Abstract

The following report details the procedures and results for testing the proximity sensitivity of the FDC1004EVM for a kick to open application within a plastic bumper. Testing also included exposure to mud and water to determine the impact of common environmental factors.

Contents

The following sections are included in this report:
A. Sensor Dimensions
B. Bumperless Testing
C. Bumper Sensor Placement
D. Water Introduction
E. Mud Introduction
F. Object Proximity Diagram
G. Proximity Measurements – Single Ended
H. Transient Captures of Kicks – Single Ended
I. Earth Grounded Vs. Floating Measurements

A. Sensor Dimensions
To capture changes in capacitance only toward the rear of the vehicle, the sensors were designed to be directional with shielded backings that were slightly larger than the measured copper tape sensors. Two sensor sizes were tested – one 6.5cm x 22cm copper tape sensor, and one 6.5cm x 7cm copper tape sensor.
Each sensor is connected to the FDC1004EVM via 24 inches of RG-174 coaxial cable, with the outside conductor connected to the corresponding driven shield.

B. Bumperless Testing
Initial measurements utilized bare directional sensors mounted perpendicular to the measured distances with no object introduced. This data was averaged to create an offset for each respective sensor in the bumperless measurements figured below.
For the following data, the arm of a non-grounded test subject laid parallel to the mounted directional sensors while multiple measurements were recorded with a 400Sps measurement rate and 100ms sampling rate in the FDC1004EVM GUI. Below demonstrates the averages of each capture with an object introduced minus the offset, starting at 10cm distance and continuing to 70cm in 10cm increments. For a simple interpretation of the following data, the slope of the line will correlate to detection sensitivity. In the following measurements without a bumper, the larger 6.5cm x 22cm sensor will more easily detect an approaching object than the smaller 6.5cm x 7cm sensor.

The small 6.5cm x 7cm sensor size was chosen to match that of a similar dataset captured with a grounded human body for comparison. Original results are pictured below.

![Diagram showing sensor, human body, and shield configurations](image)

![Graph showing bumperless measurements](image)
C. Bumper Sensor Placement
The copper tape sensors were mounted with masking tape to the interior of an approximately 3cm thick Toyota Corolla aftermarket plastic bumper, adjacent to the license plate mount.

D. Water Introduction
For testing the effects of water on the exterior of the bumper, similar measurements were captured after having tap water evenly misted across the surface of the bumper using a spray bottle.
E. Mud Introduction
For testing the effects of mud on the exterior of the bumper, similar measurements were captured while a mixture of top soil and water spread across the surface of the bumper was still wet.

F. Object Proximity Diagram
The following demonstrates the approximate test setup for the following captures, wherein the effects of a non-grounded human arm were measured at 10cm distances from the labelled copper tape sensors. White borders indicate the presence of a larger shield backing to create a directional capacitive measurement.

G. Proximity Measurements – Single Ended
A laptop operating off the battery and sitting to the back left side of the bumper was used to capture the data for the following datasets. Unique offsets for each testing condition (clean bumper, water on bumper, and mud on bumper) were
established and subtracted from the averaged plots below. Included with each proximity plot are histograms of the captured data to visually demonstrate the noise of each prolonged capture with an object introduced. From the following data, it is evident that objects within 20cm can be easily identified, whereas distinguishing an object’s distance when greater than 50cm can become unreliable due to measurement noise. Additionally, the presence of water and mud on the bumper presented few, if any, negative effects on the measurements, as all three conditions had similar slopes within 20cm indicating similar detection sensitivities.
For this test setup, three kicks are measured in real time without contacting the bumper surface, with water introduced on the bumper exterior. The first kick aims toward the left of the license plate mount, nearest to the large sensor (pictured on the right in the interior photo below), the second aims below the license plate mount with the absence of a sensor, and the third aims for the right of the license plate mount nearest to the small sensor pad (pictured on the left of the interior photo below).
Water on Bumper

Kicking Left, Middle, Right

Capacitance (pF)

Time (mS)
1. Earth Grounded Vs. Floating Measurements
The following demonstrates the effects measuring capacitance with respect to an earth ground (through laptop dock) and a floating ground (laptop running off battery) for both the small and large directional sensors. For both sensors the floating ground provided slightly larger sensitivity to nearby objects.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. **TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.** TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. **HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN,** including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that TI is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated