Design Overview

TIDA-00867 showcases the benefits of integrated current sensing for stepper motors. Integrated current sensing eliminates all current sense resistors while providing accurate current regulation. This feature is available in the DRV8885. The DRV8885EVM is used as the demonstration platform for this feature.

Design Resources

<table>
<thead>
<tr>
<th>TIDA-00867</th>
<th>Design Folder</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV8885</td>
<td>Product Folder</td>
</tr>
<tr>
<td>MSP430F2617</td>
<td>Product Folder</td>
</tr>
</tbody>
</table>

Design Features

- 8.0- to 37-V Operating Supply Voltage Range with up to 1.5-A full-scale continuous motor current
- Integrated Current Sense Functionality
 - No Sense Resistors Required
 - +/- 6.25% Full-Scale Current Accuracy
- Simple GUI for driver input control and motor tuning
- Onboard USB communication for easy connectivity with external controller
- 100 mil header gives test probe access to all driver input controls

Featured Applications

- Multi-Function Printers and Scanners
- Laser Beam Printers
- 3D Printers
- Automatic Teller and Money Handling Machines
- Video Security Cameras
- Office Automation Machines
- Factory Automation and Robotics
1. Introduction

Traditional stepper motor drivers rely on external resistors to monitor the current through each winding. The current creates a voltage across the resistor that is monitored by an internal comparator. The comparator voltage reference is changed based on the desired current and location in the index table.

Recently, some stepper motor drivers have integrated current regulation inside the device. One method is to integrate the current sense resistors into the package or by comparing the voltage across current sense FETs in parallel with the low-side drivers. Integrating the current sense resistors reduces the number of external components, but also causes the heat generated by the resistor to move inside the package.

Another method is to use current sense FETs to monitor current instead of current sense resistors. This eliminates the cost of two external sense resistors and saves PCB area, which in turn helps with design layout and manufacturability. Assuming the internal RDS(ON) of the devices are the same, extra heat may also be reduced. In a constrained environment using multiple stepper motor drivers, this may reduce the need for additional heatsinking in the system.

Using the DRV8885 motor driver, this design demonstrates the ability to regulate current with integrated current sense FETs.

2 Test Data

2.1 Current Comparison

The DRV8885 and DRV8880 were chosen for this comparison because the two devices can be configured with the same decay and off times. The variables in the data are reduced to the current regulation method and the RDS(ON) differences between the two devices.

- Both the DRV8885 and DRV8880 are set to “Mixed decay: 30%” mode for both increasing and decreasing steps.
- Both the DRV8885 and DRV8880 are set to 20 µs PWM off time.
- The DRV8885 RDS(ON) (860 mΩ typical) is higher than the DRV8880 RDS(ON) (630 mΩ typical). This can account for the additional heat in the device.

NOTE: The recommended decay setting for the DRV8880 is AutoTune. AutoTune was not used to allow comparison of current accuracy of the two methods. The AutoTune setting selects the decay mode for minimal current ripple across voltage and motor inductance variations.

The following scope captures compares motor performance with internal current sensing versus the more traditional usage of external sense resistors. Three motors were used to regulate different current at different levels and motor inductances.
MOTOR 1

System Voltage 24 Volts
Current Setting 0.23 Amps
Speed 300 Steps/second @ 1/4µsteps

Motor 1 Specifications
Manufacturer Portescap
Model Number 42M048C2B
Resistance per Phase +/- 10% 52.4 Ohms
Inductance per Phase, typ 85.7 mH
Rated Current per Phase 0.23 Amps

File Edit View Menu Window Help

DRV8885

Channel 4 – AOUT1
Channel 3 – BOUT1
Channel 4 – AOUT1

Channel 3 – BOUT1

DRV8880

DRV8885

DRV8880
MOTOR 2

System Voltage 24 Volts
Current Setting 1.0 Amps
Speed 300 Steps/second @ 1/4µsteps

Motor 2 Specifications
Manufacturer Trinamic
Model Number QSH4218-41-10-035
Resistance per Phase at 20°C 4.5 Ohms
Inductance per Phase, typ 7.5 mH
Rated Current per Phase 1.0 Amps

Channel 4 – AOUT1
DRV8885

Channel 3 – BOUT1
DRV8880

Channel 4 – AOUT1

Channel 3 – BOUT1

DRV8885

DRV8880
MOTOR 3

System Voltage: 24 Volts
Current Setting: 1.5 Amps
Speed: 300 Steps/second @ 1/4µsteps

Motor 3 Specifications
Manufacturer: Trinamic
Model Number: QSH5718-41-28-055
Resistance per Phase at 20°C: 0.7 Ohms
Inductance per Phase, typ: 1.4 mH
Rated Current per Phase: 1.5 Amps

DRV885
Channel 4 – AOUT1
Channel 3 – BOUT1
Channel 4 – AOUT1

Channel 3 – BOUT1

DRV8880

DRV8885

DRV8880

DRV8880
2.2 Additional Benefits

Comparing the DRV8885EVM with the DRV8880EVM illustrates the component savings, and the potential PCB area savings when using integrated current sensing. It is important to note the lack of sense resistors on the DRV8885EVM as compared to the DRV8880EVM. The DRV8885 also has fewer pins than the DRV8880 allowing for a smaller package.

** DRV8880 **

** DRV8885 **

3D and 2D layout, respectively, of DRV8885 and DRV8880 for comparison. Dimensions are scaled for proper comparison:

<table>
<thead>
<tr>
<th></th>
<th>DRV8880</th>
<th></th>
<th>DRV8885</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>650 mils</td>
<td>Y</td>
<td>510 mils</td>
</tr>
<tr>
<td>Y</td>
<td>510 mils</td>
<td>Y</td>
<td>790 mils</td>
</tr>
<tr>
<td>Area</td>
<td>331500 sq mils</td>
<td>Area</td>
<td>466100 sq mils</td>
</tr>
<tr>
<td>Area</td>
<td>0.3315 sq inches</td>
<td>Area</td>
<td>0.4661 sq inches</td>
</tr>
</tbody>
</table>
3. About the Author

Rick Duncan is an Applications Engineer for Texas Instrument’s motor drive business, where he is responsible for supporting TI’s motor drive portfolio. Rick graduated from Louisiana State University with a Bachelor’s of Science in Electrical Engineering.
Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warrants, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer’s safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.