1 Introduction
The following test data was collected using the TIDA-00282 hardware. Please refer to the TIDA-00282 Quick Start Guide for basic hardware setup and operation instructions.

2 TIDA-00282 Test Data
Figure 1 through Figure 31 present performance data for the TIDA-00282 hardware. Actual performance data can be affected by measurement techniques and environmental variables. Therefore, the following data is presented for reference and may differ from actual results obtained by some users.

2.1 Efficiency
Figure 1 and Figure 2 illustrate efficiency performance.

![Figure 1. Efficiency vs Output Load Current (VIN = 12V, Bypass)](image-url)
2.2 Output Voltage Regulation

Figure 3 and Figure 4 illustrate output voltage regulation.

Figure 2. Efficiency vs Output Load Current (VIN = 6V, Boost)

Figure 3. Output Voltage Regulation vs Output Load Current (VIN = 12V, Bypass)
2.3 **Bypass to Boost Transition**

Figure 5 through Figure 18 illustrate the bypass mode to boost mode transition with a stable 12V output voltage for input voltages down to 6V.
Figure 6. Bypass to Boost Transition with 2.5A Load
(Channel 2 = VOUT, Channel 3 = VIN)

Figure 7. Bypass to Boost Transition with 5A Load
(Channel 2 = VOUT, Channel 3 = VIN)
Figure 8. Bypass to Boost Transition with 7.5A Load (Channel 2 = VOUT, Channel 3 = VIN)

Figure 9. Bypass to Boost Transition with 10A Load (Channel 2 = VOUT, Channel 3 = VIN)
Figure 10. Bypass to Boost Transition with 12.5A Load (Channel 2 = VOUT, Channel 3 = VIN)

Figure 11. Bypass to Boost Transition with 15A Load (Channel 2 = VOUT, Channel 3 = VIN)
Figure 12. Bypass to Boost Transition with 17.5A Load
(Channel 2 = VOUT, Channel 3 = VIN)

Figure 13. Bypass to Boost Transition with 20A Load
(Channel 2 = VOUT, Channel 3 = VIN)
Figure 14. Bypass to Boost Transition with 22.5A Load
(Channel 2 = VOUT, Channel 3 = VIN)

Figure 15. Bypass to Boost Transition with 25A Load
(Channel 2 = VOUT, Channel 3 = VIN)
Figure 16. Bypass to Boost Transition with 27.5A Load
(Channel 2 = VOUT, Channel 3 = VIN)

Figure 17. Bypass to Boost Transition with 30A Load
(Channel 2 = VOUT, Channel 3 = VIN)
2.4 Boost to Bypass Transition

Figure 19 through Figure 22 illustrate the boost mode to bypass mode transition.
Figure 20. Boost to Bypass Transition with 15A Load
(Channel 2 = VOUT, Channel 3 = VIN)

Figure 21. Boost to Bypass Transition with 20A Load
(Channel 2 = VOUT, Channel 3 = VIN)
Figure 22. Boost to Bypass Transition with 30A Load
(Channel 2 = VOUT, Channel 3 = VIN)

2.5 Bypass to Boost and Boost to Bypass Transitions

Figure 23 through Figure 25 illustrate the bypass mode to boost mode and boost mode to bypass mode transitions.

Figure 23. Bypass to Boost and Boost to Bypass Transitions with 27.5A Load
(Channel 2 = VOUT, Channel 3 = VIN)
Figure 24. Bypass to Boost and Boost to Bypass Transitions with 30A Load
(Channel 2 = VOUT, Channel 3 = VIN)

Figure 25. Bypass to Boost and Boost to Bypass Transitions with 33A Load
(Channel 2 = VOUT, Channel 3 = VIN)
2.6 Output Voltage Ripple

Figure 26 through Figure 29 illustrate the output voltage ripple.

Figure 26. AC Coupled Output Voltage Ripple with No Load
(VIN = 12V, Channel 1 = VOUT, Channel 4 = IOUT)

Figure 27. AC Coupled Output Voltage Ripple with 3Ω Load
(VIN = 12V, Channel 1 = VOUT, Channel 4 = IOUT)
Figure 28. AC Coupled Output Voltage Ripple with No Load
(VIN = 6V, Channel 1 = VOUT, Channel 4 = IOUT)

Figure 29. AC Coupled Output Voltage Ripple with 8Ω Load
(VIN = 6V, Channel 1 = VOUT, Channel 4 = IOUT)
2.7 Simulated Crank Waveform Transitions

Figure 30 shows the boost performance with a simulated automotive crank waveform applied to the input connector and a 25A electronic load applied to the output connector. In general the output voltage is maintained at a 12V level.

Channel 1 (yellow) is the input voltage (12V battery nominal)
Channel 2 (pink) is the output voltage

Note that due to the small voltage drop across the FETs in bypass mode, the output voltage is slightly lower in bypass mode than when the boost mode is operating. The boost control code is set to switch from bypass to boost mode when the input voltage drops below 11.7V. This set-point could be adjusted to fit the specific requirements of any particular application.
2.8 In-Vehicle Crank Waveform Transitions

These series of tests show the input and output waveforms in an actual automotive 12V electrical system. In each crank event, the start motor was engaged, resulting in a step drop of the 12V battery voltage as shown by the gold trace of channel 1. The output voltage is shown in the pink trace of channel 2. Measurements below each plot indicate the maximum and minimum values during the sample time for both input and output voltage.

The tests represented by Figure 31 through Figure 36 were performed with no load on the output of the boost converter. The test shown in Figure 37 was performed with a 4 Ohm (nominal 36W load) on the output of the boost converter.

Figure 31. In-vehicle crank event (no external load) – first example

The duration of the crank event is seen to be about half a second. The battery voltage in this case drops from a “resting” level of 12.6V to a low of about 9.1V. The increasing level and somewhat oscillatory nature of the battery voltage is typical of a crank event, as seen also in the crank emulator specifications.
Figure 32. In-vehicle crank event (no external load) – second example

Note that while the measured input voltage drops to 9V or lower, the minimum output voltage is measured within a few hundred millivolts of the Begin_Boost set-point of 11.7V. Depending on the specific requirements of the application, the Begin_Boost set-point can be adjusted to an optimum value.
Figure 33. **In-vehicle crank event (no external load) – third example**

Note that in Figure 33, the input voltage exhibits some relatively low-frequency variation after the crank event. This same variation is seen on the output voltage, because the input voltage at that point is above the Begin_Boost set-point threshold, so the output is tied to the input, bypassing the boost circuitry.
Figure 34. In-vehicle crank event (no external load) – fourth example – starter “bump”

Figure 34 and Figure 35 show the difference between a short crank event ("bumping" the starter) and a standard full crank which starts the internal combustion engine. The short crank event shown in Figure 34 has a duration of only about 200 milliseconds. This does, however, have the same downward step due to the acceleration-from-zero of the electrical starter motor.
Figure 35. In-vehicle crank event (no external load) – fifth example – full start crank

Figure 35 shows a standard full crank which starts the internal combustion engine. The standard crank event has a duration of about 500 milliseconds. This includes the downward step due to the acceleration-from-zero of the electrical starter motor, as well as the rising oscillations as the electric motor and gas engine begin to turn during starting.
Figure 36. In-vehicle drank event with no external load (expanded time scale)

Figure 36 shows that at an expanded (zoomed) time scale, there is a brief drop in the output voltage when the input voltage makes a step drop. While the input voltage is well below 12V for about 500 milliseconds, the boost circuitry quickly regulates the output voltage, recovering to 12V in about 5 milliseconds.
Figure 37. In-vehicle drank event with 4 Ohm load (expanded time scale)

In Figure 37, a resistive 4-Ohm load is connected to the output voltage. At 12V, the load current is 3 Amps, and load power is 36 Watts, or about 10% of the rated power for the design. Note that the brief drop in output voltage is reduced due to the pre-existing load current flowing through the circuit. As before, the boost circuit regulates the output voltage to approximately 12V within about 5 milliseconds.

Note also that due to the 3A load current and losses in the test cable for this test, the input voltage drops below the 11.7V threshold before the negative step associated with the crank event. At that point, the boost circuit is active and provides a 12v output starting a few milliseconds before the crank event causes a significant drop in the input voltage.
2.9 Thermal Images

Figure 38 and Figure 39 illustrate thermal images taken at room temperature.

Figure 38. Thermal Image with 3Ω Load (VIN = 12V, Bypass)

Figure 39. Thermal Image with 8Ω Load (VIN = 6V, Boost)
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated