<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Startup</td>
</tr>
<tr>
<td>2</td>
<td>Shutdown</td>
</tr>
<tr>
<td>3</td>
<td>Efficiency</td>
</tr>
<tr>
<td>4</td>
<td>Load Regulation</td>
</tr>
<tr>
<td>5</td>
<td>Ripple Voltages</td>
</tr>
<tr>
<td>6</td>
<td>Control Loop Frequency Response</td>
</tr>
<tr>
<td>7</td>
<td>Load Transients</td>
</tr>
<tr>
<td>8</td>
<td>Miscellaneous Waveforms</td>
</tr>
<tr>
<td>8.1</td>
<td>Switch node (Low Side FET)</td>
</tr>
<tr>
<td>8.2</td>
<td>Gate Control of Low side MOS-FET Q2</td>
</tr>
<tr>
<td>8.3</td>
<td>Hi Side MOS FET Q3 w/o RC snubber</td>
</tr>
<tr>
<td>9</td>
<td>Thermal Image</td>
</tr>
<tr>
<td>9.1</td>
<td>Switch node (Low Side FET)</td>
</tr>
<tr>
<td>9.2</td>
<td>Gate Control of Low side MOS-FET Q2</td>
</tr>
<tr>
<td>9.3</td>
<td>Hi Side MOS FET Q3 w/o RC snubber</td>
</tr>
</tbody>
</table>

Topology: Sync. Boost
Device: LM5121
RC snubber: OPEN / 4.7Ohm, 330pF

Basic Data:
Fsw 400kHz, correct to a dot
ON: 33.7V
OFF: 30.5V
CS threshold: trips at 6.0A input current, corresponding to 3.7A output current
Total Efficiency: >97%

Output Voltage Ripple: 150mVpp (<0.5%)
Transient Response: 300mVpk @ 500mA<->3A (<1%)
Load Regulation: 20mV (<0.05%)
1 Startup
The startup waveform is shown in the Figure 1. The input voltage was set at 35V, with 3A load at the output. Power supply was switched on, ON at 33.7V input, startup 16ms:

![Figure 1](image1)

Ch1=> input voltage
10V/div
Ch2=> output voltage
10V/div
10ms/div

2 Shutdown
The shutdown waveform is shown in the Figure 2. The input voltage was set at 35V, with 3A load on the output. Power supply was switched off (input shorted):

![Figure 2](image2)

Ch1=> input voltage
10V/div
Ch2=> output voltage
10V/div
2ms/div
3 Efficiency

The efficiency is shown in the Figure 3 below. The input voltage was set to 35V:

\[
\begin{array}{cccccc}
Vin(V) & Iin(A) & Vout & Iout & Pin(W) & Pout & Effcy \\
35.003 & 4.926 & 55.448 & 3.021 & 172.42 & 167.51 & 0.9715 \\
35.005 & 4.103 & 55.447 & 2.522 & 143.63 & 139.84 & 0.9736 \\
35.006 & 3.277 & 55.449 & 2.009 & 114.71 & 111.4 & 0.9711 \\
35.006 & 2.477 & 55.449 & 1.511 & 86.71 & 83.783 & 0.9663 \\
35.006 & 1.675 & 55.451 & 1.0088 & 58.635 & 55.939 & 0.954 \\
35.007 & 0.8694 & 55.453 & 0.5003 & 30.435 & 27.743 & 0.9116 \\
\end{array}
\]

Effcy >97% in a load range 2A..3A (filter included); power losses 4.91W at full load 3A.
4 Load Regulation

The load regulation of the output is shown in the Figure 4 below. The input voltage was set to 35V. Load regulation 20mV (<0.05%):

![Figure 4](image-url)
5 Ripple Voltages

The output ripple voltage is shown in Figure 5. The image was taken with a 3A load 35V at the input, du = 150mVpp sinewave:

![Figure 5](image)

The output ripple voltage before filtering is shown in Figure 6. The image was taken with a 3A load 35V at the input, du 1500mV, filter attenuation 0.1 means -20dB:

![Figure 6](image)
The input ripple voltage is shown in Figure 7. The image was taken with a 3A load 35V at the input, 50mVpp sinewave (reflected voltage ripple depends on source impedance):
6 Control Loop Frequency Response

Figure 8 shows the loop response with 3A load and 35V input.

Table 1 summarizes the results from Figure 8

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth (kHz)</td>
<td>2.88</td>
</tr>
<tr>
<td>Phasemargin</td>
<td>97°</td>
</tr>
<tr>
<td>slope (20dB/decade)</td>
<td>-0.872</td>
</tr>
<tr>
<td>gain margin (dB)</td>
<td>-13.7</td>
</tr>
<tr>
<td>slope (20dB/decade)</td>
<td>-0.618</td>
</tr>
<tr>
<td>freq (kHz)</td>
<td>75.3</td>
</tr>
</tbody>
</table>

Table 1
7 Load Transients

The Figure 9 shows the response to load transients. The load is switching from 0.5A to 3A. The input voltage was set to 35V, transient response du is 300mVpk, <1%:

![Figure 9](image)

<table>
<thead>
<tr>
<th>Ch1 => output voltage</th>
<th>200mV/div</th>
</tr>
</thead>
<tbody>
<tr>
<td>20MHz bandwidth setting</td>
<td></td>
</tr>
<tr>
<td>Ch2 => output current</td>
<td>1A/div</td>
</tr>
<tr>
<td>2ms/div</td>
<td></td>
</tr>
</tbody>
</table>

Figure 9
8 Miscellaneous Waveforms

8.1 Switch node (Low Side FET)

With input voltage set to 35V and 3A Iout results in the waveform shown in Figure 10.

![Waveform Diagram]

Figure 10
8.2 Gate Control of Low side MOS-FET Q2

Figure 11 shows the gate control Q2; with input voltage set to 35V and 3A i_{out} results in the waveform shown below:

![Waveform of gate control Q2](image-url)
8.3 Hi Side MOS FET Q3 w/o RC snubber

The waveform is shown in Figure 12 (the same setup as above), OS 90V/100MHz:

![Waveform Diagram]

Figure 12
A RC snubber circuit 330pF / 4.7Ohm was implemented to reduce overshoot and RF ringing:

Figure 13

Figure 14
Gate Control of High Side MOS FET Q3

With input voltage set to 35V and 3A \(I_{\text{out}} \), results in the waveform shown in Figure 15:

![Waveform Diagram](image-url)
9 Thermal Image

Figure 16 shows the thermal image at 35V input and 2A output = 110W output power

<table>
<thead>
<tr>
<th>Name</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3</td>
<td>61.0°C</td>
</tr>
<tr>
<td>Q2</td>
<td>60.0°C</td>
</tr>
<tr>
<td>D4</td>
<td>55.9°C</td>
</tr>
</tbody>
</table>

Table 2

Figure 17 shows the thermal image at 35V input and 3A output = 165W output power

<table>
<thead>
<tr>
<th>Name</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
<td>77.0°C</td>
</tr>
<tr>
<td>Q3</td>
<td>71.6°C</td>
</tr>
<tr>
<td>D4</td>
<td>67.1°C</td>
</tr>
</tbody>
</table>

Table 3
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (“TI”) reference designs are solely intended to assist designers (“Buyers”) who are developing systems that incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED “AS IS”. TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer’s risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated