TIDA-00194

TI Design: Skylake Power Delivery

Test Report
1. **Description**

TI Design: Skylake Power Delivery contains four DC-DC converters & seven TPS22993 load switches. The DC-DC converters used in the design are TPS62151 (x1), TPS62182 (x2), and TPS62130 (x1). TPS22993 is a quad channel load switch with each switch capable of supporting 1.2A of load current. Support for higher load currents is made possible by combining two or more channels together as is demonstrated in the design. The TPS22993 load switches are I2C programmable (ON_delay, Rise Time, Discharge Resistance) and can be controlled by either I2C or GPIO. A PC based GUI was developed to communicate with the board via the USB2ANY which generates the I2C and GPIO control signals. The board is rated to operate with input supply voltages from 4.5V to 15V to emulate 2S & 3S battery topologies. LEDs are used to indicate the ON state of the DC-DC convertors (Blue) and 21 voltage rails (Green). A total of 21 rails can be switched using this design with load currents varying from 0.01A to 2.5A. Sense test points were used for taking the voltage measurements.
2. **System Block diagram**
3. TI Design Voltage Rails

<table>
<thead>
<tr>
<th>DC-DC Part#</th>
<th>Rail Voltage</th>
<th>DC-DC Load</th>
<th>Ultrabook Rail Name</th>
<th>TPS22993 LS Channel</th>
<th>LS Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>U3_TPS62151</td>
<td>1.8V</td>
<td>0.57A</td>
<td>VDD1.83</td>
<td>U1_C1H1</td>
<td>0.45A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V1.3DV3_SEN1-0/1</td>
<td>U1_C1H2</td>
<td>0.07A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V1.8X1_AUDIO</td>
<td>U1_C1H3</td>
<td>0.15A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V1.3DV3_SDI</td>
<td>U1_C1H4</td>
<td>0.07A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V1.3DV3_U333</td>
<td>U2_C0H1</td>
<td>0.05A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V1.3DV3_34V3</td>
<td>U2_C1H2</td>
<td>0.07A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V1.3DV3_WIFI</td>
<td>U2_C0H3</td>
<td>0.07A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V1.8M</td>
<td>U3_C1H4</td>
<td>0.06A</td>
</tr>
<tr>
<td>U9_TPS62182</td>
<td>3.3V</td>
<td>4.56A</td>
<td>V3.3DV3_U1330</td>
<td>U3_C1H1</td>
<td>0.05A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V3.3DV3_EDP</td>
<td>U3_C1H2</td>
<td>0.75A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V3.3A_FCU</td>
<td>U3_C1H3</td>
<td>0.10A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V1.3DV3_SEN1-0/1</td>
<td>U2_C1H4</td>
<td>0.08A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U3.3M</td>
<td>U4_C1H1</td>
<td>0.22A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V3.3DV3_AUDIO</td>
<td>U4_C1H2</td>
<td>0.20A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V3.3DV3_34V3</td>
<td>U4_C1H3</td>
<td>2.4A</td>
</tr>
<tr>
<td>U10_TPS62182</td>
<td>3.3V</td>
<td>5.23A</td>
<td>V3.3DV3_TOUCHSCREEN</td>
<td>U5_C1H1</td>
<td>0.12A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V3.3DV3_EDP</td>
<td>U5_C1H2</td>
<td>0.06A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V3.3DV3_WPM</td>
<td>U6_C0H3</td>
<td>2.01A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V2.22</td>
<td>U6_C1H4</td>
<td>0.02A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V3.3DV3_34V3</td>
<td>U6_C0H3</td>
<td>2.50A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U7_C0H2</td>
<td>U7_C1H4</td>
<td>2.4A</td>
</tr>
<tr>
<td>U11_TPS62130</td>
<td>1V</td>
<td>2.4A</td>
<td>ModPHY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. *TI Design: Skylake Power Delivery – Board Overview*

- DC-DC converter
- TPS22993 Load Switch
- USB2ANY Connector
- PWR & GND connections of the board
- Solution size (excluding debug circuitry)
5. PC Board Layout

6. Important Thermal Notice

This board is not optimized for thermal performance.
7. **Bench Set Up**

PWR & GND are delivered to the board as shown below.

The USB2ANY is connected to the board as shown in the below picture.
A USB cable is connected from USB2ANY to the computer with installed GUI software.

The GUI CONTROL tab is used to program and control the 7 load switches.
DC-DC power good is indicated by the Blue LED’s turning on as shown in below picture.

21 Unique rails can be turned ON/OFF using I2C, GPIO and SWITCHALL™ commands.
8. **Graphical User Interface**

The GUI contains two main tabs, **CONTROL & STATUS**. The **CONTROL** tab has buttons to turn on/off different channels in I2C or GPIO modes. The **CONTROL** tab also has drop down selection options to change **ON DELAY**, **SLEW RATE**, and **Quick Output Discharge (QOD)** resistance for each individual rail. Navigate to the desired page just by clicking on the **CONTROL** or **STATUS** tabs.

In the below picture, the **CONTROL** tab is shown in GPIO mode. Please note that I2C ON/OFF buttons are grayed out indicating that the board is in GPIO mode.

Switch to I2C mode by clicking on GPIO button on the top (highlighted in red oval).
Below picture shows the CONTROL page with the mode changed to I2C (highlighted in red oval). The GPIO ON/OFF buttons are *grayed out* to indicate that the board is in GPIO mode.

In each mode different rails or group of rails (GPIO) can be turned on/off by clicking on the ON/OFF button. GPIO control or I2C control is selectable on a per rail basis.
Below graphic shows the GUI STATUS tab with indicators for each of 21 power rails.
Below shows CONTROL tab when several grouped rails are turned ON when in GPIO mode.
Below shows STATUS tab when several grouped rails are turned ON when in GPIO mode.

Groups of rails can be also be controlled with a single I2C command when using the TPS22993 Switch ALL™ feature.
9. Test Data

9.1 TPS22993 Load Switches

9.1.1 Timing measurements

VOUT x ON delay time = \(t_D \), VOUT x turn-on time = \(t_{ON} \), VOUT x turn-off time = \(t_{OFF} \),
VOUT x rise time = \(t_R \), VOUT x fall time = \(t_F \),

V1P8S delay time, turn-on time & rise time

t_D = 212\,\mu s, \ t_{ON} = 475.8\,\mu s, \ t_R = 505.1\,\mu s

![Graph showing timing measurements](image-url)
V1P8S turn-off & fall time

\[t_{\text{OFF}} = 2.366\mu s, \ t_f = 3.4\mu s \]

V1P8Dx_SENSORS delay time, turn-on time & rise time

\[t_D = 224\mu s, \ t_{\text{ON}} = 448.6\mu s, \ t_R = 571.7\mu s \]
V1P8Dx_SENSORS turn-off & fall time

\[t_{\text{off}} = 2.966 \mu s, \quad t_f = 5.1 \mu s \]

V1P8Dx_AUDIO delay time, turn-on time & rise time

\[t_D = 224 \mu s, \quad t_{\text{on}} = 466.6 \mu s, \quad t_R = 566.1 \mu s \]
V1P8Dx_AUDIO turn-off & fall time

\[t_{\text{OFF}} = 2.22\,\mu\text{s}, \ t_{\text{F}} = 2.54\,\mu\text{s} \]

V1P8Dx_SSD delay time, turn-on time & rise time

\[t_{\text{D}} = 224\,\mu\text{s}, \ t_{\text{ON}} = 451.4\,\mu\text{s}, \ t_{\text{R}} = 562.8\,\mu\text{s} \]
V1P8Dx_SSD turn-off & fall time

$t_{\text{off}} = 2.857\mu s$, $t_f = 5.073\mu s$

V3P3Dx_3G4G delay time, turn-on time & rise time

$t_D = 356\mu s$, $t_{\text{on}} = 793.4\mu s$, $t_R = 923.2\mu s$
V3P3Dx_3G4G turn-off & fall time

\[t_{\text{off}} = 2.32\text{us}, \quad t_{\text{f}} = 2.5\text{us} \]

V3P3Dx_AUDIO delay time, turn-on time & rise time

\[t_{\Delta} = 300\text{us}, \quad t_{\text{on}} = 649.6\text{us}, \quad t_{\text{r}} = 846.7\text{us} \]
V3P3Dx_AUDIO turn-off & fall time

\[t_{\text{off}} = 2.6\mu\text{s}, \quad t_F = 3.4\mu\text{s} \]

V3P3Dx_SSD delay time, turn-on time & rise time

\[t_D = 356\mu\text{s}, \quad t_{\text{ON}} = 771.4\mu\text{s}, \quad t_R = 962.7\mu\text{s} \]
V3P3Dx_SSD turn-off & fall time

t\(_{OFF} = 7.2\,\text{us},\ t_F = 17.5\,\text{us}\)

V3P3Dx_WIFI delay time, turn-on time & rise time

t\(_D = 356\,\text{us},\ t_{ON} = 770\,\text{us},\ t_R = 941\,\text{us}\)
V3P3Dx_WIFI turn-off & fall time

t_{\text{OFF}} = 2.5\text{us}, t_{\text{F}} = 3.3\text{us}

V3P3M delay time, turn-on time & rise time

t_{\text{D}} = 296\text{us}, t_{\text{ON}} = 693\text{us}, t_{\text{R}} = 895\text{us}
V3P3M turn-off & fall time

\[t_{\text{OFF}} = 2.4\,\mu s, \quad t_{F} = 3.04\,\mu s \]

ModPHY delay time, turn-on time & rise time

\[t_{D} = 8.7\,\mu s, \quad t_{\text{ON}} = 9.1\,\mu s, \quad t_{R} = 0.97\,\mu s \]
ModPHY turn-off & fall time

t_{OFF} = 1.56\mu s, t_F = 0.32\mu s

<table>
<thead>
<tr>
<th>Rail name</th>
<th>(t_D) (\mu s)</th>
<th>(t_{ON}) (\mu s)</th>
<th>(t_R) (\mu s)</th>
<th>(t_{OFF}) (\mu s)</th>
<th>(t_F) (\mu s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1P8S</td>
<td>212</td>
<td>475.8</td>
<td>505.1</td>
<td>2.37</td>
<td>3.4</td>
</tr>
<tr>
<td>V1P8Dx_SENSORS</td>
<td>224</td>
<td>448.6</td>
<td>571.7</td>
<td>2.97</td>
<td>5.1</td>
</tr>
<tr>
<td>V1P8Dx_AUDIO</td>
<td>224</td>
<td>466.6</td>
<td>566.1</td>
<td>2.22</td>
<td>2.5</td>
</tr>
<tr>
<td>V1P8Dx_SSD</td>
<td>224</td>
<td>451.4</td>
<td>562.8</td>
<td>2.86</td>
<td>5.1</td>
</tr>
<tr>
<td>V3P3M</td>
<td>296</td>
<td>693</td>
<td>895</td>
<td>2.4</td>
<td>3.0</td>
</tr>
<tr>
<td>V3P3Dx_AUDIO</td>
<td>300</td>
<td>649.6</td>
<td>846.7</td>
<td>2.6</td>
<td>3.4</td>
</tr>
<tr>
<td>V3P3Dx_3G4G</td>
<td>356</td>
<td>793.4</td>
<td>923.2</td>
<td>2.32</td>
<td>2.5</td>
</tr>
<tr>
<td>V3P3Dx_WIFI</td>
<td>356</td>
<td>770</td>
<td>941</td>
<td>2.5</td>
<td>3.3</td>
</tr>
<tr>
<td>V3P3Dx_SSD</td>
<td>356</td>
<td>771.4</td>
<td>962.7</td>
<td>7.2</td>
<td>17.5</td>
</tr>
<tr>
<td>ModPHY</td>
<td>8.7</td>
<td>9.1</td>
<td>0.97</td>
<td>1.56</td>
<td>0.32</td>
</tr>
</tbody>
</table>
9.1.2 R_{ON} measurements:

Setup: \[R_{ON} = \frac{(V_{IN} - V_{OUT})}{I_{load}} \]

<table>
<thead>
<tr>
<th>Rail name</th>
<th>Voltage (V)</th>
<th>Current (mA)</th>
<th>$V_{IN} - V_{OUT}$ (mV)</th>
<th>R_{ON} (mohm)</th>
<th>Pout (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1P8S</td>
<td>1.8</td>
<td>100</td>
<td>2.27</td>
<td>22.7</td>
<td>0.180</td>
</tr>
<tr>
<td>V1P8Dx_SENSORS</td>
<td>1.8</td>
<td>70.6</td>
<td>1.38</td>
<td>19.5</td>
<td>0.127</td>
</tr>
<tr>
<td>V1P8Dx_AUDIO</td>
<td>1.8</td>
<td>131.4</td>
<td>2.49</td>
<td>18.9</td>
<td>0.237</td>
</tr>
<tr>
<td>V1P8Dx_SSD</td>
<td>1.8</td>
<td>70.6</td>
<td>1.34</td>
<td>19.0</td>
<td>0.127</td>
</tr>
<tr>
<td>V1P8Dx_USBSDIO</td>
<td>1.8</td>
<td>50</td>
<td>0.94</td>
<td>18.8</td>
<td>0.090</td>
</tr>
<tr>
<td>V1P8Dx_3G4G</td>
<td>1.8</td>
<td>70.6</td>
<td>1.32</td>
<td>18.7</td>
<td>0.127</td>
</tr>
<tr>
<td>V1P8Dx_WIFI</td>
<td>1.8</td>
<td>70.6</td>
<td>1.38</td>
<td>19.5</td>
<td>0.127</td>
</tr>
<tr>
<td>V1P8M</td>
<td>1.8</td>
<td>10</td>
<td>0.19</td>
<td>19.0</td>
<td>0.018</td>
</tr>
<tr>
<td>V3P3Dx_USBSDIO</td>
<td>3.3</td>
<td>750</td>
<td>15.55</td>
<td>20.7</td>
<td>2.475</td>
</tr>
<tr>
<td>V3P3Dx_EDP</td>
<td>3.3</td>
<td>750</td>
<td>15.36</td>
<td>20.5</td>
<td>2.475</td>
</tr>
<tr>
<td>V3P3A_EC</td>
<td>3.3</td>
<td>100</td>
<td>1.9</td>
<td>19.0</td>
<td>0.330</td>
</tr>
<tr>
<td>V3P3Dx_SENSORS</td>
<td>3.3</td>
<td>90.4</td>
<td>2.04</td>
<td>22.6</td>
<td>0.298</td>
</tr>
<tr>
<td>V3P3M</td>
<td>3.3</td>
<td>220</td>
<td>4.36</td>
<td>19.8</td>
<td>0.726</td>
</tr>
<tr>
<td>V3P3Dx_AUDIO</td>
<td>3.3</td>
<td>200</td>
<td>4.55</td>
<td>22.8</td>
<td>0.660</td>
</tr>
<tr>
<td>V3P3Dx_3G4G</td>
<td>3.3</td>
<td>2292</td>
<td>26.02</td>
<td>11.4</td>
<td>7.564</td>
</tr>
<tr>
<td>V3P3Dx_TOUCHSCREEN</td>
<td>3.3</td>
<td>200</td>
<td>4.98</td>
<td>24.9</td>
<td>0.660</td>
</tr>
<tr>
<td>V3P3Dx_DPWP</td>
<td>3.3</td>
<td>500</td>
<td>12.5</td>
<td>25.0</td>
<td>1.650</td>
</tr>
<tr>
<td>V3P3Dx_WIFI</td>
<td>3.3</td>
<td>1964</td>
<td>24.27</td>
<td>12.4</td>
<td>6.481</td>
</tr>
<tr>
<td>V3P3S</td>
<td>3.3</td>
<td>30</td>
<td>0.72</td>
<td>24.0</td>
<td>0.099</td>
</tr>
<tr>
<td>V3P3Dx_SSD</td>
<td>3.3</td>
<td>2500</td>
<td>22.02</td>
<td>8.8</td>
<td>8.250</td>
</tr>
<tr>
<td>ModPHY</td>
<td>1.0</td>
<td>2381</td>
<td>12.13</td>
<td>5.1</td>
<td>2.381</td>
</tr>
</tbody>
</table>

Total combined Output Power = 35W

Note: This board is not optimized for thermal performance.
9.1.3 System Quiescent and Shutdown Current

Quiescent Current (I_Q):

I_Q on BATT at 12V = 215uA

Shutdown Current (I_{SD}):

I_{SD} on BATT at 12V = 49.2uA

9.2 TPS621xx DC-DC converters

9.2.1 Start-up waveforms

U8_TPS62151 (1.8V)
9.2.2 Output Ripple

No load Ripple

U8_TPS62151 (1.8V) & U11_TPS62130 (1.0V)

U9_TPS62182 (3.3V) & U10_TPS62182 (3.3V)
Light load Ripple

U8_TPS62151 (1.8V) V1P8M ON

U9_TPS62182 (3.3V) EC ON & U10_TPS62182 (3.3V) V3P3S ON
Full load Ripple

U8_TPS62151 (1.8V)

U11TPS62130 (1.0V)
9.2.3 Load step Response

V1P8Dx_AUDIO
V3P3Dx_EDP

35 TI Design: Skylake Power Delivery
V3P3Dx_WIFI
ModPHY

Tek Stop

U11_1p0V

ModPHY

Tek PreVu

U11_1p0V

ModPHY
9.2.4 Efficiency

Efficiency vs. Load - U8_TPS62151

VIN=12V
VIN=7.2V

Efficiency vs. Load - U9_TPS62182

VIN=12V
VIN=7.2V
Efficiency vs. Load - U10_TPS62182

- Efficiency (%)
- Load current (mA)
- VIN=12V
- VIN=7.2V
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI reference designs are provided "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated