Automotive Synchronous Buck – 9.0V @ 150mA

- Input 10..45V DC / 58V peak
- Output 9.0V @ 150mA
- Converter TPS54061
- Free-Running switching frequency of 1000 kHz
- Working in continuous conduction mode
- Modified TPS54061EVM-142
1 Startup

The startup waveform is shown in Figure 1. The input voltage is set at 20.0V, with no load on the 9.0V output.

Channel C1: **20.0V Input voltage**
5V/div, 1ms/div

Channel C2: **9.0V Output voltage**
5V/div, 1ms/div

Figure 1
2 Shutdown

The shutdown waveform is shown in Figure 2. The input voltage is set at 20.0V with a 150mA load on the 9.0V output.

Channel C1: **20.0V Input voltage**
5V/div, 1ms/div

Channel C2: **9.0V Output voltage**
5V/div, 1ms/div

Figure 2
3 Efficiency & Load Regulation

The efficiency and load regulation are shown in Figure 3 and Figure 4.

![Figure 3](image1)

![Figure 4](image2)
4 Load Step – 4.7uF Output Capacitance

The response to a load step and a load dump for the 9.0V output at an input voltage of 30.0V and 4.7uF output capacitance is shown in Figure 5.

Channel C2: **Output voltage**, -140mV undershoot (1.6%), 167mV overshoot (1.9%)
200mV/div, 2ms/div, AC coupled

Channel C1: **Load current**, load step 30mA to 150mA and vice versa
50mA/div, 2ms/div

![Figure 5](image)
5 Load Step – 10uF Output Capacitance

The response to a load step and a load dump for the 9.0V output at an input voltage of 30.0V and 10uF output capacitance is shown in Figure 6. It is not necessary to modify the compensation network.

Channel C2: **Output voltage**, -127mV undershoot (1.4%), 167mV overshoot (1.9%)
200mV/div, 2ms/div, AC coupled

Channel C1: **Load current**, load step 30mA to 150mA and vice versa
50mA/div, 2ms/div

![Figure 6](image-url)

Figure 6
6 Frequency Response – 4.7uF Output Capacitance

Figure 7 shows the loop response at 10V, 30V and 40V input voltage, 150mA load and 4.7uF output capacitance.

10V input
- 150mA load 62 deg phase margin, 32.6 kHz bandwidth, -16 dB gain margin

30V input
- 150mA load 67 deg phase margin, 33.5 kHz bandwidth, -16 dB gain margin

45V input
- 150mA load 69 deg phase margin, 33.5 kHz bandwidth, -17 dB gain margin

Figure 7
7 Frequency Response – 10uF Output Capacitance

Figure 8 shows the loop response at 10V, 30V and 40V input voltage, 150mA load and 10uF output capacitance.

It is not necessary to modify the compensation network.

10V input
• 150mA load 72 deg phase margin, 21.0 kHz bandwidth, -21 dB gain margin

30V input
• 150mA load 75 deg phase margin, 21.6 kHz bandwidth, -20 dB gain margin

45V input
• 150mA load 76 deg phase margin, 21.7 kHz bandwidth, -21 dB gain margin

Figure 8
8 Switching Node

The drain-source voltage on the switching node is shown in Figure 9. The image was captured with 45V input and 150mA load.

Channel C2: **Drain-source voltage**, -2.0V minimum voltage, 47.0V maximum voltage

10V/div, 1us/div

![Figure 9](image-url)
9 Output Ripple Voltage

The output ripple voltage at 150mA load and 10V, 30V and 45V input voltage is shown in Figure 10.

Channel M1: **Output voltage @ 10V input**, 9mV peak-peak
20mV/div, 5us/div, AC coupled

Channel M2: **Output voltage @ 30V input**, 6mV peak-peak
20mV/div, 5us/div, AC coupled

Channel M3: **Output voltage @ 45V input**, 7mV peak-peak
20mV/div, 5us/div, AC coupled

![Figure 10](image_url)
10 Input Ripple Voltage

The input ripple voltage at 150mA load and 10V, 30V and 45V input voltage is shown in Figure 11.

Channel M1: **Input voltage @ 10V input**, 45mV peak-peak
50mV/div, 5us/div, AC coupled

Channel M2: **Input voltage @ 30V input**, 57mV peak-peak
50mV/div, 5us/div, AC coupled

Channel M3: **Input voltage @ 45V input**, 57mV peak-peak
50mV/div, 5us/div, AC coupled

![Input Ripple Voltage Chart]

Figure 11
11 Thermal measurement

The thermal image (Figure 12) shows the circuit at an ambient temperature of 21 °C with an input voltage of 30.0V and a load of 150mA.

![Thermal Image](image)

Figure 12

<table>
<thead>
<tr>
<th>Markers</th>
<th>Temperature</th>
<th>Emissivity</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>36.5 °C</td>
<td>0.95</td>
<td>21.0 °C</td>
</tr>
<tr>
<td>L1</td>
<td>34.5 °C</td>
<td>0.95</td>
<td>21.0 °C</td>
</tr>
</tbody>
</table>
Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI REFERENCE DESIGNS ARE PROVIDED "AS IS", TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.