Test Data For PMP10558
 12/22/2014

tiak Texas Instruments

Power Specification Transformer 750314461

Vin range: $18 \mathrm{~V}-30 \mathrm{~V}$
Nominal Vin $=24 \mathrm{~V}$
Quad Isolated Outputs: $\pm 5 \mathrm{~V} @ 100 \mathrm{~mA},+15 \mathrm{~V} @ 50 \mathrm{~mA}$
Fsw $=350 \mathrm{kHz}$

Board Photo

Size: $56 \times 43 \mathrm{~mm}$
Vout $1:+15 \mathrm{~V}$ output, Vout $2:+5 \mathrm{~V}$ output, Vout $3:-5 \mathrm{~V}$ output

Efficiency

The efficiency is calculated for all outputs; the load current is incremented at 10 mA interval.

For more data at different Vin, see the Appendix.

Cross Regulation

The cross regulation was tested by sweeping different load condition on four outputs.
Vin $=24 \mathrm{~V}$

For more data of different rails, see the Appendix.

Start Up

Test condition: The input voltage was set at 18 V , and all outputs were set at full load.
Ch1 - Vin, Ch2 - 15VP (+15V), Ch3-5VN (-5V), Ch4-5VP (5V)

Test condition: The input voltage was set at 24 V , and all outputs were set at full load.
Ch1 - Vin, Ch2 - 15VP (+15V), Ch3 - 5VN (-5V), Ch4 - 5VP (5V)

Test condition: The input voltage was set at 30 V , and all outputs were set at full load.
Ch1 - Vin, Ch2 - 15VP (+15V), Ch3 - 5VN (-5V), Ch4 - 5VP (5V)

Switching Waveforms

Test condition: The input voltage was set at 18 V , and all outputs were set at full load.
Ch1 - Vsw (switch node voltage)

Test condition: The input voltage was set at 24 V , and all outputs were set at full load.
Ch1 - Vsw (switch node voltage)

Test condition: The input voltage was set at 30 V , and all outputs were set at full load.
Ch1 - Vsw (switch node voltage)

Test condition: The input voltage was set at 30 V , and all outputs were set at full load.
Ch1 - Vd5 (5V output diode voltage stress from cathode (-) to anode (+))

Test condition: The input voltage was set at 30 V , and all outputs were set at full load.
Ch1 - Vd15 (15V output diode voltage stress from cathode (-) to anode (+))

Load Transients

Test condition: Vin $=24 \mathrm{~V}, 5 \mathrm{VP}(+5 \mathrm{~V})$ load from 0 A to 100 mA , no load at the other outputs. Ch1-5VP (+5 V) (AC mode), Ch4- Io (+5 V output current)

9

Test condition: Vin $=24 \mathrm{~V}, 15 \mathrm{VP}(+15 \mathrm{~V})$ load from 0 A to 50 mA , no load at the other outputs. Ch1-15VP (+15 V) (AC mode), Ch4- Io (+15 V output current)

Test condition: Vin $=24 \mathrm{~V}, 5 \mathrm{VN}(-5 \mathrm{~V})$ load from 0 A to 100 mA , no load at the other outputs.
Ch1-5VN (-5V) (AC mode), Ch4- Io (-5 V output current)

Output Voltage Ripples

Test condition: The input voltage was set at 24 V , and all outputs were set at full load. Ch1 - 5VP (+5 V) (AC coupled)

Test condition: The input voltage was set at 24 V , and all outputs were set at full load. Ch1 - 15VP (+15 V) (AC coupled)

Test condition: The input voltage was set at 24 V , and all outputs were set at full load. Ch1 - 5VN (-5V) (AC coupled)

Power Specification Transformer 750314462

Vin range: $18 \mathrm{~V}-30 \mathrm{~V}$
Nominal Vin $=24 \mathrm{~V}$

Quad Isolated Outputs: $\pm 12 \mathrm{~V} @ 50 \mathrm{~mA},+5 \mathrm{~V} @ 100 \mathrm{~mA}$
$\mathrm{Fsw}=350 \mathrm{kHz}$

Board Photo

Size: $56 x 43 \mathrm{~mm}$
Vout $1:+5 \mathrm{~V}$ output, Vout $2:+12 \mathrm{~V}$ output, Vout $3:-12 \mathrm{~V}$ output

Efficiency

The efficiency is calculated for all outputs; the load current is incremented at 10 mA interval.

For more data at different Vin, see the Appendix.

Cross Regulation

The cross regulation was tested by sweeping different load condition on four outputs.
Vin $=24 \mathrm{~V}$

For more data of different rails, see the Appendix.

Start Up

Test condition: The input voltage was set at 18 V , and all outputs were set at full load.
Ch1 - Vin, Ch2 - 12VP (+12V), Ch3-5VP (+5V), Ch4 - 12VN (-12V)

16

Test condition: The input voltage was set at 24 V , and all outputs were set at full load.
Ch1 - Vin, Ch2 - 12VP (+12V), Ch3 - 5VP (+5V), Ch4-12VN (-12V)

Test condition: The input voltage was set at 30 V , and all outputs were set at full load.
Ch1 - Vin, Ch2 - 12VP (+12V), Ch3 - 5VP (+5 V), Ch4 - 12VN (-12V)

Switching Waveforms

Test condition: The input voltage was set at 18 V , and all outputs were set at full load.
Ch1 - Vsw (switch node voltage)

Test condition: The input voltage was set at 24 V , and all outputs were set at full load.
Ch1 - Vsw (switch node voltage)

Test condition: The input voltage was set at 30 V , and all outputs were set at full load.
Ch1 - Vsw (switch node voltage)

Test condition: The input voltage was set at 30 V , and all outputs were set at full load.
Ch1 - Vd5 (5V output diode voltage stress from cathode (-) to anode (+))

Test condition: The input voltage was set at 30 V , and all outputs were set at full load.
Ch1 - Vd12 (12V output diode voltage stress from cathode (-) to anode (+))

Load Transients

Test condition: Vin $=24 \mathrm{~V}, 12 \mathrm{VP}(+12 \mathrm{~V})$ load from 0 A to 50 mA , no load at the other outputs.
Ch1-12VP (+12 V) (AC mode), Ch4- Io (+12 V output current)

20

Test condition: Vin $=24 \mathrm{~V}, 5 \mathrm{VP}(+5 \mathrm{~V})$ load from 0 A to 100 mA , no load at the other outputs. Ch1-5VP (+5 V) (AC mode), Ch4- Io (+5 V output current)

Test condition: Vin $=24 \mathrm{~V}, 12 \mathrm{VN}(-12 \mathrm{~V})$ load from 0 A to 50 mA , no load at the other outputs. Ch1-12VP (-12V) (AC mode), Ch4- Io (-12V output current)

21

Output Voltage Ripples

Test condition: The input voltage was set at 24 V , and all outputs were set at full load. Ch1 - 5VP (+5 V) (AC coupled)

Test condition: The input voltage was set at 24 V , and all outputs were set at full load.
Ch1 - 12VP (+12V) (AC coupled)

22

Test condition: The input voltage was set at 24 V , and all outputs were set at full load. Ch1 - 12VN (-12V) (AC coupled)

Power Specification Transformer 750314463

Vin range: $18 \mathrm{~V}-30 \mathrm{~V}$
Nominal Vin $=24 \mathrm{~V}$
Quad Isolated Outputs: $\pm 12 \mathrm{~V} @ 50 \mathrm{~mA},+24 \mathrm{~V} @ 25 \mathrm{~mA}$
$\mathrm{Fsw}=350 \mathrm{kHz}$

Board Photo

Size: $56 x 43 \mathrm{~mm}$
Vout1: +24 V output, Vout2: +12 V output, Vout3: -12 V output

Efficiency

The efficiency is calculated for all outputs; the load current is incremented at 10 mA interval.

For more data at different Vin, see the Appendix.

Cross Regulation

The cross regulation was tested by sweeping different load condition on four outputs.
Vin $=24 \mathrm{~V}$

-12V Cross Regulation

For more data of different rails, see the Appendix.

Start Up

Test condition: The input voltage was set at 18 V , and all outputs were set at full load.
Ch1 - Vin, Ch2 - 24VP (+24V), Ch3 - 12VN (-12V), Ch4 - 12VP (+12V)

27

Test condition: The input voltage was set at 24 V , and all outputs were set at full load.
Ch1 - Vin, Ch2 - 24VP (+24V), Ch3 - 12VN (-12V), Ch4 - 12VP (+12V)

Test condition: The input voltage was set at 30 V , and all outputs were set at full load.
Ch1 - Vin, Ch2 - 12VP (+12V), Ch3 - 5VP (+5 V), Ch4-12VN (-12V)

Switching Waveforms

Test condition: The input voltage was set at 18 V , and all outputs were set at full load.
Ch1 - Vsw (switch node voltage)

Test condition: The input voltage was set at 24 V , and all outputs were set at full load.
Ch1 - Vsw (switch node voltage)

29

Test condition: The input voltage was set at 30 V , and all outputs were set at full load.
Ch1 - Vsw (switch node voltage)

Test condition: The input voltage was set at 30 V , and all outputs were set at full load.
Ch1 - Vd12 (12V output diode voltage stress from cathode (-) to anode (+))

Test condition: The input voltage was set at 30 V , and all outputs were set at full load.
Ch1 - Vd24 (24V output diode voltage stress from cathode (-) to anode (+))

Load Transients

Test condition: Vin $=24 \mathrm{~V}, 12 \mathrm{VP}(+12 \mathrm{~V})$ load from 0 A to 50 mA , no load at the other outputs.
Ch1-12VP (+12V) (AC mode), Ch4- Io (+12V output current)

31

Test condition: Vin $=24 \mathrm{~V}, 24 \mathrm{VP}(+24 \mathrm{~V})$ load from 0 A to 25 mA , no load at the other outputs. Ch1-24VP (+24 V) (AC mode), Ch4- Io (+24 V output current)

Test condition: Vin $=24 \mathrm{~V}, 12 \mathrm{VN}(-12 \mathrm{~V})$ load from 0 A to 50 mA , no load at the other outputs. Ch1-12VP (-12V) (AC mode), Ch4- Io (-12V output current)

Output Voltage Ripples

Test condition: The input voltage was set at 24 V , and all outputs were set at full load. Ch1 - 24VP (+24V) (AC coupled)

Test condition: The input voltage was set at 24 V , and all outputs were set at full load.
Ch1 - 12VP (+12V) (AC coupled)

Test condition: The input voltage was set at 24 V , and all outputs were set at full load. Ch1 - 12VN (-12V) (AC coupled)

Appendix - Test Data

750314462:

Vin $=24 \mathrm{~V}$

lin	5Vout	lout5	12Vout	12 VoutN	lout12	Eff
0.006	5.0898	0	12.36	12.359	0	0
0.012	5.019	0.01	12.207	12.198	0.005	59.79688
0.02	4.9942	0.02	12.128	12.126	0.01	71.33833
0.026	4.9775	0.03	12.086	12.084	0.015	82.03125
0.035	4.9636	0.04	12.026	12.025	0.02	80.90048
0.043	4.951	0.05	11.982	11.983	0.025	82.04215
0.051	4.9394	0.06	11.942	11.944	0.03	82.75686
0.058	4.9287	0.07	11.903	11.914	0.035	84.66983
0.065	4.9182	0.08	11.874	11.877	0.04	86.12154
0.073	4.908	0.09	11.835	11.839	0.045	86.01884
0.081	4.8979	0.1	11.794	11.798	0.05	85.87397

Vin $=18 \mathrm{~V}$

lin	5Vout	lout5	12 Vout	12 VoutN	lout12	Eff
0.006	5.0675	0	12.278	12.277	0	0
0.014	4.9952	0.01	12.14	12.132	0.005	61.18286
0.023	4.9691	0.02	12.061	12.058	0.01	74.03739
0.032	4.9507	0.03	11.999	11.997	0.015	79.44703
0.041	4.9341	0.04	11.944	11.943	0.02	82.32976
0.05	4.9197	0.05	11.891	11.892	0.025	84.056
0.057	4.919	0.06	11.84	11.842	0.03	88.21053
0.067	4.8945	0.07	11.804	11.807	0.035	87.23881
0.077	4.8823	0.08	11.755	11.758	0.04	86.43532
0.086	4.871	0.09	11.707	11.711	0.045	86.75581
0.096	4.8593	0.1	11.66	11.667	0.05	86.05625

Vin $=30 \mathrm{~V}$

lin	5Vout	lout5	12Vout	12VoutN	lout12	Eff
0.006	5.1122	0	12.459	12.458	0	0
0.011	5.0424	0.01	12.281	12.268	0.005	52.47545
0.017	5.0177	0.02	12.2	12.197	0.01	67.51451

0.022	5.002	0.03	12.158	12.156	0.015	77.99545
0.029	4.9893	0.04	12.102	12.102	0.02	78.58069
0.035	4.978	0.05	12.061	12.061	0.025	81.1381
0.042	4.949	0.06	12.023	12.024	0.03	80.82143
0.047	4.9574	0.07	11.996	11.998	0.035	84.17078
0.053	4.9477	0.08	11.962	11.965	0.04	85.0878
0.059	4.9386	0.09	11.931	11.934	0.045	85.78525
0.066	4.9292	0.1	11.9	11.904	0.05	85.00606

lout5 =0

5 Vout	12 Vout	12 VoutN	lout12
5.0894	12.357	-12.357	0.001
5.1045	11.989	-11.991	0.025
5.1258	11.8	-11.805	0.05

lout5 $=0.05$

5 Vout	12 Vout	12 VoutN	lout12
4.9574	12.366	-12.361	0.001
4.9501	11.985	-11.988	0.025
4.9486	11.797	-11.803	0.05

lout5 $=0.1$

5Vout	12 Vout	12 VoutN	lout12
4.912	12.383	-12.379	0.001
4.901	11.991	-11.995	0.025
4.8982	11.802	-11.808	0.05

lout12=0

5Vout	12 Vout	12 VoutN	lout5
5.0724	12.36	-12.359	0.001
4.9576	12.37	-12.371	0.05
4.9118	12.386	-12.389	0.1

lout12 $=0.025$

5 Vout	12 Vout	12 VoutN	lout5
5.0721	12.359	-12.359	0.001
4.9498	11.985	-11.987	0.05
4.9005	11.992	-11.995	0.1

lout12 $=0.05$

5Vout	12 Vout	12 VoutN	lout5
5.0975	11.8	-11.805	0.001
4.9488	11.797	-11.803	0.05
4.898	11.802	-11.808	0.1

750314461:

18 Vin						
lin	15 Vout	lout5	5 Vout	5VoutN	lout5	Eff
0.006	15.145	0	5.1834	5.1852	0	0
0.016	14.975	0.005	5.0916	5.0902	0.01	61.35174
0.026	14.903	0.01	5.0515	5.0495	0.02	75.01068
0.037	14.852	0.015	5.0186	5.0162	0.03	78.65225
0.047	14.806	0.02	4.9913	4.9884	0.04	82.18771
0.058	14.767	0.025	4.9644	4.961	0.05	82.89703
0.069	14.73	0.03	4.94	4.9358	0.06	83.28889
0.079	14.694	0.035	4.92	4.9156	0.07	84.58383
0.09	14.659	0.04	4.8993	4.894	0.08	84.55704
0.101	14.626	0.045	4.878	4.8731	0.09	84.47574
0.112	14.592	0.05	4.8541	4.848	0.1	84.31597

24 Vin						
lin	15Vout	lout5	5 Vout	5 VoutN	lout5	Eff
0.006	15.307	0	5.2271	5.231	0	0
0.013	15.122	0.005	5.1367	5.1357	0.01	57.15833
0.021	15.055	0.01	5.1049	5.1036	0.02	70.38095
0.029	15.007	0.015	5.082	5.0803	0.03	76.14569
0.037	14.972	0.02	5.0633	5.0613	0.04	79.32703
0.045	14.941	0.025	5.043	5.0409	0.05	81.27037
0.053	14.914	0.03	5.0238	5.0215	0.06	82.55802
0.061	14.877	0.035	5.006	5.0035	0.07	83.42623
0.069	14.866	0.04	4.9925	4.9896	0.08	84.13092
0.077	14.844	0.045	4.9778	4.9755	0.09	84.61997
0.086	14.822	0.05	4.9623	4.9593	0.1	83.97578

30Vin						
lin	15Vout	lout5	5Vout	5 VoutN	lout5	Eff
0.006	15.418	0	5.2486	5.2532	0	0
0.012	15.222	0.005	5.1632	5.1623	0.01	49.82361
0.018	15.145	0.01	5.133	5.1321	0.02	66.06519
0.025	15.097	0.015	5.112	5.11	0.03	71.082
0.031	15.061	0.02	5.0957	5.0944	0.04	76.21763
0.037	15.033	0.025	5.0786	5.077	0.05	79.60405
0.043	15.009	0.03	5.0617	5.0598	0.06	81.9814
0.05	14.986	0.035	5.0457	5.0438	0.07	82.05167
0.056	14.966	0.04	5.0326	5.0304	0.08	83.55238
0.063	14.949	0.045	5.019	5.0164	0.09	83.38048
0.07	14.935	0.05	5.0067	5.004	0.1	83.22952

lout15=0			
15Vout	5Vout	5 VoutN	lout5
15.142	5.1723	-5.1643	0.001
15.268	4.9791	-4.9752	0.05
15.442	4.8667	-4.8592	0.1

lout15 $=0.025$			
15 Vout	5 Vout	5 VoutN	lout5
14.748	5.1913	-5.1866	0.001
14.769	4.9652	-4.9614	0.05
14.813	4.8499	-4.8432	0.1

lout15 $=0.05$			
15 Vout	5 Vout	5 VoutN	lout5
14.572	5.225	-5.2213	0.001
14.574	4.9732	-4.9695	0.05
14.596	4.8541	-4.8475	0.1

lout $5=0$			
15 Vout	5Vout	5 VoutN	lout15
15.145	5.1868	-5.1883	0.001
14.75	5.2143	-5.2161	0.025
14.574	5.26	-5.2611	0.05

lout5 $=0.05$

15Vout	5Vout	5VoutN	lout15
15.271	4.9826	-4.9788	0.001
14.77	4.967	-4.9635	0.025
14.575	4.9744	-4.9709	0.05

lout5 $=0.1$			
15 Vout	5Vout	5 VoutN	lout15
15.444	4.8689	-4.8615	0.001
14.815	4.8518	-4.845	0.025
14.596	4.8554	-4.8487	0.05

750314463:

18Vin						
lin	24Vout	lout24	12Vout	12VoutN	lout12	Eff
0.009	24.5	0	12.051	12.058	0	0
0.018	24.2	0.0025	11.927	11.925	0.005	55.48148
0.029	24.1	0.005	11.856	11.855	0.01	68.50766
0.039	24	0.0075	11.806	11.801	0.015	76.08333
0.051	23.9	0.01	11.747	11.746	0.02	77.21786
0.062	23.9	0.0125	11.7	11.699	0.025	79.18683
0.072	23.9	0.015	11.656	11.653	0.03	81.61806
0.082	23.8	0.0175	11.619	11.613	0.035	83.30759
0.092	23.8	0.02	11.581	11.578	0.04	84.68357
0.103	23.7	0.0225	11.541	11.538	0.045	84.77913
0.114	23.6	0.025	11.5	11.498	0.05	84.79045

24Vin						
lin	24Vout	lout24	12Vout	12VoutN	lout12	Eff
0.008	24.8	0	12.204	12.216	0	0
0.015	24.5	0.0025	12.047	12.046	0.005	50.47639
0.023	24.3	0.005	11.979	11.98	0.01	65.41486
0.03	24.3	0.0075	11.94	11.945	0.015	75.07292
0.039	24.2	0.01	11.905	11.906	0.02	76.73291
0.048	24.2	0.0125	11.875	11.876	0.025	77.80165
0.056	24.1	0.015	11.848	11.849	0.03	79.79241
0.064	24.1	0.0175	11.825	11.828	0.035	81.35449
0.071	24.1	0.02	11.806	11.806	0.04	83.71362

0.079	24.1	0.0225	11.783	11.785	0.045	84.53639
0.088	24.1	0.025	11.763	11.763	0.05	84.22348

30Vin						
lin	24Vout	lout24	12Vout	12VoutN	lout12	Eff
0.008	25.2	0	12.383	12.398	0	0
0.013	24.7	0.0025	12.145	12.145	0.005	46.97436
0.02	24.5	0.005	12.06	12.062	0.01	60.62
0.026	24.4	0.0075	12.015	12.021	0.015	69.68462
0.033	24.4	0.01	11.982	11.983	0.02	73.06061
0.039	24.3	0.0125	11.956	11.957	0.025	77.05769
0.046	24.3	0.015	11.933	11.935	0.03	78.3
0.052	24.3	0.0175	11.915	11.914	0.035	80.72212
0.058	24.2	0.02	11.896	11.897	0.04	82.51264
0.065	24.2	0.0225	11.878	11.879	0.045	82.74692
0.072	24.2	0.025	11.861	11.862	0.05	82.92361

lout24=0			
24 Vout	12Vout	12 VoutN	lout12
24.437	12.016	-12.011	0.001
24.367	11.72	-11.719	0.025
24.552	11.536	-11.531	0.05

lout24 $=0.0125$			
24 Vout	12 Vout	12 VoutN	lout12
23.95	11.962	-11.957	0.001
23.888	11.691	-11.689	0.025
23.868	11.509	-11.504	0.05

lout24 $=0.025$			
24 Vout	12 Vout	12 VoutN	lout12
23.733	11.948	-11.941	0.001
23.679	11.675	-11.674	0.025
23.638	11.492	-11.488	0.05

lout12=0			
24 Vout	12 Vout	12 VoutN	lout24
24.33	12.035	-12.042	0.001
23.959	11.986	-11.991	0.0125
23.74	11.973	-11.975	0.025

lout12 $=0.025$			
24 Vout	12 Vout	12 VoutN	lout24
24.25	11.721	-11.72	0.001
23.891	11.693	-11.692	0.0125
23.682	11.677	-11.676	0.025

lout12 $=0.05$			
24 Vout	12 Vout	12VoutN	lout24
24.367	11.536	$-11,531$	0.001
23.871	11.511	-11.506	0.0125
23.638	11.492	-11.488	0.05

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to TI's Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

