
B
oo

st
er

pa
ck

-t
yp

e
C

on
ne

ct
or

Keyboard Matrix

MSP430G2744

I2C

USB
LDO

TPS73533

DVCC

5V

3.3V

GPIOs

G
P

IO
s and P

eripherals

UART

SPI

ADC

Timers

GPIOs

3xLE
D

s

G
P

IO
s

B
oo

st
er

pa
ck

-t
yp

e
C

on
ne

ct
or

Keyboard Matrix

MSP430F5529

I2C

USB LDO
TPS73533

DVCCLDO

5 V

5 V

3.3 V

3.3 V

GPIOs

U
S

B

G
P

IO
s and P

eripherals

UART

SPI

ADC

Timers

GPIOs

3xLE
D

s

G
P

IO
s

1TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Luis Reynoso

TI Designs: Reference Designs
Keyboard Controller using MSP430

TI Designs
TI Designs provide the foundation that you need
including methodology, testing and design files to
quickly evaluate and customize and system. TI
Designs help you accelerate your time to market.

Design Resources

TIDM-KEYBOARD Design Folder
MSP430F5529 Product Folder
MSP430G2744 Product Folder
TPS73533 Product Folder
TPD2E001 Product Folder

ASK Our Analog Experts
WEBENCH® Design Center

Design Features
• Low-power implementation
• Cost-effective
• Customizable for different keyboard layouts
• Supports different communication interfaces

(USB and I2C examples included)
• Supports multimedia keys
• "Ghost" key detection
• Composite USB allows users to send

custom data through HID-datapipe

Featured Applications
• PC Keyboards
• Gaming
• Sensor Hub Aggregation
• Smart TV

Block Diagram

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
mailto:luis.reynoso@ti.com
http://www.ti.com/tool/TIDM-KEYBOARD
http://www.ti.com/product/msp430F5529
http://www.ti.com/product/msp430g2744
http://www.ti.com/product/tps73533
http://www.ti.com/product/tpd2e001
http://e2e.ti.com
http://e2e.ti.com/
http://www.ti.com/lsds/ti/analog/webench/overview.page?DCMP=sva_web_webdesigncntr_en&HQS=sva-web-webdesigncntr-vanity-lp-en

System Description www.ti.com

2 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

1 System Description
This reference design describes the implementation of a keyboard controller with the following
characteristics:
• Supports standard matrix keyboards: this design shows an implementation using a 15x8 matrix but

different keyboard layouts can be used
• Independent of the communication interface: examples for USB and I2C are included
• HID compliant: can interface directly with PC using USB or HID Over I2C.
• “Ghost” key handling in software: prevents incorrect key detection from multiple simultaneous key

presses
• HID boot protocol support: allows keyboard to be used to interface with a PC’s BIOS
• Supports multimedia keys: common multimedia and power keys are implemented
• Low power consumption: device goes to low power mode when idle
• Composite USB device: an HID-datapipe back-channel is implemented to send custom data to the PC
• Can be implemented in practically any MSP430 platform: examples for MSP430F5529 and

MSP430G2744 are included

1.1 MSP430 Family of Microcontrollers
The Texas Instruments MSP430 family of ultra-low-power microcontrollers consists of several devices
featuring different sets of peripherals targeted for various applications. The architecture, combined with
extensive low-power modes, is optimized to achieve extended battery life in portable measurement
applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators
that contribute to maximum code efficiency.

The software included in the design can be migrated to practically any MSP430 with enough GPIOs, but
the available examples are implemented for MSP430F5529 and MSP430G2744.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

MPY32

TA0

Timer_A
5 CC

Registers

TA1

Timer_A
3 CC

Registers

TA2

Timer_A
3 CC

Registers

TB0

Timer_A
3 CC

Registers

RTC_A CRC16

USCI0,1

USCI_Ax:
UART,

IrDA, SPI

USCI_Bx:
SPI, I2C

ADC12_A

12 Bit
200 KSPS

16 Channels
(14 ext/2 int)

Autoscan

REF COMP_B

12 Channels

128 kB
96 kB
64 kB
32 kB

FLASH

8 kB+2 kB
6 kB+2 kB
4 kB+2 kB

RAM

Power
Management

LDO
SVM/SVS
Brownout

SYS

Watchdog

Port Map
Control

(P4)

I/O Ports
P1/P2

2x8 I/Os
Interrupt

& Wakeup

PA
1x16 I/Os

I/O Ports
P3/P4

2x8 I/Os

PB
1x16 I/Os

I/O Ports
P4/P6

2x8 I/Os

PB
1x16 I/Os

I/O Ports
P7/P8

1x8 I/Os
1x3 I/Os

PB
1x11 I/Os

Full-speed
USB

USB-PHY
USB-LDO
USB-PLL

DMA

3 Channel

Unified
Clock

System

CPUXV2
And

Working
Registers

EEM
(L: 8+2)

JTAG/
SBW

Interface

XIN XOUT RST/NMI DVCC DVSS VCORE AVCC AVSS

P1.x

PA PB PC PD
DP,DM,PURP8.xP7.xP5.xP3.x P6.xP4.xP2.x

Note: Memory size and available peripherals and ports may vary, depending on the device.

XT2IN

XT2OUT

ACLK

SMCLK

MCLK

MAB

MDB

www.ti.com System Description

3TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

1.1.1 MSP430F5529
The MSP430F552x series of microcontrollers include an integrated USB and PHY supporting USB 2.0 full-
speed communication, four 16-bit timers, a high-performance 12-bit analog-to-digital converter (ADC), two
universal serial communication interfaces (USCI), hardware multiplier, DMA, real-time clock module with
alarm capabilities, and up to 63 I/O pins.

This reference design uses the MSP430F5529 derivative to show an implementation using USB or I2C,
but with plenty of resources left to allow for further customization. This device is the superset of the family,
with 128KB of Flash, 10KB of RAM and 63 I/Os in an 80-pin LQFP package.

Figure 1. Functional Block Diagram – MSP430F552x

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Spy-Bi
Wire

Brownout
Protection

Watchdog
WDT+

15/16-Bit

Timer_A3

3 CC
Registers

Timer_B3

3CC
Registers
Shadow

Reg

USCI_A0:
UART/LIN
IrDA, SPI

USCI_B0:
SPI, 12C

32 kB
16 kB
8 kB

FLASH

1 kB
512 kB
512 kB

RAM

ADC10
10-Bit

12
Channels
Autoscan

DTC

Ports P1/P2

2x8 I/O
Interrupt

Capability,
pull-up/down

resistors

Ports P3/P4

2x8 I/O
pull-up/down

resistors

Basic
Clock

System

16 MHz
CPU

incL 16
Registers

Emulation
(2BP)

JTAG
Interface

XIN XOUT

VCC VSS P1.x/P2.x P3.x/P4.x

ACLK

SMCLK

MCLK

MAB

MDB

2x8 2x8

RST/NMI

System Description www.ti.com

4 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

1.1.2 MSP430G2744
The MSP430G2x44 series is an ultra-low-power mixed signal microcontroller with two built-in 16-bit timers,
a universal serial communication interface (USCI), 10-bit analog-to-digital converter (ADC) with integrated
reference and data transfer controller (DTC), and up to 32 I/O pins. Typical application include sensor
systems that capture analog signals, convert them to digital values, and then process the data for display
or for transmission to a host system. Stand-alone radio-frequency (RF) sensor front ends are another area
of application.

This reference design also uses the MSP430G2744 to show an I2C implementation using a smaller
device from the value-line family of MSP430 microcontrollers. This device is the superset of the
MSP430G2x44 family with 32KB of Flash, 1KB of RAM and is available in 40-QFN, 38-TSSOP and the
ultra-small 49-DSBGA package for space constrained application.

Although this implementation is more limited in resources, some pins and enough memory is available for
further customization.

Figure 2. Functional Block Diagram – MSP430G2x44

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

B
oo

st
er

pa
ck

-t
yp

e
C

on
ne

ct
or

Keyboard Matrix

MSP430G2744

I2C

USB
LDO

TPS73533

DVCC

5V

3.3V

GPIOs

G
P

IO
s and P

eripherals

UART

SPI

ADC

Timers

GPIOs

3xLE
D

s

G
P

IO
s

B
oo

st
er

pa
ck

-t
yp

e
C

on
ne

ct
or

Keyboard Matrix

MSP430F5529

I2C

USB LDO
TPS73533

DVCCLDO

5 V

5 V

3.3 V

3.3 V

GPIOs

U
S

B

G
P

IO
s and P

eripherals

UART

SPI

ADC

Timers

GPIOs

3xLE
D

s

G
P

IO
s

www.ti.com System Description

5TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

1.2 TPS73533
The TPS735xx family of low-dropout (LDO), low-power linear regulators offers excellent AC performance
with very low ground current. High power-supply rejection ratio (PSRR), low noise, fast start-up, and
excellent line and load transient response are provided while consuming a very low 46µA (typical) ground
current. The TPS735xx is stable with ceramic capacitors and uses an advanced BiCMOS fabrication
process to yield a typical dropout voltage of 250mV at 500mA output. The TPS735xx uses a precision
voltage reference and feedback loop to achieve overall accuracy of 2% (VOUT > 2.2V) over all load, line,
process, and temperature variations. It is fully specified from TJ = –40°C to +125°C and is offered in low-
profile, 2mm × 2mm SON and 3mm × 3mm SON packages that are ideal for wireless handsets, printers,
and WLAN cards.

This reference design uses the TPS73533 regulator to convert 5V from USB to 3.3V used by the MSP430
microcontrollers.

2 Block Diagram

Figure 3. Block Diagram using MSP430F5529

Figure 4. Block Diagram using MSP430G2744

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Esc
~

`
F5 Tab F1 F2

CAPS

LOCK
F6

F11
NumLock

F12
ScrLock

F8
Mute

Q F4
F3

Wireless
!

1
F7

Insert Delete
PageUp
Home

PageDn
End

Î
Bright-

Ð
Vol-

Í
Bright+

F10 F9
Back

space

#

3

@

2

Ï
Vol+

Print

Screen
Pause

{

[
P

^

Z

:

;

?

/

>

.

Right

Ctrl

Left

Ctrl

Right

Shift

Left

Shift

+

=

}

]
Enter Menu

_

-

)
0

O I L K
<

,
M

(

9

*

8
U Y J N B

|

\

&

7

^

6
T H G V C Space

%

5

$

4
R E F D X

Right

Alt

Left

Alt

Win

W S A Z Fn

KSO0

KSO1

KSO2

KSO3

KSO4

KSO5

KSO6

KSO7

KSO8

KSO9

KSO10

KSO11

KSO12

KSO13

KSO14

KSI0 KSI1 KSI2 KSI3 KSI4 KSI5 KSI6 KSI7

System Design Theory www.ti.com

6 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

3 System Design Theory

3.1 Key Matrix
The keyboard controller presented in this document implements a key matrix of rows and columns similar
to smaller keypads like the one shown in the application report Implementing An Ultralow-Power Keypad
Interface with MSP430 (SLAA139).

The implementation shown uses a 15 rows x 8 column matrix, which allows up to 120 keys, but it only
uses 84 keys in total.

The key matrix used implemented in this example is shown in Figure 5.

Figure 5. Key Matrix

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/lit/pdf/SLAA139

Esc Tab F1

F11 Q F4

Enter

_
-

I L

S A

KSO0

KSO1

KSO7

KSO8

KSO14

KSI0 KSI3 KSI4...

.

.

.

.

.

.

...

KSO0

KSO1

KSOn

...

K
S

I 0

K
S

I 1

K
S

I n

...

VCC

www.ti.com System Design Theory

7TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Each key works like a switch and pull-ups are required for each of the columns (KSI pins), keeping the idle
state high (see Figure 6).

Figure 6. Keyboard Schematic Model

There are multiple ways to scan a key matrix, but this implementation uses two methods, referred in this
application report as: column-interrupt and polling.

In the column-interrupt approach, all KSO pins are actively driven at the same time and KSI pins are
configured to interrupt the processor when any key is pressed.

This method is useful in low-power modes, because any key can wake up the microcontroller; however, it
is important to remark that the key press is only used for that purpose, because this method does not
provide the exact key being pressed.

Figure 7 shows the key matrix behavior when the “Enter” Key is pressed in column-interrupt mode.
Pressing this key will close a path between KSO7 and KSI3, thus causing a state change in KSI3. This is
shown by red lines which indicate the lines which are not in an idle state. Notice that KSI3 would detect
the event when the “Enter” key is pressed, but the effect would be the same for any other pin pressed in
the same column.

Figure 7. Detection of a Key Using Column-Interrupt Method

After the system is awake due to a key press using the column-interrupt approach, the Polling method can
be used to determine which key(s) is (are) being pressed.

In the Polling method, each row is scanned separately by driving one KSO at a time in sequential order.
KSI pins are then read giving the exact keys being pressed.

The following image shows the result of pressing the same “Enter” key in Polling method. When KSO7 is
driven, the pressed key will close a path between KSO7 and KSI3. Since all the other KSO pins are idle,
we know that the key has coordinates (KSI3, KSO7).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Esc Tab F1

F11 Q F4

Enter

_
-

I L

S A

KSO0

KSO1

KSO7

KSO8

KSO14

KSI0 KSI3 KSI4...

.

.

.

.

.

.

...

1. I, L and S keys are pressed

Esc Tab F1

F11 Q F4

Enter

_
-

I L

S A

KSO0

KSO1

KSO7

KSO8

KSO14

KSI0 KSI3 KSI4...

.

.

.

.

.

.

...

2. Driving KSO8 detects I and L

Esc Tab F1

F11 Q F4

Enter

_
-

I L

S A

KSO0

KSO1

KSO7

KSO8

KSO14

KSI0 KSI3 KSI4...

.

.

.

.

.

.

...

3. Driving Row14 detects S but
it incorrectly detects A

Esc Tab F1

F11 Q F4

Enter

_
-

I L

S A

KSO0

KSO1

KSO7

KSO8

KSO14

KSI0 KSI3 KSI4...

.

.

.

.

.

.

...

System Design Theory www.ti.com

8 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Note that KSI pins are in idle state when the rest of KSO pins are driven since all the switches are open
and there is no path between KSO and KSI pins.

Figure 8. Detection of a Key Using Polling Method

3.1.1 "Ghost" Key Detection
One of the caveats when using the polling method is that particular patterns can cause unwanted
connections, known as “ghost” keys. This behavior is caused when three or more keys sharing rows and
columns are pressed at the same time.

The following image shows a “ghost” key condition caused by pressing 3 keys at a time.

Figure 9. Ghost Key Detection

The software included in this application report detects potential “ghost” keys and does not report them to
the host.

In addition, the software also detects unimplemented keys which can’t cause “ghost” keys, even when 3
keys are pressed at the same time. This condition is shown in the following image.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Esc Tab F1

F11 Q F4

Enter

_
-

I L

S A

KSO0

KSO1

KSO7

KSO8

KSO14

KSI0 KSI3 KSI4...

.

.

.

.

.

.

...

1. Q, F4 and Enter keys are pressed

Esc Tab F1

F11 Q F4

Enter

_
-

I L

S A

KSO0

KSO1

KSO7

KSO8

KSO14

KSI0 KSI3 KSI4...

.

.

.

.

.

.

...

2. Driving KSO1 detects Q and F4

Esc Tab F1

F11 Q F4

Enter

_
-

I L

S A

KSO0

KSO1

KSO7

KSO8

KSO14

KSI0 KSI3 KSI4...

.

.

.

.

.

.

...

3. Driving KSO7 detects Enter and a
key in KSI4, but since KSI4 is not
implemented, it only reports Enter.

www.ti.com System Design Theory

9TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Figure 10. Ignored "Ghost" Key Condition Due to Unimplemented Key

3.2 USB HID
This application report uses the MSP430 application programming interface (API) stack found in the
MSP430 USB Developers Package (msp430usbdevpack).

The stack is configured to work as a composite HID interface with the following interfaces:
• HID0: Standard Keyboard
• HID1: DataPipe
• HID2: Consumer Control (Multimedia keys)
• HID3: Wireless Radio Control

Since all interfaces are HID-compliant, no drivers are required.

Basic keyboard implementations only need the Standard keyboard interface to report keys to the host and
control the keyboard LEDs.

The DataPipe interface is optional but it allows the MSP430 to not only perform the job of a digital
keyboard, but also to do other jobs taking advantage of the same USB interface and the rest of the
peripherals. Some examples include: reporting the status of sensors which are read using the ADC,
controlling actuators using timer PWMs, etc.

It should be noted that while the host OS interprets and uses the data from the standard keyboard
interface without additional applications or drivers, in the case of the DataPipe interface, a host application
is required. Texas Instruments provides a Java-based HID Demo which enables communication between
a PC and a MSP430 microcontroller running the HID API stack. The Java HID Demo is available in
executable format and source code in the MSP430 USB Developers Package (msp430usbdevpack).

The Consumer Control and Wireless Radio Control interface were added to show the implementation of
function (Fn) keys. It’s important to remark that there’s some standardization for these keys, but in some
cases, the implementation depends on the vendor. The function keys implemented in this software are:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/tool/msp430usbdevpack
http://www.ti.com/tool/msp430usbdevpack

System Design Theory www.ti.com

10 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Table 1. Supported Function (Fn) Keys

Key Function Interface
Fn + F8 Mute Consumer Control
Fn + F11 NumLock Consumer Control
Fn + F2 Scroll Lock Consumer Control
Fn + UP Increase Volume Consumer Control

Fn + Down Decrease Volume Consumer Control
Fn + Left Increase Brightness Consumer Control

Fn + Right Decrease Brightness Consumer Control
Fn + F3 Turn ON/OFF Wireless Wireless Radio Control

The keyboard interface supports Boot protocol, which allows it to work with HID-limited hosts (such as
some BIOS).

The VID and PID can be modified according to the particular application but the default code used for this
example uses the following values:

Table 2. VID/PID Used by the Device

VID 0x2047
PID 0x0401

3.3 HID over I2C
This application report uses the HIDI2C Development API for MSP430 (ti_hidi2c_msp430).

The stack is configured to work as a single HID interface with the following report IDs:
• 0x01: Standard Keyboard
• 0x03: Consumer Control (Multimedia keys)
• 0x04: Wireless Radio Control

Since the interface is HID-compliant, no drivers are required.

Basic keyboard implementations only need the Standard keyboard report ID in order to report keys to the
host and control the keyboard LEDs.

The Consumer Control and Wireless Radio Control reports are used to show the implementation of
function (Fn) keys. It’s important to remark that there’s some standardization for these keys, but in some
cases, the implementation depends on the vendor. The function keys implemented in this software are
shown in Table 1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/HIDI2C/latest/index_FDS.html

USBGPIOsTimerOther peripherals

U
S

B
 A

P
I

USB_CommonDelayTimer

MSP430 Driverlib

Report_App

Application

Hardware

Application

usbContructs

I2C

Event handlers

USB Config

HID API

hi
di

2c

I2C engine

HID engine

HID report
parser

K
B

D
43

0

DKS
(Digital keyscan)

keyboard

report
hidi2c

eventhandling

CustomHID

www.ti.com System Design Theory

11TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

3.4 Software
The following figure shows the software layers for the keyboard controller:

Figure 11. Software Architecture

Software is designed in a modular way, re-using existing TI libraries and adding new modules from low-
level drivers to application level.

These modules include:
• Application

Description
Main application initializing the microcontroller and peripherals, and executing a loop checking and
servicing the rest of the modules.
Files
: .\Projects*\Src\main.c
Flow diagram:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Process RX data

Keyboard

Application

Initialization

Comm Active?

Initialize DKS and

KBD_Report

modules

Data

received?

Attend

KBD_Keyboard task

Attend KBD_Report

module

Pending

tasks?

Sleep

Comm, Timer or

Keyboard activity?

Y

N

Y

N

Y

N

N

Y

Initialize:

Clocks,

GPIOs,

Timers,

USB/I2C

etc

System Design Theory www.ti.com

12 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Figure 12. Application Flow Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

www.ti.com System Design Theory

13TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

• Report_App
Description
This file provides an abstraction layer between application, DKS and the communication interface.
When the DKS detects a new key, it will call the callback function KBD430_ReportSend. This function
can then send the data to the corresponding communication interface (for example, USB or I2C).
Files:
.\Projects*\Src\KBD430_report_App.c

• KBD430_Report
Description
Handles the HID Keyboard report, adding and removing keys from the report on press/release events,
then sends the data to the Report_App layer.
Files:
.\KBD430\Src\KBD430_report.c .\KBD430\Include\KBD430_report.h
HID Keyboard Report format:

Table 3. Standard Keyboard Input Report

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Byte0 Right GUI Right Alt Right Shift Right Ctrl Left GUI Left Alt Left Shift Left Ctrl
Byte1 Reserved
Byte2 Key_array[0]
Byte3 Key_array[1]
Byte4 Key_array[2]
Byte5 Key_array[3]
Byte6 Key_array[4]
Byte7 Key_array[5]

Table 4. Standard Keyboard Output Report

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Byte0 Ignored ScrollLock CAPSLock NumLock

Table 5. Consumer Control Input Report

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Byte0 Bright- Bright+ Play/Pause PrevTrack NextTrack Mute Vol- Vol+

Table 6. Wireless Radio Control Input Report

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Byte0 Unused Wireless
Toggle

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Keyboard Task

KeyScan
Complete?

Key pressed?

Flush Report

FnKey
pressed?

Ghost keys?

Update report

Y

N

Exit

N

Y

N
Check for Function
key combinations

Invalidate report

Y

Y

N

System Design Theory www.ti.com

14 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

• KBD430_Keyboard
Description
This layer gets the keys from the DKS module and reports them to the KBD430_Report module. It can
handle special key combinations such as Function (Fn) keys.
Files:
.\KBD430\Src\KBD430_Keyboard.c
.\KBD430\Include\KBD430_Keyboard_public.h
Flow diagram:

Figure 13. Flow Diagram for Keyboard Task

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Interrupt
Column
mode

Polling
Mode

Key press

First Scan

Wait
Debounce

Second
Scan

Process
Keys

Wait delay

K
ey

 d
et

ec
te

d

N
o

ke
y

No key

www.ti.com System Design Theory

15TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

• KBD430_DKS (Digital Keyscan)
Description
This layer handles the digital keyboard scanning, detecting key press/release events, and reporting
them to higher layers.
Files:
.\KBD430\Src\KBD430_DKS.c
.\KBD430\Include\KBD430_DKS.h
State Diagram:

Figure 14. State Diagram for Keyboard Scan

• KBD430_DelayTimer
Description
This module handles a general purpose interrupt timer used to implement a delay.
This timer is implemented using TA0.0.
Files:
.\KBD430\Src\KBD430_delaytimer.c
.\KBD430\Include\KBD430_delaytimer.h

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

System Design Theory www.ti.com

16 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

• CustomHID
Description
This layer handles the HID Custom interface, which is used to transfer data to/from an USB host. The
current implementation shows a template that can be used for custom development. This module uses
the HID-Datapipe as defined in the USB API included in MSP430 USB Developers Package
(msp430usbdevpack).
Files:
.\Projects\USBKBD\Src\CustomHID.c
.\Projects\USBKBD\Src\CustomHID.h
Custom HID Report format:

Table 7. CustomHID Report Descriptor

Field Size Description
IN Report

Report ID 1 Byte Report ID (automatically assigned to 0x3F by the HID-datapipe calls)
Size 1 Byte Number of valid bytes in the data field
Data 62 Bytes Data payload

OUT Report
Report ID 1 Byte Report ID (automatically assigned to 0x3F by the HID-datapipe calls)

Size 1 Byte Number of valid bytes in the data field
Data 62 Bytes Data payload

In addition, the following TI libraries used by this design are:
• MSP430 DriverLib: Driver Library's abstracted API keeps you above the bits and bytes of the MSP430

hardware by providing easy-to-use function calls. Thorough documentation is delivered through a
helpful API Guide, which includes details on each function call and the recognized parameters.
Developers can use Driver Library functions to write complete projects with minimal overhead.
DriverLib is used in this project to initialize MSP430F5529 peripherals and perform basic functions.
Files:
.\driverlib\MSP430F5xx_6xx*.*
.\driverlib\MSP430F5xx_6xx\inc*.h

• MSP430 USB Developers Package: The USB Developers Package for MSP430 is a software package
containing all necessary source code and sample applications required for developing a USB-based
MSP430 project. The package only supports MSP430 USB devices.
The USB API is used in the USBKBD configuration to enable USB and utilize the HID class.
Files:
.\USB_API*.*
.\Projects\USBKBD\Src\USB_config*.*
.\Projects\USBKBD\Src\USB_App*.*

• HIDI2C API for MSP430: Development API driver for Microsoft HIDI2C Protocol for the Texas
Instruments MSP430.
The HIDI2C API is used in the I2CKBD and I2CKBD_G2xx4 configurations to enable HID over I2C.
Files:
.\hidi2c*.*
.\Projects\I2CKBD\Src\HIDI2C*.*
.\Projects\I2CKBD_G2xx4\Src\HIDI2C*.*

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/tool/msp430usbdevpack
http://www.ti.com/tool/msp430driverlib
http://www.ti.com/tool/msp430usbdevpack
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/HIDI2C/latest/index_FDS.html

www.ti.com System Design Theory

17TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

3.5 Hardware
The hardware included in this reference design provides users with the flexibility to test and develop their
keyboard controller application using two different microcontrollers: MSP430F5529 and MSP430G2744.

NOTE: The hardware included in this Reference Design has support for the MSP430F5529 or
MSP430G2744, but it doesn’t support both devices at the same time. Populating both
devices could cause electrical problems. Check the corresponding BOMs in Section 8.1.

The evaluation board contains the following connectors common to both board configurations:

Table 8. Connectors in Evaluation Board

Connector F5529 G2744
J1 Standard 2x7 JTAG/SBW (only SBW is supported)
J2 Provide external VCC and GND

J3 24-pin Keyboard connector. Check Section 4.1 for information about the keyboard
used by this reference design

J4-J5
Boosterpack-compatible connector.

Check Figure 15 Check Figure 16

J6 Used to power board and/or
communication with host Used to power board

The board also includes jumpers to provide more flexibility to the developer (options in bold shows the
default configuration):

Table 9. Jumpers in Evaluation Board

Jumper F5529 G2744

JP1
1-2 VUSB: Use VUSB (MSP30F5529 internal LDO) for VCC.
2-3 LDO: Uses TPS73533 for VCC
OFF: EXT power using J2

1-2 VUSB: Unused
2-3 LDO: Uses TPS73533 for VCC
OFF: EXT power using J2

JP2 ON: Provides power to MSP430
OFF: Allows for power consumption measurement

JP3 ON: Enables LED3
OFF: LED3 pin can be used in boosterpack connector

JP4 ON: Enables LED2
OFF: LED2 pin can be used in boosterpack connector

JP5 ON: Enables LED1
OFF: LED1 pin can be used in boosterpack connector

JP6 ON: Connects VUSB to JP1
OFF: Disconnects VUSB from JP1 Unused

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

System Design Theory www.ti.com

18 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

3.5.1 Using MPS430F5529
Using KBD430_BOM_F5529 from Table 19, which utilizes the MSP430F5529 microcontroller, provides a
lot of flexibility to developers thanks to the microcontroller’s rich set of peripherals, large memory size, and
amount of available I/Os. The software included in this reference design supports the following interfaces:

Table 10. Communication Interfaces Supported for
MSP430F5529

Target Configuration Communication Interface
USBKBD USB
I2CKBD I2C

In addition, the evaluation board provides access to:
• Additional communication peripherals (for example, UART and SPI): allowing developers to send the

keyboard information to the host using other methods, or simply to implement other communication
interfaces

• Analog peripherals (ADC and analog comparator): providing flexibility to implement functions such as,
reading sensors and transducers, using the same keyboard controller

• Timer input/output pins: allowing implementation of PWMs, pulse detection, custom communication
interfaces, etc

• Ample memory resources: allowing for more complex applications, or the implementation of protocols
such as Bluetooth

• Up to 35 GPIOs available

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

www.ti.com System Design Theory

19TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

The application reserves the following peripherals and pins for keyboard functionality:

Table 11. Peripherals and Pinout Used for MSP430FF529

Function Description USBKBD I2CKBD
DelayTimer Low power timer delay TA0.0 TA0.0

USB Communication with host
PU.0/DP
PU.1/DM

PUR
N/A

I2C Communication with host N/A SDA:P4.1/UCB1SDA
SCL:P4.2/UCB1SCL

I2C_INT Interrupt output to host N/A P1.0
KSO0

Keyboard output (row)

P4.7
KSO1 P5.4
KSO2 P5.5
KSO3 P5.6
KSO4 P5.7
KSO5 P6.6
KSO6 P6.7
KSO7 P7.0
KSO8 P7.1
KSO9 P7.2
KSO10 P7.3
KSO11 P7.7
KSO12 P8.0
KSO13 P8.1
KSO14 P8.2
KSI0

Keyboard input (column)

P2.0
KSI1 P2.1
KSI2 P2.2
KSI3 P2.3
KSI4 P2.4
KSI5 P2.5
KSI6 P2.6
KSI7 P2.7
LED1 NumLock LED P1.1
LED2 CapsLock LED P1.6
LED3 ScrollLock LED P1.7

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

BoosterPack standard KBD430-F5529 Pin map BoosterPack standardKBD430-F5529 Pin map

Timer Capture

Timer Capture GPIO

GPIO

GPIO

GPIO

GPIO

GPIO

GPIO

GPIO

GPIO

GPIO

SPI CS Wireless

SPI CS Display

SPI CS Other

GND

GPIO (!)

GPIO (!)

GPIO

RST

SPI
MOSI

MISO

GPIO (!)

GPIO (!)

GPIO (!)

PWM out

PWM out

PWM out

PWM out

PWM out

+3.3V

Analog In

UART
RX (MCU)

TX (MCU)

GPIO (!)

Analog In

SPI CLK

GPIO (!)

I2C
SCL

SDA

+5V

Analog In

Analog In

Analog In

Analog In

Analog In

Analog In

GND

Reserved

Reserved

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

Used by keyboardcontroller
Used by keyboardcontroller

+3.3V

P6.0

P1.0

P3.4

P1.1

P4.2

P6.4

P3.3

A0

UCA0SIMO UCA0TXD

UCA0SOMI UCA0RXD

UCB0CLK

UCB1SCLUCB1SOMI

UCB1SDAUCB1SIMO

(!)

(!)

TA0CLK

PM

PM

TA0.0

CB0

+5V

GND

P4.0

P4.3

UCA1CLK

A0

GND

P3.6

P1.4

P3.7

RST

P3.0

P3.5

P1.7

P1.6

P3.1

P7.6

P1.5

P7.5

P7.4

P1.3

P1.2

P4.6

P4.5

P4.4

PJ.0

TA0.3

TB0OUTH

UCB0SIMO UCB0SDA

UCB0SOMI UCB0SCL

TB0.4

TB0.3

TB0.2

TA0.4

TA0.2

TA0.1

TDO

(!)

(!)

(!)

(!)

(!)

SVMOUT

TB0.6

TB0.6

TA1.0

PMUCA1RXD

UCA1TXD UCA1SIMO PM

TA1CLK CBOUT(!)

P6.1A1CB1

P6.2A2CB2

P6.3A3CB3

P6.4A4CB4

P6.5A5CB5

P5.0A8

P5.1A9

VREF+

VREF+

VEREF+

VEREF-

ACLK

P3.2UCA0STE

UCB1STEPM

UCA1STEUCB1CLKPM

PM

UCA1SOMI

SDA*

SCL*

I2C_INT*

LED1

LED2

LED3

KBD430-F5529

(!) Denotes I/O pins that are
interrupt-capable.

*Not used in USB mode

System Design Theory www.ti.com

20 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Additional pins are available in J4-J5 connectors which are Boosterpack-compatible:

Figure 15. Pinout for Boosterpack Connector using MSP430F5529

3.5.2 Using MSP430G2744
KBD430_BOM_G2744 from Table 20, which utilizes the MSP430G2744 microcontroller, shows a smaller,
lower-cost implementation using a value-line device, but it still provides enough flexibility to implement
custom functionality in the application.

The software included in this reference design supports the following interfaces:

Table 12. Communication Interfaces Supported for MSP430G2744

Target Configuration Communication Interface
I2CKBD_G2xx4 I2C

In addition, the evaluation board allows developers to:
• Implement a different communication interface (for example, UART or SPI) to send the keyboard

information to the host using other methods, or simply to implement other communication interfaces
• The functionality of LEDs can be disabled allowing developers access to ADC pins to implement

functions such as, reading sensors and transducers, using the same keyboard controller; or to Timer
input/output pins allowing implementation of PWMs, pulse detection, custom communication interfaces,
etc

• 3 GPIOs available by default, and up to 9 available if not using I2C and LEDs.

The application reserves the following peripherals and pins for keyboard functionality:

Table 13. Peripherals and Pinout Used for MSP430G2744

Pin/Peripheral Description USBKBD
DelayTimer Low power timer delay TA0.0

I2C Communication with host SDA:P3.1/UCB0SDA
SCL:P3.2/UCB0SCL

I2C_INT Interrupt output to host P2.0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

BoosterPack standard BoosterPack standard

Timer Capture

Timer Capture GPIO

GPIO

GPIO

GPIO

GPIO

GPIO

GPIO

GPIO

GPIO

GPIO

SPI CS Wireless

SPI CS Display

SPI CS Other

GND

GPIO (!)

GPIO (!)

GPIO

RST

SPI
MOSI

MISO

GPIO (!)

GPIO (!)

GPIO (!)

PWM out

PWM out

PWM out

PWM out

PWM out

+3.3V

Analog In

UART
RX (MCU)

TX (MCU)

GPIO (!)

Analog In

SPI CLK

GPIO (!)

I2C
SCL

SDA

+5V

Analog In

Analog In

Analog In

Analog In

Analog In

Analog In

GND

Reserved

Reserved

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

(!)

Used by keyboardcontroller

KBD430-G2744 Pin map

+3.3V

P2.0

P3.5

P2.1

P3.2

P3.1

P3.4UCA0SIMO UCA0TXD

UCA0SOMI UCA0RXD

UCB0CLK

UCB0SCLUCB0SOMI

UCB0SDAUCB0SIMO

(!)

(!)

A0

TAINCLK

ACLK

P3.3UCA0STE

SDA

SCL

I2C_INT

LED1

KBD430-G2744 Pin map

Used by keyboardcontroller

GND

RST

P2.3

P2.2

(!) TA1

TA0 A2(!) LED2

LED3

N/A

N/A

N/A
N/A

N/A

N/A

N/A

N/A

+5V

GND

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

SMCLK A1

A3 VREF- VEREF-

N/A

N/A

N/A

N/A

N/A

N/A

KBD430-G2744

(!) Denotes I/O pins that are
interrupt-capable.

www.ti.com System Design Theory

21TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Table 13. Peripherals and Pinout Used for MSP430G2744 (continued)
Pin/Peripheral Description USBKBD

KSO0

Keyboard output (row)

P2.4
KSO1 P2.5
KSO2 P2.6
KSO3 P2.7
KSO4 P3.0
KSO5 P3.6
KSO6 P3.7
KSO7 P4.0
KSO8 P4.1
KSO9 P4.2
KSO10 P4.3
KSO11 P4.4
KSO12 P4.5
KSO13 P4.6
KSO14 P4.7
KSI0

Keyboard input (column)

P1.0
KSI1 P1.1
KSI2 P1.2
KSI3 P1.3
KSI4 P1.4
KSI5 P1.5
KSI6 P1.6
KSI7 P1.7
LED1 NumLock LED P2.1
LED2 CapsLock LED P2.2
LED3 ScrollLock LED P2.3

Additional pins are available in J4-J5 connectors which are Boosterpack-compatible. Note that many pins
are not available because they are reserved for keyboard functions and due to the smaller package of this
device.

Figure 16. Pinout for Boosterpack Connector using MSP430G2744

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Getting Started Hardware www.ti.com

22 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

4 Getting Started Hardware

4.1 Keyboard
This reference design uses the keyboard Acer V11102AS1, which is a replacement for some laptops,
including the Acer Aspire One AO532H.

Figure 17. Keyboard used by Reference Design

The software and hardware can be customized for other keyboards as explained in Section 6.3.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

www.ti.com Getting Started Hardware

23TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

4.2 Basic Connections
1. Connect Keyboard to J3

Figure 18. Keyboard Connection

2. Set default jumpers according to Table 9.
3. Optionally, connect I2C host when using I2CKBD or I2CKBD_G2xx4 configurations. Note that there’s

no standard connector for HID over I2C but the pins are available in boosterpack connector J4-J5 as
shown in the following table:

Table 14. I2C Connections

Functions Connector.pin
I2C SDA J4.20
I2C SCL J4.18
I2C INT J4.10

VCC J4.2
GND J4.3

4. Connect USB from PC to J6. This will provide power to the board and it also allows for communication
with the host when using USBKBD configuration.

5. The device will start running when pre-programmed. Follow steps in Section 4.3 and Section 4.4 to test
the USB or I2C applications.

6. Program board if necessary. If the MSP430 hasn’t been programmed or when debugging/customizing
code:
• Connect JTAG tool (for example, MSP-FET) to J1
• Follow steps described in Section 5 to build the software and download code.
• Run code, or repeat steps 4-5

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Getting Started Hardware www.ti.com

24 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

4.3 Testing USBKBD Configuration
1. Follow steps described in Section 4.2 to execute the application
2. The 3 LEDs on the board will light up in sequence to indicate that the keyboard is running

• Some LEDs can stay ON depending on the current status of CapsLock, NumLock, and ScrollLock.
3. When connected to a PC, the USB keyboard should be detected by the operating system and

enumerated without drivers. Windows shows 5 new devices in the Device Manager (see Figure 19):
• Human Interface Devices

– USB Input Device: Standard keyboard in HID0 (MI_00)
– USB Input Device: Datapipe in HID1 (MI_01)
– USB Input Device: Consumer Control in HID2 (MI_02)
– USB Input Device: Wireless Radio Control in HID3 (MI_03)

• Keyboards
– HID Keyboard Device: Standard keyboard in HID0 (MI_00)

Figure 19. USB Keyboard in Windows Device Manager

4. The keyboard can now be tested and used as a standard keyboard

NOTE: The example implements Function keys shown in Table 1 but it’s important to remark that
the implementation of some of these keys varies depending on the Host.

5. In addition to the keyboard functionality, the custom interface can be tested using the MSP430 HID

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

g

b c
d e

f

www.ti.com Getting Started Hardware

25TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Demo, available in MSP430 USB Developers Package (msp430usbdevpack).
(a) Open the Java HID Demo.
(b) Select the VID and PD (default: VID = 0x2047, PID = 0x0401).
(c) Click “Set VID PID” button
(d) Click the USB button to connect
(e) The LED should turn green
(f) Write one of the supported commands in the Send and Receive field

1 – Toggles LED1
2 – Toggles LED2
3 – Toggles LED3

(g) Observe the response from USB controller

Figure 20. Testing the HID Custom Interface using MSP430 HID Demo

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/tool/msp430usbdevpack

Getting Started Hardware www.ti.com

26 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

4.4 Testing I2CKBD and I2CKBD_G2xx4 Configurations
1. Follow steps described in Section 4.2 to execute the application
2. The 3 LEDs on the board will light up in sequence to indicate that the keyboard is running

• Some LEDs can stay ON depending on the current status of CapsLock, NumLock, and ScrollLock.
3. Turn on the I2C Host device, the device will perform enumeration of I2C slave devices during start-up.
4. The keyboard should be detected by the operating system and enumerated without drivers. Windows

shows the new HID devices including the keyboard in the device manager:

Figure 21. I2C Keyboard in Windows Device Manager

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

www.ti.com Getting Started Firmware

27TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

5. The keyboard can now be tested and used as a standard keyboard

NOTE: The example implements Function keys shown in Table 1 but it’s important to remark that
the implementation of some of these keys varies depending on the Host.

5 Getting Started Firmware
The firmware included in this reference design has the following structure:

KBD430_SW
|----driverlib ←MSP430 DriverLib
| |----MSP430F5xx_6xx
| |----deprecated
| |----inc
|----hidi2c ←HIDI2C API for MSP430
| |----hid
| |----i2c
|
|----USB_API ←MSP430 USB Developers Package
| |----USB_CDC_API
| |----USB_Common
| |----USB_HID_API
| |----USB_MSC_API
| |----USB_PHDC_API
|
|----KBD430 ← Keyboard controller driver
| |----Include ← Header files
| |----Src ← Source code
|
|----Projects
| |----USBKBD ← Project supporting USB with MSP430F5529
| |----CCS ← CCS project folder
| |----IAR ← IAR project folder
| |----Src ← Source code for this project
| |----I2CKBD ← Project supporting I2C with MSP430F5529
| |----CCS ← CCS project folder
| |----IAR ← IAR project folder
| |----Src ← Source code for this project
| |----I2CKBD_G2xx4 ← Project supporting I2C with MSP430G2744
| |----CCS ← CCS project folder
| |----IAR ← IAR project folder
| |----Src ← Source code for this project

The projects included in the software package have been built and tested in the following IDEs:
• Code Composer Studio 6.0.1
• IAR for MSP430 6.10.2

The procedure to build code for these IDEs is explained in the following sections.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Getting Started Firmware www.ti.com

28 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

5.1 Building Projects in IAR
1. Select a project to build:

• USBKBD: USB using MSP430F5529
• I2CKBD: I2C using MSP430F5529
• I2CKBD_G2xx4: I2C using MSP430G2744

2. Open the IAR workspace for the corresponding project:
KBD430_SW\Projects\<project>\IAR\<project>.eww

3. Build project (F7, Menu → Project → Rebuild All, or)

Figure 22. USBKBD Project in IAR

4. Connect board as described in Section 4.2

5. Download project to device (Ctrl+D, Menu → Project → Download and Debug, or)

6. Execute the program () or close debugger and reset device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

www.ti.com Getting Started Firmware

29TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

5.2 Building Projects in CCS
1. Select a project to build:

• USBKBD: USB using MSP430F5529
• I2CKBD: I2C using MSP430F5529
• I2CKBD_G2xx4: I2C using MSP430G2744

2. Import the corresponding project in CCS (Menu → Project → Import CCS Project).
KBD430_SW\Projects\<project>\CSS

Figure 23. Importing USBKBD project in CCS

3. Build project (Ctrl+B, Menu → Project → Build All, or)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Getting Started Firmware www.ti.com

30 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Figure 24. USBKBD Project in CCS

4. Connect board as described in Section 4.2

5. Download project to device (F11, Menu → Run → Debug, or)

6. Execute the program () or close debugger and reset device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

www.ti.com Customizing the Keyboard Controller

31TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

6 Customizing the Keyboard Controller
The software and hardware provided in this reference design provide an easy-to-use out-of-box
experience for demos and testing, but it also provides a starting point for developers trying to implement
their own keyboard controller in different applications.

The following sections describe some common customizations, but many more can be implemented by
developers.

6.1 USB Interface Customizations

6.1.1 USB VID/PID
Developers can modify the VID/PID of the application in order to use their own

Instructions:
1. Modify Macros USB_VID and USB_PID in:

.\Projects\Projects\USBKBD\Src\USB_config\descriptors.h

6.1.2 Crystal XT2
Use a different crystal for the design.

Instructions:
1. Modify USB_XT_FREQ_VALUE in:

.\Projects\Projects\USBKBD\Src\USB_config\descriptors.h

6.1.3 USB Descriptors
USB interfaces can be modified to meet particular needs. This includes removing unwanted interfaces, or
adding other interfaces such as CDC or MSC.

Instructions:
1. Modify the USB descriptors in the following files:

.\Projects\Projects\USBKBD\Src\USB_config\descriptors.c/h

2. The MSP430 USB Developers Package (msp430usbdevpack) includes a USB Descriptor tool which
can help creating descriptors for the USB API

3. Add/remove application code as necessary to support descriptors. Definitions
USE_CONSUMER_REPORT, USE_WRC_REPORT, and USE_CUSTOM_HID can be used to disable
application calls to these interfaces. These definitions are in:
.\Projects\Projects\USBKBD\Src\KBD430\KBD430_config.h

6.1.4 Polling Interval
The USB interface defines the interface polling rate in the interface descriptors. This polling rate can be
modified with a direct impact on the response time of the keyboard.

Instructions:
1. Modify the bInterval parameter (in ms) in the corresponding interface descriptor found in:

.\Projects\Projects\USBKBD\Src\USB_config\descriptors.c/h

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/tool/msp430usbdevpack

Customizing the Keyboard Controller www.ti.com

32 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

6.2 HID-I2C Interface Customizations

6.2.1 I2C Slave Address
Developers can modify the I2C slave address of the device.

Instructions:
1. Modify Macro USCIBx_ADDR in:

.\Projects\Projects\<I2CKBDproject>\Src\HIDI2C\hidi2c_settings.h

6.2.2 I2C Peripheral/Pins
The hidi2c driver can be modified to use other USCI interfaces and pins.

Instructions:
1. Uncomment/comment USCIBx_XXXX macros in:

.\Projects\Projects\<I2CKBDproject>\Src\HIDI2C\hidi2c_settings.h

2. Modify appropriately:

USCIBx ← Constant definition
USCIBx_ADDR ← Slave address used for this interface
USCIBx_GPIO_POUT ← Slave address used for this interface
USCIBx_GPIO_PDIR ← PxDIR register used for I2C_INT
USCIBx_GPIO_PIN ← PxIN register used for I2C_INT
USCIBx_PORT ← PxSEL register used to initialize I2C pins functionality
USCIBx_PINS ← Pins used for I2C (SDA/SCL)

6.2.3 HIDI2C Report Descriptors
The HID interface can be modified to meet particular needs of the developer. Reports can be modified,
removed or added as needed.

Instructions:
1. Modify the HID descriptors in the following file:

.\Projects\Projects\<I2CKBDproject>\Src\HIDI2C\keyboard_descriptors.h

2. Add/remove application code as necessary to support descriptors. Definitions
USE_CONSUMER_REPORT and USE_WRC_REPORT can be used to disable application use of
these reports. These definitions are in:
.\Projects\Projects\<I2CKBDproject>\Src\KBD430\KBD430_config.h

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

www.ti.com Customizing the Keyboard Controller

33TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

6.3 Keyboard

6.3.1 Matrix Layout
The software can be easily adjusted to support different keyboard layouts.

Instructions:
1. Obtain the key matrix for your keyboard, similar to Figure 5.
2. Modify the USBKBD_scancodes_s table in the following file:

.\KBD430\Src\KBD430_ScanCodesMap.c

Each entry of this table corresponds to a key in each (column, row) in the following order:

(0,0), (0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7)
(1,0), (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (1,7)

...
(13,0), (13,1), (13,2), (13,3), (13,4), (13,5), (13,6), (13,7)
(14,0), (14,1), (14,2), (14,3), (14,4), (14,5), (14,6), (14,7)

Codes are defined by USB.org HID Usage tables and they are defined in the following file:
.\KBD430\Include\KBD430_HUT.h

3. hidUsageReserved must be used for unavailable keys. During keyboard initialization, the driver will
check for unimplemented keys in order to detect “ghost” keys properly.

4. Additional entries can be added to this table for matrix arrays different from 15x8. Note that this will
also require changes to the key scan driver which are described in Section 6.3.3.

6.3.2 Function Keys
The software included in this reference design has support for function keys defined in Table 1. The
implementation of function keys can vary, but developers can customize these keys as needed and/or add
new function keys to their implementations.

Instructions:
1. Make sure the Fn key is defined as hidUsageReservedFn in the USBKBD_scancodes_s table (check

Section 6.3.1). The function CheckforFnKey() will detect when the Fn key is pressed and it will set a
flag in order to handle this special case.

2. If required, modify the report descriptors to add new functions or customize existing ones (check
Section 6.1.3 and Section 6.2.3for USB and I2C respectively). The report descriptors included in the
software example include support for some keys defined in the Consumer Control Usage table and
one key defined in the Wireless Radio Control usage table. More details of HID report descriptors can
be found in HID Usage tables.

3. Customize the keyboard response for each Function key combination. GetFnKey() includes a switch-
case statement with the implementation of all key combinations. This function is located in the
following file:
.\KBD430\Src\KBD430_Keyboard.c

Note that in some cases, the keyboard combination can simply return a new standard key:
case hidUsageF11:

return hidUsageKeypadNumlock; // Fn + F11 = Num Lock

But in order cases, it will have special functionality as follows:
case hidUsageF8:

return CONSUMER_KEY(0x04); // Fn + F8 = Audio Mute

The macros CONSUMER_KEY and WRC_KEY are simply used to differentiate between normal keys
and special ones.

4. If implementing a report different from Consumer Control and Wireless Radio Control, add the
corresponding handlers to add and remove keys in UpdateHIDReport() and to send the report in
KBD430_Report_Update(). Use the existing implementation, conditionally built using
USE_CONSUMER_REPORT and USE_WRC_REPORT macros, as a base.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.usb.org/developers/hidpage/
http://www.usb.org/developers/hidpage/

Customizing the Keyboard Controller www.ti.com

34 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

6.3.3 Keyboard Hardware Change
The software can be modified to support different keyboard connectors, or when porting to a different
MSP430.

Instructions:
1. Define number of KSI pins (columns) and KSO pins (rows) in:

.\Projects\Projects\<I2CKBDproject>\Src\KBD430\KBD430_config.h

The number of keys resulting from multiplying KSIxKSO must be the same as the number of entries in
USBKBD_scancodes_s table (check Section 6.3.1).

2. Define the KSI port (columns) in the following file:
.\Projects\<project>\Src\KBD430\KBD430_hardware.h

Note that this implementation uses a single 8-bit port to implement al columns. This allows for an
easier and faster read of the whole column at the same time and easier handling of the ISR. The
following definitions must be modified:

KSI_IN ← PxIN register for KSI
KSI_OUT ← PxOUT register for KSI
KSI_DIR ← PxDIR register for KSI
KSI_IES ← PxIES register for KSI
KSI_IFG ← PxIFG register for KSI
KSI_IE ← PxIE register for KSI
KSI_ALL ← Bits used for KSI
KSI_READ() ← Macro to read KSI port
KSI_VECTOR ← KSI interrupt vector

3. Define the KSO pins (rows) in the same file. KSO pins can be located anywhere in the microcontroller.
The pins are defined as follows:

KSOx_POUT ← Address of PxOUT register for this KSO pin
KSOx_BIT ← Bit used by this KSO pin

Note that the KSO pins are stored in the KSO_Pinmap array.
4. Define KSO_Px_ALL for each port used by KSO pins. This definition is optional but it can be used by

macros which write to the whole ports in a faster way.
5. Modify KSO_PDIR_OFFSET if needed. The driver uses KSOx_POUT as the base address for each

port. But it uses the KSO_PDIR_OFFSET to access the corresponding PxDIR register. For example, if
the address of P1OUT is 0x0202 in MSP430F5529, and P1DIR is 0x0204, the value of
KSO_PDIR_OFFSET will be 0x02.

6. Modify keyboard macros SET_KSO_INTERRUPT, SET_KSO_POLL and SET_KSO_IDLE. These
macros set the state of the KSO pins in column-interrupt, polling or idle mode. The macros write
directly to complete KSO ports in order to run faster. When possible, write to the 16-bit register (for
example, PAOUT/PADIR/PAREN) instead of 8-bit registers (for example, P1OUT/P1DIR/P1REN).

7. If the number of KSO pins is different, add/remove entries in KSO_Pinmap, found in:
.\KBD430\Src\KBD430_DKS.c

6.3.4 Scan Rate
The scan rate of the keyboard can be modified to reduce power consumption, or increase the response
time.

Instructions:
1. Adjust DELAY_SCAN_CYCLES as required in the following file:

.\Projects\Projects\<project>\Src\KBD430\KBD430_config.h

By default, the keyboard controller waits 10ms between scans.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

www.ti.com Customizing the Keyboard Controller

35TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

6.4 Application

6.4.1 MCU System Initialization
The software included in this reference design initializes basic MCU system peripherals as follows:
• Watchdog disabled
• MCLK=SMCLK = DCO = 8MHz
• Unused GPIOs = Output Low
• SVSL/SVML/SVMH = disabled, SVSH=full performance → MSP430F5529 only
• VCore=2 (USBKBD) or VCore=0 (I2CKBD) → MSP430F5529 only

Developers can modify these settings as required or when using a different hardware or MSP430
derivative.

Instructions:
1. Modify Init_Clock() to initialize MSP430 clocks. This function is located in:

.\Projects\<project>\Src\main.c

2. In the same file, modify Init_Ports() to initialize MSP430 GPIOs.
• KSI pins should be initialized as inputs.
• KSO pins as output low.
• LED pins as output low.
• Unused pins should have an internal/external pull-up/down resistor or be configured as output.

3. Other basic initialization can be performed in main().

6.4.2 Keyboard LEDs
The application uses 3 LEDs for NumLock, CapsLock and ScrollLock. Developers can use different pins
for these functions or simply remove the functionality.

Instructions:
1. The LED pins are defined in:

.\Projects\<project>\Src\KBD430\KBD430_hardware.h

The following definitions are available:

LED_PORT_W ← PxOUT register for LEDs
LEDNUM_1_1 ← Pin used for Num Lock
LEDCAPS_1_6 ← Pin used for Caps Lock
LEDSCROLL_1_7 ← Pin used for Scroll Lock

2. The LEDs are handled in the application layer after getting a report from the HID interface. Modify the
implementation in main() if needed.

6.4.3 USB Custom Interface
The USBKBD configuration includes an HID custom interface which can be used to exchange custom
data with the USB host. The implementation shown in this reference design is very simplistic but it can be
used as a base for further development.

Instructions:
1. Modify CustomHID_Parse() to parse and interpret data from USB Host. This function is declared in:
.\Projects\USBKBD\Src\CustomHID.c

The current implementation implements a simple switch-case statement handling the different commands
from USB Host.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Customizing the Keyboard Controller www.ti.com

36 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

6.5 Firmware Updates
Section 5 explains the procedure required to program the device using the JTAG connector. While this
option is useful during development, it can be inconvenient for field upgrades in many applications.

In addition to the JTAG interface, this reference design allows developers to implement BSL
communication.

The MSP430 bootstrap loader (BSL) enables users to communicate with embedded memory in the
MSP430 microcontroller during the prototyping phase, final production and in service. By using common
interfaces such as USB, UART or I2C, BSL can be more convenient and easier to implement on the field.

Two BSL methods are implemented depending on the device, and they are explained in more detail in the
following sections.

6.5.1 USB BSL in MSP430F5529
MSP430F5529 is shipped with a USB BSL which resides in Flash. This BSL can be forced in hardware
using the PUR pin, however the development board included in this design doesn’t have easy access to
this pin, so a software method is used instead.

The procedure is explained in the following steps:
1. The USB BSL method can be used in the following projects:

• USBKBD: USB using MSP430F5529
• I2CKBD: I2C using MSP430F5529

2. The default configuration for these projects includes a definition ENABLE_SW_BSL which enables
software BSL calls.
If this definition is not enabled, the device can’t force BSL mode.

3. Disconnect the device from the USB port
4. Press 'm', 's', and 'p' keys at the same time
5. With the keys pressed, connect to USB port.

This will force a BOR, the MSP430 will reset and check for the ‘m’,’s’,and ’p’ keys. If the keys are
pressed, the device jumps to BSL; if not, the device will execute the application.

6. The 3 LEDs will blink at the same time to indicate entry to BSL mode
7. The 3 keys can be released at this point
8. A host application such as “MSP430 USB Firmware Upgrade Example”, available here, can be used to

update the firmware:

NOTE: The new firmware should enable ENABLE_SW_BSL in order to be able to update again.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/tool/msp430usbdevpack

www.ti.com Customizing the Keyboard Controller

37TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Figure 25. USB Firmware Upgrade Tool

The USB BSL is explained in more detail in SLAU319 and SLAA452.
Thanks to the flexibility of BSL, developers can implement customizations such as:
• Use a different software invocation sequence (check a pin on reset, use different keys, etc). The

implementation of the software call to BSL is included in main.c and can be used as a guide.
• Enable hardware entry sequence using PUR pin (i.e. using push button during reset) The

procedure and schematics are explained in more detail in SLAA452.
• Implement BSL using other interfaces such as I2C or UART.

BSL resides in Flash in the MSP430F5xx family, allowing for these and more customizations. For
more details, please refer to SLAA450.

6.5.2 UART BSL in MSP430F2744
MSP430G2744 includes a ROM BSL supporting UART and using the following pins:

Table 15. BSL pins in MSP430G2744

BSL Fuction Pin Usage
Data Transmit P1.1 KSI1
Data Receive P2.2 GPIO3_LED2

It’s important to remark that the development board doesn’t have special provisions to access the UART
BSL pins easily:
• P2.2 can be accessed in Jumper JP4 or connector J5,
• P1.1 is used as a keyboard input and as such, it’s only available in surface mount connector J3 or

resistor R11.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAA452
http://www.ti.com/lit/pdf/SLAA452
http://www.ti.com/lit/pdf/SLAA450

Customizing the Keyboard Controller www.ti.com

38 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

This BSL is usually invoked in hardware using the TEST and RESET using the entry sequence described
in SLAU319; however this reference design includes a software invocation sequence described in the
following steps:
1. The UART BSL method can be used in the followuing projects

• I2CKBD_G2xx4: I2C using MSP430G2744
2. The default configuration for these projects includes a definition ENABLE_SW_BSL which enables

software BSL calls. If this definition is not enabled, the device can’t force BSL mode.
3. Disconnect the device from the USB port or power off device.
4. Press ‘m’, ‘s’, and ‘p’ keys at the same time
5. With the keys pressed, connect to USB port or power up the device.

This will force a BOR, the MSP430 will reset and check for the ‘m’,’s’,and ’p’ keys. If the keys are
pressed, the device jumps to BSL; if not, the device will execute the application.

6. The 3 LEDs will blink at the same time to indicate entry to BSL mode
7. The 3 keys can be released at this point
8. A host application such as BSLDEMO -included in SLAU319- and hardware such as MSP430-BSL

Rocket can be used to update the firmware.

NOTE: The new firmware should enable ENABLE_SW_BSL in order to be able to update again.

Figure 26. BSLDEMO Tool

The UART BSL is explained in more detail in SLAU319.

Developers can implement customizations such as:
• Use a different software invocation sequence (check a pin on reset, use different keys, etc).

The implementation of the software call to BSL is included in main.c and can be used as a guide.
• Make the BSL pins easily available.

As mentioned previously, the development board doesn’t have special provisions to access BSL pins.
Developers can make a special connector for BSL pins and reserve these pins for this purpose.
Additionally, this connector can include the TEST and RESET pins used to force the hardware entry
sequence.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAU319
https://www.olimex.com/Products/MSP430/BSL/MSP430-BSL/
https://www.olimex.com/Products/MSP430/BSL/MSP430-BSL/
http://www.ti.com/lit/pdf/SLAU319

...

LPM3

Asynchronous key press

...LPM3

A
ctive

A
ctive

A
ctive

A
ctive

A
ctive

A
ctive

A
ctive

A
ctive

A
ctive

A
ctive

www.ti.com Test Data

39TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

• The ROM BSL is fixed to UART, but developers can implement a bootloader using other interfaces.
MSPBoot included in SLAA600 shows the implementation of a bootloader which resides in main flash
and supports UART, I2C and SPI.

7 Test Data

7.1 Test Setup
The board should be connected following the guidelines described in Section 4.

To measure power consumption:
• Disconnect JP2 and connect an ammeter in series

7.2 Response Time
The response time for keyboards is approximately 5ms to 50ms. While this depends on different factors
such as the mechanical implementation of the keyboard, communication bus load, etc., by using this
reference design, developers have more flexibility to customize the application according to their needs.
Whether response time, price or power consumption is the most important requirement, parameters such
as debounce time, USB polling interval, and microcontroller internal frequency can be adjusted to meet
particular requirements.

One important factor affecting the response time is the scan time, which defines the time required to scan
all keys. While a key press is detected in a few cycles in column-interrupt mode, the algorithm to
recognize the particular pressed key, debounce it, discard “ghost” keys, etc. can take more cycles.

The following measurements were observed on bench tests:

Time Cycles
DKS Scan ~182us@8MHz ~1450 cycles
DKS Process (1st key) ~339us@8MHz ~2715 cycles
DKS Process (additional keys) ~108us@8MHz ~860 cycles

7.3 Power Consumption
The expected power profile for the I2CKBD configuration is shown in Figure 27:

Figure 27. Expected Power Profile for I2CKBD and I2CKBD_G2xx4 Configurations

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/lit/pdf/SLAA600

1
2

3

4 5

6

Test Data www.ti.com

40 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

The following profile was observed on bench tests:

Figure 28. Power Profile Observed on I2CKBD and I2CKBD_G2xx4

The labels from Figure 28 show the different steps of the process:
1. Device wakes-up from key detection and performs first scan
2. Second scan is performed and key is processed
3. Key press is reported to host
4. Scans performed in polling mode checking for new keys and waiting for key release
5. Scan detects key release
6. Key release is reported to host

The power consumption measured for I2C configurations was:

Table 16. Power Consumption for I2C Examples

Device Mode Current Power

MSP430G2744

Active
MCLK=SMCLK=DCO= 8MHz
ACLK = VLO

3.2mA 10.56mW

LPM3
ACLK=VLO 0.8uA 2.64uW

MSP430F5529

Active
FLLref=REFO=32.768Khz
MCLK=SMCLK=DCO=8MHz
PMMCOREV=0
ACLK = REFO
SVSL/SVML/SVMH=Off
SVSH=Full Performance

2.154mA 7.1082mW

LPM3
ACLK=REFO
SVSL/SVML/SVMH=Off
SVSH=Full Performance

5.91uA 19.503uW

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

4
1

32

5 6

... LPM0

Asynchronous key press

...LPM0

A
ctive

A
ctive

A
ctive

A
ctive

A
ctive

A
ctive

A
ctive

A
ctive

A
ctive

A
ctive

... LPM3

Suspend Request

www.ti.com Test Data

41TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

The expected power profile for the USBKBD configuration is shown in Figure 27:

Figure 29. Expected Power Profile for USBKBD Configuration

The following profile was observed on bench tests:

Figure 30. Power Profile Observed on USBKBD

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Test Data www.ti.com

42 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

The labels from Figure 30 show the different steps of the process:
1. Device wakes-up from key detection and performs first scan
2. Second scan is performed, key is processed and sent to host
3. Scans performed in polling mode checking for new keys and waiting for key release
4. Scan detects key release and key is reported to host
5. Device detects a request to go to Suspend mode and goes to LPM3
6. Keyboard controller detects a key event and requests a USB remote wake-up

The power consumption measured for USB configuration was:

Table 17. Power Consumption for USB Example

Device Mode Current Power

MSP430F5529

Active
FLLref=REFO=32.768Khz
MCLK=SMCLK=DCO=8MHz
PMMCOREV=2
ACLK = REFO
SVSL/SVML/SVMH=Off
SVSH=Full Performance
XT2 = 4MHz
USB, PLL = On

3.3mA 10.89mW

LPM0
FLLref=REFO=32.768Khz
SMCLK=DCO=8MHz
PMMCOREV=2
ACLK = REFO
SVSL/SVML/SVMH=Off
SVSH=Full Performance
XT2 = 4MHz
USB, PLL = On

977uA 3.224mW

LPM3
ACLK=REFO
SVSL/SVML/SVMH=Off
SVSH=Full Performance
XT2= Off
USB, PLL = Off

6.22uA 20.52uA

7.4 Memory Footprint
The following memory footprint was obtained using IAR for MSP430 6.10.2 using optimization level “High-
Balanced”:

Table 18. Memory Footprint

USBKBD I2CKBD I2CKBD_G2xx4
Code 10,926B 9,348B 7,528B

KBD430 2,252B 2,228B 2,098B
HIDUSB 5,566B - -
HIDI2C - 4,460B 4,532B

Constants 1,486B 323B 323B
ScanCodeMap 124B 124B 124B
Descriptors 1,142B 139B 139B

Data 492B 638B 638B
Stack 160B 320B 320B
Heap - 200B 200B

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

P6.4/CB4/A4
1

P6.5/CB5/A5
2

P6.6/CB6/A6
3

P6.7/CB7/A7
4

P7.0/CB8/A12
5

P7.1/CB9/A13
6

P7.2/CB10/A14
7

P7.3/CB11/A15
8

P5.0/A8/VREF+/VEREF+
9

P5.1/A9/VREF-/VEREF-
10

AVCC1
11

P5.4/XIN
12

P5.5/XOUT
13

AVSS1
14

P8.0
15

P8.1
16

P8.2
17

DVCC1
18

DVSS1
19

VCORE
20

P1.0/TA0CLK/ACLK
21

P1.1/TA0.0
22

P1.2/TA0.1
23

P1.3/TA0.2
24

P1.4/TA0.3
25

P1.5/TA0.4
26

P1.6/TA1CLK/CBOUT
27

P1.7/TA1.0
28

P2.0/TA1.1
29

P2.1/TA1.2
30

P2.2/TA2CLK/SMCLK
31

P2.3/TA2.0
32

P2.4/TA2.1
33

P2.5/TA2.2
34

P2.6/RTCCLK/DMAE0
35

P2.7/UCB0STE/UCA0CLK
36

P3.0/UCB0SIMO/UCB0SDA
37

P3.1/UCB0SOMI/UCB0SCL
38

P3.2/UCB0CLK/UCA0STE
39

P3.3/UCA0TXD/UCA0SIMO
40

P3.4/UCA0RXD/UCA0SOMI
41

P3.5/TB0.5
42

P3.6/TB0.6
43

P3.7/TB0OUTH/SVMOUT
44

P4.0/PM_UCB1STE/PM_UCA1CLK
45

P4.1/PM_UCB1SIMO/PM_UCB1SDA
46

P4.2/PM_UCB1SOMI/PM_UCB1SCL
47

P4.3/PM_UCB1CLK/PM_UCA1STE
48

DVSS2
49

DVCC2
50

P4.4/PM_UCA1TXD/PM_UCA1SIMO
51

P4.5/PM_UCA1RXD/PM_UCA1SOMI
52

P4.6/PM_NONE
53

P4.7/PM_NONE
54

P5.6/TB0.0
55

P5.7/TB0.1
56

P7.4/TB0.2
57

P7.5/TB0.3
58

P7.6/TB0.4
59

P7.7/TB0CLK/MCLK
60

VSSU
61

PU.0/DP
62

PUR
63

PU.1/DM
64

VBUS
65

VUSB
66

V18
67

AVSS2
68

P5.2/XT2IN
69

P5.3/XT2OUT
70

TEST/SBWTCK
71

PJ.0/TDO
72

PJ.1/TDI/TCLK
73

PJ.2/TMS
74

PJ.3/TCK
75

RST/NMI/SBWTDIO
76

P6.0/CB0/A0
77

P6.1/CB1/A1
78

P6.2/CB2/A2
79

P6.3/CB3/A3
80

U1

MSP430F5529IPN

GPIO1_ACLK
GPIO2_LED1
TCAP1
TCAP2
PWM1
PWM2
GPIO3_LED2
GPIO4_LED3

SPI_MOSI
SPI_MISO
SPI_CLK
UART_TX
UART_RX
GPIO5
GPIO6
GPIO7

AIN7
AIN8
XT2IN
XT2OUT
KSO1
KSO2
KSO3
KSO4

KSO7
KSO8
KSO9
KSO10
PWM3
PWM4
PWM5
KSO11

V18
VCORE

VUSB

VCC430
VCC430

PUR

PU.1/DM
PU.0/DP

SBWTCK
RST/SBWTDIO

PJ.3
PJ.2
PJ.1
GPIO13

KSO14
KSO13
KSO12

KSO6
KSO5
AIN6
AIN5
AIN4
AIN3
AIN2
AIN1

KSO0
GPIO12
GPIO11
GPIO10
GPIO9
I2C_SCL
I2C_SDA
GPIO8

KSI7
KSI6
KSI5
KSI4
KSI3
KSI2
KSI1
KSI0

GND

GND

GNDVCC430

GND

VCC

0.47 µF
C17

0.1 µF
C15

0.1 µF
C14

0

R19

0

R18

0.1 µF
C12

GND

GND

1
2

4 MHz

Y1
HC49US-4.000MABJB

XT2OUT

XT2IN

33 pF

C10

33 pF

C11

1

2

3

4

5

7
89

6J6

SD103AW-13-F

C A

D4

TPD2E001DZDR

GND
1

IO1
2

IO2
3

VCC
4

U2

GND

GND

GND

GND

PU.0/DP

PU.1/DM

Micro USB Interface

1.40 k

R1

1.0 Meg
R2

27

R3 27

R4

33 k
R5

10 pF
C1

10 pF
C2

0.1 µF
C3 4.7 µF

C4

XT2

GND

GND

VUSB_VCC

V
1

8

V
U

S
B

0.22 µF
C9

0.22 µF
C8

D5
LL103A-GS08

1

2

JP6

TSW-102-07-G-S

GND

47 k
R20

KSI0

KSI1

KSI2

KSI3

KSI4

KSI5

KSI6

KSi7

GPIO8

I2C_SDA

I2C_SCL

GPIO9

GPIO10

GPIO11

GPIO12

KSO0

AIN1

AIN2

AIN3

AIN4

AIN5

AIN6

KSO5

KSO6

KSO12

KSO13

KSO14 VCC

RST/SBWTDIO

SBWTCK

GPIO1_ACLK

GPIO2_LED1

TCAP1

TCAP2

PWM1

PWM2

GPIO3_LED2

GPIO4_LED3

SPI_MOSI

SPI_MISO

SPI_CLK

UART_TX

UART_RX

GPIO5

GPIO6

GPIO7

AIN7

AIN8

KSO1

KSO2

KSO3

KSO4

KSO7

KSO8

KSO9

PWM3

PWM4

PWM5

KSO11

VBUS

VUSB

VCC430

VUSB_VCC

KSO10

GPIO13

10 µF
C16

10 µF
C13

2.2 nF

C18

DNP

PUR

D-

D+

VBUS

VBUS

www.ti.com Design Files Schematics

43TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

8 Design Files Schematics
To download the Schematics for each board, see the design files at http://www.ti.com/tool/DESIGNNUMBER.

Figure 31. Schematics - Page 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

GND

Green

1
2

D2
Green

1
2

D3

GPIO2_LED1

GPIO3_LED2

LEDs

KSI1 KSI2 KSI3 KSI4 KSI5 KSI6 KSI7KSI0

Keyboard Inputs

GND

GND

V
C

C
4

3
0

VCC

Power/SBW

1 2

3 4

5 6

7 8

9 10

11 12

13 14

J1

SBH11-PBPC-D07-ST-BK

OUT
1

NR
3

4

EN
5

IN
8

9

GND

U4A TPS73533DRBT

SBWTCK 1

2

JP2

TSW-102-07-G-S

1

2

3

J2

TSW-103-07-G-S

330

R6

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

J3
2-84952-4

Green

1
2

D1

1 2

JP3

TSW-102-07-G-S

1 2

JP4

TSW-102-07-G-S

1 2

JP5

TSW-102-07-G-S

GPIO4_LED3

47 k
R10

47 k
R11

47 k
R12

47 k
R13

47 k
R14

47 k
R15

47 k
R16

47 k
R17

VCC

1

3

56

4

2

7

910

8

12 11

14 13

16 15

18 17

20 19

J4

SSW-110-23-F-D

1

3

56

4

2

7

910

8

12 11

14 13

16 15

18 17

20 19

J5

SSW-110-23-F-D

K
S

O
0

K
S

O
1

K
S

O
2

K
S

O
3

K
S

I0
K

S
O

4

K
S

I1
K

S
I2

K
S

O
5

K
S

I3
K

S
O

6
K

S
O

7
K

S
O

8
K

S
O

9
K

S
O

1
0

K
S

O
1
1

K
S

I4
K

S
O

1
2

K
S

O
1
3

K
S

O
1
4

K
S

I5
K

S
I6

K
S

I7

GND

4.7 µF
C5

VBUS VBUS_LDO

1

2

3

JP1

TSW-103-07-G-S

VUSB_VCC
VCC

Keyboard Connector

VCC
AIN1
UART_RX
UART_TX
GPIO1_ACLK
AIN2
SPI_CLK
GPIO2_LED1
I2C_SCL

VBUS

AIN3
AIN4
AIN5
AIN6
AIN7
AIN8
GPIO8
GPIO9

PWM5
PWM4
PWM3
PWM2
TCAP2
TCAP1
GPIO13
GPIO12
GPIO11
GPIO10

PWM1
GPIO7
GPIO6
RST/SBWTDIO
SPI_MOSI
SPI_MISO
GPIO5
GPIO4_LED3
GPIO3_LED2

GND

GNDGND

GND

40 pin BoosterPack Headers

1-2: VUSB

2-3: EXT LDO

VCC
GND
GND

1 µF
C7

0.01 µF

C6

KSI7 KSO0

KSO1

KSO2

KSO3

KSI0

KSO4

KSO7

KSO6

KSI3

KSO5

KSI2

KSI6

KSI5

KSO14

KSO13

KSO12

KSI4

KSO11

KSO10

KSO9

KSO8

KSI1

RST/SBWTDIO

VBUS

VUSB_VCC

SBWTCK

KSI0 KSI1 KSI2 KSI3 KSI4 KSI5 KSI6 KSI7

VCC

AIN1

UART_RX

UART_TX

GPIO1_ACLK

AIN2

SPI_CLK

GPIO2_LED1

VBUS

AIN3

AIN4

AIN5

AIN6

AIN7

AIN8

GPIO8

GPIO9

PWM5

PWM4

PWM3

PWM2

TCAP2

TCAP1

GPIO13

GPIO12

GPIO11

GPIO10

PWM1

GPIO7

GPIO6

RST/SBWTDIO

SPI_MOSI

SPI_MISO

GPIO5

GPIO4_LED3

GPIO3_LED2

I2C_SDA

I2C_SCL

GPIO2_LED1

GPIO3_LED2

GPIO4_LED3
560

R7

560

R8

560

R9

2.2 k

R22

2.2 k

R21

0.1 µF
C19

0.1 µF
C20

RST/SBWTDIO

I2C_SDA

Design Files Schematics www.ti.com

44 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Figure 32. Schematics - Page 2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

GND

VCC

47 k

R30
DNP

RST/SBWTDIO
SBWTCK

VCC430

0.1 µF

C30

DNP

GND

VCC430

0.1 µF

C32
DNP

0

R32
DNP

0

R31
DNP

KSI7

KSI6

KSI5

KSI4

KSI3

KSI2

KSI1

KSI0

I2C_SDA

KSO4

I2C_SCL

SPI_CLK

UART_TX

UART_RX

KSO5

KSO6

KSO7

KSO8

KSO9

KSO10

KSO11

KSO12

KSO13

KSO14

GPIO1_ACLK

GPIO2_LED1

GPIO3_LED2

GPIO4_LED3

KSO14

KSO13

KSO12

KSO11

KSO10

KSO9

KSO8

KSO7

KSO6

KSO5

UART_RX

UART_TX

SPI_CLK

I2C_SCL

I2C_SDA

KSO4

KSI0

KSI1

KSI2

KSI3

KSI4

KSI5

KSI6

KSI7

GPIO1_ACLK

GPIO2_LED1

GPIO3_LED2

GPIO4_LED3

KSO0

KSO1

KSO2

KSO3

10 µF

C33
DNP

10 µF

C31

DNP

2.2 nF

C34
DNP

KSO0

KSO1

KSO2

KSO3

msp430g2744_rha_40

TEST/SBWTCK
37

*RST/NMI/SBWTDIO
5

P1.0/TACLK/ADC10CLK
29

P1.1/TA0
30

P1.2/TA1
31

P1.3/TA2
32

P1.4/SMCLK/TCK
33

P1.5/TA0/TMS
34

P1.6/TA1/TDI/TCLK
35

P1.7/TA2/TDO/TDI
36

P2.0/ACLK/A0
6

P2.1/TAINCLK/SMCLK/A1
7

P2.2/TA0/A2
8

P2.3/TA1/A3/VREF-/VEREF-
27

P2.4/TA2/A4/VREF+/VEREF+
28

P2.5/ROSC
40

XIN/P2.6
3

XOUT/P2.7
2

A
V

S
S

1
3

D
V

S
S

1

D
V

S
S

4

P3.0/UCB0STE/UCA0CLK/A5
9

P3.1/UCB0SIMO/UCB0SDA
10

P3.2/UCB0SOMI/UCB0SCL
11

P3.3/UCB0CLK/UCA0STE
12

P3.4/UCA0TXD/UCA0SIMO
23

P3.5/UCA0RXD/UCA0SOMI
24

P3.6/A6
25

P3.7/A7
26

P4.0/TB0
15

P4.1/TB1
16

P4.2/TB2
17

P4.3/TB0/A12
18

P4.4/TB1/A13
19

P4.5/TB2/A14
20

P4.6/TBOUTH/A15
21

P4.7/TBCLK
22

A
V

C
C

1
4

D
V

C
C

3
9

D
V

C
C

3
8

E
P

A
D

4
1

U3
DNP

VCC430

RST/SBWTDIO

SBWTCK

VCC

GND

www.ti.com Design Files Schematics

45TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Figure 33. Schematics - Page 3

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Design Files Schematics www.ti.com

46 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

www.ti.com Design Files Schematics

47TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

8.1 Bill of Materials
To download the Bill of Materials for each board, see the design files at http://www.ti.com/tool/DESIGNNUMBER.

Table 19. KBD430_BOM_F5529
Item Qty Reference Value Part Description Manufacturer Manufacturer Part

Number
Alternate Part PCB Footprint Note

1 2 C1, C2 10pF CAP, CERM, 10pF, 50V, +/-5%,
C0G/NP0, 0603

Kemet C0603C100J5GAC
TU

0603

2 1 C3 0.1uF CAP, CERM, 0.1uF, 50V, +/-10%, X7R,
0603

Kemet C0603C104K5RAC
TU

0603

3 1 C4 4.7µF CAP, TA, 4.7uF, 10V, +/-10%, 5 ohm,
SMD

Vishay-Sprague 293D475X9010A2T
E3

3216-18

4 1 C5 4.7uF CAP, CERM, 4.7uF, 10V, +/-10%, X5R,
0603

Kemet C0603C475K8PAC
TU

0603

5 1 C6 0.01uF CAP, CERM, 0.01uF, 50V, +/-10%, X7R,
0603

MuRata GRM188R71H103K
A01D

0603

6 1 C7 1uF CAP, CERM, 1uF, 16V, +/-10%, X5R,
0603

Kemet C0603C105K4PAC
TU

0603

7 2 C8, C9 0.22uF CAP, CERM, 0.22uF, 16V, +/-10%, X7R,
0603

TDK C1608X7R1C224K
080AC

0603

8 2 C10, C11 33pF CAP, CERM, 33pF, 50V, +/-5%,
C0G/NP0, 0603

TDK C1608C0G1H330J
080AA

0603

9 3 C12, C14, C15 0.1uF CAP, CERM, 0.1uF, 16V, +/-10%, X7R,
0603

Kemet C0603C104K4RAC
TU

0603

10 2 C13, C16 10uF CAP, TA, 10uF, 10V, +/-20%, 3.4 ohm,
SMD

Vishay-Sprague 293D106X0010A2T
E3

3216-18

11 1 C17 0.47uF CAP, CERM, 0.47uF, 10V, +/-10%, X5R,
0603

Kemet C0603C474K8PAC
TU

0603

12 0 C18, C34 2200pF CAP, CERM, 2200pF, 100V, +/-5%, X7R,
0603

AVX 06031C222JAT2A 0603 DNP_F5529

13 2 C19, C20 0.1uF CAP, CERM, 0.1uF, 16V, +/-5%, X7R,
0603

AVX 0603YC104JAT2A 0603

14 0 C30, C32 0.1uF CAP, CERM, 0.1uF, 16V, +/-10%, X7R,
0603

Kemet C0603C104K4RAC
TU

0603 DNP_F5529

15 0 C31, C33 10uF CAP, TA, 10uF, 10V, +/-20%, 3.4 ohm,
SMD

Vishay-Sprague 293D106X0010A2T
E3

3216-18 DNP_F5529

16 3 D1, D2, D3 Green LED, Green, SMD Lite-On LTST-C171GKT LED_LTST-C171

17 1 D4 SD103AW-13-F DIODE, SCHOTTKY, 0.35A, 40V, SOD-
123

DIODES INC SD103AW-13-F D_SOD123

18 1 D5 LL103A-GS08 Diode, Schottky, 40V, 0.2A,
3.7x1.6x1.6mm

Vishay-
Semiconductor

LL103A-GS08 SOD-80

19 1 J1 Connector Header (shrouded), 100 mil, 7x2, Gold,
TH

Sullins Connector
Solutions

SBH11-PBPC-D07-
ST-BK

CONN_SBH11-
PBPC-D07-ST-BK

20 2 J2, JP1 Connector Header, 100mil, 3x1, Gold, TH Samtec TSW-103-07-G-S TSW-103-07-G-S

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Design Files Schematics www.ti.com

48 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Table 19. KBD430_BOM_F5529 (continued)
21 1 J3 Keyboard

connector
CONN FPC 24POS 1MM RT ANG SMD TE Connectivity 2-84952-4 CON24_SMT-

RA_FCC

22 2 J4, J5 Connector Connector, Receptacle, 100mil, 10x2,
Gold plated, TH

Samtec SSW-110-23-F-D CONN_SSW-110-
23-F-D

23 1 J6 USB Connector CONNECTOR, MICRO-USB-AB,
RECEPTACLE, RIGHT ANGLE, 5-PIN

HIROSE ZX62D-AB-5P8 USB-ZX62D-AB-
5P8_REVISED

24 5 JP2, JP3, JP4, JP5,
JP6

Jumper Header, 100mil, 2x1, Gold, TH Samtec TSW-102-07-G-S TSW-102-07-G-S

25 1 R1 1.40k RES, 1.40k ohm, 1%, 0.1W, 0603 Vishay-Dale CRCW06031K40F
KEA

0603

26 1 R2 1M RES, 1.0Meg ohm, 5%, 0.1W, 0603 Vishay-Dale CRCW06031M00J
NEA

0603

27 2 R3, R4 27 RES, 27 ohm, 5%, 0.1W, 0603 Vishay-Dale CRCW060327R0J
NEA

0603

28 1 R5 33k RES, 33k ohm, 5%, 0.1W, 0603 Vishay-Dale CRCW060333K0JN
EA

0603

29 1 R6 330 RES, 330 ohm, 5%, 0.1W, 0603 Vishay-Dale CRCW0603330RJ
NEA

0603

30 3 R7, R8, R9 560 RES, 560 ohm, 5%, 0.1W, 0603 Vishay-Dale CRCW0603560RJ
NEA

0603

31 9 R10, R11, R12,
R13, R14, R15,
R16, R17, R20

47k RES, 47k ohm, 5%, 0.1W, 0603 Vishay-Dale CRCW060347K0JN
EA

0603

32 2 R18, R19 0 RES, 0 ohm, 5%, 0.1W, 0603 Vishay-Dale CRCW06030000Z0
EA

0603

33 2 R21, R22 2.2k RES, 2.2k ohm, 5%, 0.1W, 0603 Vishay-Dale CRCW06032K20JN
EA

0603

34 0 R30 47K RES, 47k ohm, 5%, 0.1W, 0603 Vishay-Dale CRCW060347K0JN
EA

0603 DNP_F5529

35 0 R31, R32 0 RES, 0 ohm, 5%, 0.1W, 0603 Vishay-Dale CRCW06030000Z0
EA

0603 DNP_F5529

36 1 U1 MSP430F5529 Mixed Signal MicroController, PN0080A Texas Instruments MSP430F5529IPN PN0080A_L

37 1 U2 TPD2E001DZDR IC, LOW-CAPACITANCE 2-Chan ±15-kV
ESD-PROTECTION ARRAY, SOP-4

TEXAS
INSTRUMENTS

TPD2E001DZDR DZD

38 0 U3 MSP430G2744 MSP430G2744, VQFN40 Texas Instruments MSP430G2744IRH
A40R

QFN50P600X600X
100-40N

DNP_F5529

39 1 U4 TPS73533 Single Output High PSRR LDO, 500 mA,
Fixed 3.3 V Output, 2.7 to 6.5 V Input,
with Low IQ, 8-pin SON (DRB), -40 to
125 degC, Green (RoHS & no Sb/Br)

Texas Instruments TPS73533DRBT DRB8_1P75X1P5

40 1 Y1 XTAL4M Crystal, 4MHz, 30pF, SMD Auris-GmbH Q- 4,000000M-
HC49USSMD-F-30-
30-D-16-TR

HCM49-
4.000MABJT

Auris_HC49USSM
D

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

www.ti.com Design Files Schematics

49TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Design Files Schematics www.ti.com

50 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Table 20. KBD430_BOM_G2744
Item Qty Reference Value Part Description Manufacturer Manufacturer

Part Number
Alternate
Part

PCB
Footprint

Note

1 2 C1, C2 10pF CAP, CERM, 10pF, 50V, +/-
5%, C0G/NP0, 0603

Kemet C0603C100J
5GACTU

0603

2 1 C3 0.1uF CAP, CERM, 0.1uF, 50V, +/-
10%, X7R, 0603

Kemet C0603C104K
5RACTU

0603

3 1 C4 4.7µF CAP, TA, 4.7uF, 10V, +/-10%,
5 ohm, SMD

Vishay-
Sprague

293D475X90
10A2TE3

3216-18

4 1 C5 4.7uF CAP, CERM, 4.7uF, 10V, +/-
10%, X5R, 0603

Kemet C0603C475K
8PACTU

0603

5 1 C6 0.01uF CAP, CERM, 0.01uF, 50V, +/-
10%, X7R, 0603

MuRata GRM188R71
H103KA01D

0603

6 1 C7 1uF CAP, CERM, 1uF, 16V, +/-
10%, X5R, 0603

Kemet C0603C105K
4PACTU

0603

7 0 C8, C9 0.22uF CAP, CERM, 0.22uF, 16V, +/-
10%, X7R, 0603

TDK C1608X7R1C
224K080AC

0603 DNP_G2744

8 0 C10, C11 33pF CAP, CERM, 33pF, 50V, +/-
5%, C0G/NP0, 0603

TDK C1608C0G1H
330J080AA

0603 DNP_G2744

9 0 C12, C14,
C15

0.1uF CAP, CERM, 0.1uF, 16V, +/-
10%, X7R, 0603

Kemet C0603C104K
4RACTU

0603 DNP_G2744

10 0 C13, C16 10uF CAP, TA, 10uF, 10V, +/-20%,
3.4 ohm, SMD

Vishay-
Sprague

293D106X00
10A2TE3

3216-18 DNP_G2744

11 0 C17 0.47uF CAP, CERM, 0.47uF, 10V, +/-
10%, X5R, 0603

Kemet C0603C474K
8PACTU

0603 DNP_G2744

12 0 C18, C34 2200pF CAP, CERM, 2200pF, 100V,
+/-5%, X7R, 0603

AVX 06031C222JA
T2A

0603 DNP_G2744

13 2 C19, C20 0.1uF CAP, CERM, 0.1uF, 16V, +/-
5%, X7R, 0603

AVX 0603YC104J
AT2A

0603

14 2 C30, C32 0.1uF CAP, CERM, 0.1uF, 16V, +/-
10%, X7R, 0603

Kemet C0603C104K
4RACTU

0603

15 2 C31, C33 10uF CAP, TA, 10uF, 10V, +/-20%,
3.4 ohm, SMD

Vishay-
Sprague

293D106X00
10A2TE3

3216-18

16 3 D1, D2, D3 Green LED, Green, SMD Lite-On LTST-
C171GKT

LED_LTST-
C171

17 1 D4 SD103AW-
13-F

DIODE, SCHOTTKY, 0.35A,
40V, SOD-123

DIODES INC SD103AW-
13-F

D_SOD123

18 0 D5 LL103A-GS08 Diode, Schottky, 40V, 0.2A,
3.7x1.6x1.6mm

Vishay-
Semiconducto
r

LL103A-GS08 SOD-80 DNP_G2744

19 1 J1 Connector Header (shrouded), 100 mil,
7x2, Gold, TH

Sullins
Connector
Solutions

SBH11-
PBPC-D07-
ST-BK

CONN_SBH1
1-PBPC-D07-
ST-BK

20 2 J2, JP1 Connector Header, 100mil, 3x1, Gold,
TH

Samtec TSW-103-07-
G-S

TSW-103-07-
G-S

21 1 J3 Keyboard
connector

CONN FPC 24POS 1MM RT
ANG SMD

TE
Connectivity

2-84952-4 CON24_SMT-
RA_FCC

22 2 J4, J5 Connector Connector, Receptacle,
100mil, 10x2, Gold plated, TH

Samtec SSW-110-23-
F-D

CONN_SSW-
110-23-F-D

23 1 J6 USB
Connector

CONNECTOR, MICRO-USB-
AB, RECEPTACLE, RIGHT
ANGLE, 5-PIN

HIROSE ZX62D-AB-
5P8

USB-ZX62D-
AB-
5P8_REVISE
D

24 4 JP2, JP3,
JP4, JP5

Jumper Header, 100mil, 2x1, Gold,
TH

Samtec TSW-102-07-
G-S

TSW-102-07-
G-S

25 0 JP6 Jumper Header, 100mil, 2x1, Gold,
TH

Samtec TSW-102-07-
G-S

TSW-102-07-
G-S

DNP_G2744

26 1 R1 1.40k RES, 1.40k ohm, 1%, 0.1W,
0603

Vishay-Dale CRCW06031
K40FKEA

0603

27 1 R2 1M RES, 1.0Meg ohm, 5%, 0.1W,
0603

Vishay-Dale CRCW06031
M00JNEA

0603

28 2 R3, R4 27 RES, 27 ohm, 5%, 0.1W,
0603

Vishay-Dale CRCW06032
7R0JNEA

0603

29 1 R5 33k RES, 33k ohm, 5%, 0.1W,
0603

Vishay-Dale CRCW06033
3K0JNEA

0603

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

www.ti.com Design Files Schematics

51TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Table 20. KBD430_BOM_G2744 (continued)
30 1 R6 330 RES, 330 ohm, 5%, 0.1W,

0603
Vishay-Dale CRCW06033

30RJNEA
0603

31 3 R7, R8, R9 560 RES, 560 ohm, 5%, 0.1W,
0603

Vishay-Dale CRCW06035
60RJNEA

0603

32 9 R10, R11,
R12, R13,
R14, R15,
R16, R17

47k RES, 47k ohm, 5%, 0.1W,
0603

Vishay-Dale CRCW06034
7K0JNEA

0603

33 0 R20 47k RES, 47k ohm, 5%, 0.1W,
0603

Vishay-Dale CRCW06034
7K0JNEA

0603 DNP_G2744

34 0 R18, R19 0 RES, 0 ohm, 5%, 0.1W, 0603 Vishay-Dale CRCW06030
000Z0EA

0603 DNP_G2744

35 2 R21, R22 2.2k RES, 2.2k ohm, 5%, 0.1W,
0603

Vishay-Dale CRCW06032
K20JNEA

0603

36 1 R30 47K RES, 47k ohm, 5%, 0.1W,
0603

Vishay-Dale CRCW06034
7K0JNEA

0603

37 2 R31, R32 0 RES, 0 ohm, 5%, 0.1W, 0603 Vishay-Dale CRCW06030
000Z0EA

0603

38 0 U1 MSP430F552
9

Mixed Signal MicroController,
PN0080A

Texas
Instruments

MSP430F552
9IPN

PN0080A_L DNP_G2744

39 1 U2 TPD2E001DZ
DR

IC, LOW-CAPACITANCE 2-
Chan ±15-kV ESD-
PROTECTION ARRAY, SOP-
4

TEXAS
INSTRUMEN
TS

TPD2E001DZ
DR

DZD

40 1 U3 MSP430G274
4

MSP430G2744, VQFN40 Texas
Instruments

MSP430G274
4IRHA40R

QFN50P600X
600X100-40N

41 1 U4 TPS73533 Single Output High PSRR
LDO, 500 mA, Fixed 3.3 V
Output, 2.7 to 6.5 V Input,
with Low IQ, 8-pin SON
(DRB), -40 to 125 degC,
Green (RoHS & no Sb/Br)

Texas
Instruments

TPS73533DR
BT

DRB8_1P75X
1P5

42 0 Y1 XTAL4M Crystal, 4MHz, 30pF, SMD Auris-GmbH Q-
4,000000M-
HC49USSMD
-F-30-30-D-
16-TR

HCM49-
4.000MABJT

Auris_HC49U
SSMD

DNP_G2744

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Design Files Schematics www.ti.com

52 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

8.2 PCB Layout
To download the Layout Prints for each board, see the design files at
http://www.ti.com/tool/DESIGNNUMBER.

Figure 34. Layout - Top Layer

Figure 35. Layout – Bottom Layer

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

www.ti.com Design Files Schematics

53TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

Figure 36. Mechanical Dimensions

8.3 Altium Project
To download the Altium project files for each board, see the design files at
http://www.ti.com/tool/DESIGNNUMBER.

8.4 Gerber FIles
To download the Gerber files for each board, see the design files at
http://www.ti.com/tool/DESIGNNUMBER.

9 Software Files
To download the software files for this reference design, please see the link at
http://www.ti.com/tool/DESIGNNUMBER.

10 References
1. 1. MSP430x5xx and MSP430x6xx Family User’s Guide (SLAU208)
2. 2. MSP430x2xx Family User’s Guide (SLAU144)
3. 3. Implementing an Ultralow-Power Keypad Interface with the MSP430, 2002 (SLAA149)
4. 4. Enabling Low-Power Windows 8 HID Over I2C Applications using MSP430 Microcontrollers, 2012

(SLAA569)
5. Programming With the Bootstrap Loader (BSL), 2014 (SLAU319)
6. Creating a Custom Flash-Based Bootstrap Loader (BSL), 2013 (SLAA450)
7. USB Field Firmware Update on MSP430™ MCUs, 2011 (SLAA452)
8. MSPBoot - Main Memory Bootloader for MSP430™ Microcontrollers, 2014 (SLAA600)
9. 5. USB HID Usage Tables. http://www.usb.org/developers/hidpage/

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/lit/pdf/SLAU208
http://www.ti.com/lit/pdf/SLAU144
http://www.ti.com/lit/pdf/SLAA149
http://www.ti.com/lit/pdf/SLAA569
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAA450
http://www.ti.com/lit/pdf/SLAA452
http://www.ti.com/lit/pdf/SLAA600
http://www.usb.org/developers/hidpage/

About the Author www.ti.com

54 TIDU521–October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

11 About the Author
Luis Reynoso is an Applications Engineer at Texas Instruments. He has taken multiple customer-facing
roles in the embedded industry, and during this time he has published several Applications Notes and
papers for microcontrollers. He joined the MSP430 Applications team in 2010.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (‘TI”) reference designs are solely intended to assist designers (“Designer(s)”) who are developing systems
that incorporate TI products. TI has not conducted any testing other than that specifically described in the published documentation for a
particular reference design.
TI’s provision of reference designs and any other technical, applications or design advice, quality characterization, reliability data or other
information or services does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and
no additional obligations or liabilities arise from TI providing such reference designs or other items.
TI reserves the right to make corrections, enhancements, improvements and other changes to its reference designs and other items.
Designer understands and agrees that Designer remains responsible for using its independent analysis, evaluation and judgment in
designing Designer’s systems and products, and has full and exclusive responsibility to assure the safety of its products and compliance of
its products (and of all TI products used in or for such Designer’s products) with all applicable regulations, laws and other applicable
requirements. Designer represents that, with respect to its applications, it has all the necessary expertise to create and implement
safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the
likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any systems
that include TI products, Designer will thoroughly test such systems and the functionality of such TI products as used in such systems.
Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special
contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause
serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such
equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and
equivalent classifications outside the U.S.
Designers are authorized to use, copy and modify any individual TI reference design only in connection with the development of end
products that include the TI product(s) identified in that reference design. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR
INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right,
copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or
services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products
or services, or a warranty or endorsement thereof. Use of the reference design or other items described above may require a license from a
third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.
TI REFERENCE DESIGNS AND OTHER ITEMS DESCRIBED ABOVE ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS
ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING THE REFERENCE DESIGNS OR USE OF
THE REFERENCE DESIGNS, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE
WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-
INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNERS AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS AS
DESCRIBED IN A TI REFERENCE DESIGN OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT,
SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH
OR ARISING OUT OF THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, AND REGARDLESS OF WHETHER TI
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
TI’s standard terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products. Additional terms may apply to the use or sale of other types of TI products and services.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-
compliance with the terms and provisions of this Notice.IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm

	Keyboard Controller using MSP430
	1 System Description
	1.1 MSP430 Family of Microcontrollers
	1.1.1 MSP430F5529
	1.1.2 MSP430G2744

	1.2 TPS73533

	2 Block Diagram
	3 System Design Theory
	3.1 Key Matrix
	3.1.1 "Ghost" Key Detection

	3.2 USB HID
	3.3 HID over I2C
	3.4 Software
	3.5 Hardware
	3.5.1 Using MPS430F5529
	3.5.2 Using MSP430G2744

	4 Getting Started Hardware
	4.1 Keyboard
	4.2 Basic Connections
	4.3 Testing USBKBD Configuration
	4.4 Testing I2CKBD and I2CKBD_G2xx4 Configurations

	5 Getting Started Firmware
	5.1 Building Projects in IAR
	5.2 Building Projects in CCS

	6 Customizing the Keyboard Controller
	6.1 USB Interface Customizations
	6.1.1 USB VID/PID
	6.1.2 Crystal XT2
	6.1.3 USB Descriptors
	6.1.4 Polling Interval

	6.2 HID-I2C Interface Customizations
	6.2.1 I2C Slave Address
	6.2.2 I2C Peripheral/Pins
	6.2.3 HIDI2C Report Descriptors

	6.3 Keyboard
	6.3.1 Matrix Layout
	6.3.2 Function Keys
	6.3.3 Keyboard Hardware Change
	6.3.4 Scan Rate

	6.4 Application
	6.4.1 MCU System Initialization
	6.4.2 Keyboard LEDs
	6.4.3 USB Custom Interface

	6.5 Firmware Updates
	6.5.1 USB BSL in MSP430F5529
	6.5.2 UART BSL in MSP430F2744

	7 Test Data
	7.1 Test Setup
	7.2 Response Time
	7.3 Power Consumption
	7.4 Memory Footprint

	8 Design Files Schematics
	8.1 Bill of Materials
	8.2 PCB Layout
	8.3 Altium Project
	8.4 Gerber FIles

	9 Software Files
	10 References
	11 About the Author

	Important Notice

