PMP10210RevB Test Results

1 Startup .. 2
2 Shutdown ... 4
3 Efficiency .. 6
4 Load Regulation .. 7
5 Line Regulation .. 8
6 Output Ripple Voltage ... 9
7 Input Ripple Voltage ... 9
8 Loop Compensation & Transient Response ... 10
9 Miscellaneous Waveforms ... 13
10 Thermal Image ... 16

Topology: inverting BuckBoost, built on buck PCB PMP2763 RevA
Device: TPS54060A

Unless otherwise mentioned, the measurements were done with 150mA output current

Static measurements:
ON @ 8.5V OK
Fsw 485kHz OK
1 Startup

The startup waveform is shown in the Figure 1. The input voltage was set at 9V:

![Figure 1](image1)

The startup waveform is shown in the Figure 2. The input voltage was set at 14V:

![Figure 2](image2)
The startup waveform is shown in the Figure 3. The input voltage was set at 18V:

- **Ch1**: input voltage, 5V/div
- **Ch2**: output voltage, 5V/div
- 20ms/div
- 20MHz bw

![Figure 3](image)
2 Shutdown

The shutdown waveform is shown in the Figure 4. The input voltage was set at 9V. The power supply was disconnected.

![Figure 4](image1)

The shutdown waveform is shown in the Figure 5. The input voltage was set at 14V. The power supply was disconnected.

![Figure 5](image2)
The shutdown waveform is shown in the Figure 6. The input voltage was set at 18V. The power supply was disconnected.
3 Efficiency

The efficiency is shown in the Figure 7 below. The input voltage was set to 9V, 14V and 18V. Using inductor DR125-221-R will improve efficiency 1%..2% (size is 12.5mm x 12.5mm x 6mm)

Figure 7
4 Load Regulation

The load regulation of the output is shown in the Figure 8 below. The input voltage was set to 9V, 14V and 18V.

![Figure 8](image_url)
5 Line Regulation

The line regulation is shown in Figure 9.

![Figure 9](image9)

With the same setup the efficiencies are shown in Figure 10.

![Figure 10](image10)
6 Output Ripple Voltage
The output ripple voltage is shown in Figure 11, ripple is below 50mVpp at bandwidth 200MHz.

7 Input Ripple Voltage
The input ripple voltage is shown in Figure 12.
8 Loop Compensation & Transient Response

Revision A, calculated for Fco 1kHz,
compensation ZERO at load pole 30Hz
compensation POLE at 30kHz
R1 53k6 / C10 100nF / C9 100pF

Measured at min. Vin 9V (= max. duty = lowest RHPZ = worst case) and at full load 150mA

Loop compensation designed ultraconservative for flyback topology; high phase & gain margin.
Results correspond to calculations:
- crossover frequency 931 Hz
- 85 degs phase margin
- -25 dB gain margin
- slope -1.1 (roughly -20dB/decade)

Next step is to increase gain by nearly x3 by keeping compensation pole and zero;
A shift in gain close to +9dB could be expected, crossover in the area 2 kHz to 3 kHz.
Revision A1, calculated for crossover frequency 2.5kHz, compensation ZERO at load pole 30Hz compensation POLE at 30kHz

\[R1 \ 150k / C10 \ 33nF / C9 \ 33pF \]

crossover frequency 2.4 kHz, 76 degs phase margin, -16dB gain margin, slope -1, PERFECT

Bode Plot is small signal analysis in frequency domain, now large signal analysis in time domain, the TRUE behavior of the power supply:

load transient 10mA <->150mA, deviation 250mV = 1.8% of Vout -14V:

Figure 13 150k
Revision B, calculated for Fco 5kHz, twice the gain, +6dB, “pushing the edge”
compensation ZERO at load pole 30Hz
moved compensation POLE to 50kHz, a decade above crossover
\(R1 \ 309k / C10 \ 15nF / C9 \ 10pF \)
crossover frequency 4.97 kHz, 64 phase margin, -12dB gain margin (!), slope -1
load transient 10mA <-> 150mA, deviation 160mV = 1.1% of Vout -14V:

Figure 14 309k

Figure 14 309k
9 Miscellaneous Waveforms

Switch to -VOUT

The waveform of the voltage on switchnode is shown in Figure 15. Input voltage was set to 9V.

![Waveform Diagram]

no ringing, no overshoot
The waveform of the voltage on switchnode is shown in Figure 16. Input voltage was set to 14V.

Figure 16

no ringing, no overshoot
The waveform of the voltage on swichnode is shown in Figure 17. Input voltage was set to 18V.

Figure 17

no ringing, no overshoot
10 Thermal Image

Figure 18 shows the thermal image at 14V input voltage and 200mA output current (=overload condition). The picture has been taken after one hour operation, NO FORCED COOLING, PCB horizontally:

Temperature rise at inductor slightly more than 20K - silicon far below 20K;

Main Image Markers

<table>
<thead>
<tr>
<th>Name</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>44.3°C</td>
</tr>
<tr>
<td>U1</td>
<td>38.9°C</td>
</tr>
<tr>
<td>D2</td>
<td>35.9°C</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2015, Texas Instruments Incorporated