capacitance of the circuit. The capacitance is the intended variable and increases with a touch. In the time domain, the rise and fall times are increased, but in the frequency domain, the frequency is reduced. When the capacitance increases, the number of relaxation oscillator cycles decreases within the fixed gate time.

4.2 Touch Sensor Layout

The touch wheel is made up of four electrodes placed sequentially in a circular layout, represented by the four jagged shapes in Figure 6; the first electrode is placed adjacent to the last electrode. The inner circle is a single sensor for the touch key, which is just a reserved button and not used in the wheel function.

![Figure 6. Touch Wheel Sensor Layout](image)

Tuning a wheel is optimizing the software to provide the most linear representation of the wheel's hardware response to a touch. In certain instances, even after tuning the software parameters, the hardware does not provide due to its layout. In these cases, decide to change the PCB layout or to write custom algorithms to compensate for the hardware design. In this design, the four electrodes can be used in the 30 to 40-mm touch wheel; the number of electrodes can increase to six, eight, or more if the wheel is bigger.
5 LED Tracking

This design has 24 LEDs, and each LED is driven by one GPIO; every LED can have a different brightness with the software PWM settings and achieve a breathing effect.

The LEDs will light based on where you touch the wheel. When you move your finger on the wheel, the LEDs light one by one, following your finger's position with different lightness (see A and B in Figure 7); if you move fast enough, all of the LEDs will light at the same time (see C and D in Figure 7).

To get a good LED-tracking effect, this design also uses an interpolation algorithm.

Figure 7. Touch Wheel With LED Tracking
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.