

Test Report For PMP10725 03/17/2016

TEXAS INSTRUMENTS

1. Design Specifications

Vin Min	15VDC
Vin Max	36VDC
Vout1	24VDC
Iout1	500mA
Vout2	6VDC
Iout2	100mA
Vout3	6VDC
Iout3	100mA
Target Switching Frequency	200kHz

2. Circuit Description

PMP10725 is an isolated flyback solution which accepts an input voltage of 15 to $36V_{IN}$ and provides multiport output to the load. This reference design compares primary and secondary control solutions. With primary control, it can achieve higher efficiency with lower BOM cost, but the regulation performance is not so good. With secondary control, it can achieve great load regulation performance by controlling the 24V-rail voltage. This LM3481 flyback reference design can be used for supplying the digital output module in industrial PLC application.

2.1 Brief Comparison Table of Primary and Secondary Control

Item	Primary Control	Secondary Control
Efficiency	85.6% @ 15V _{IN} 100%load	84.8% @ 15V _{IN} 100%load
	83.5% @36V _{IN} 100%load	81.3%@36V _{IN} 100%load
Regulation	-6.19%/+5.06%@15V _{IN} , 24V rail	-0.37%/+0.28% @15V _{IN} , 24V rail
	-4.47%/+3.51%@36V _{IN} , 24V rail	-0.10%/+0.05%@36V _{IN} , 24V rail
BOM Quantity	43	50
Semiconductor Devices	Primary output diode	Opto coupler(PS2811)
(Ignore same devices)	_	Zener Shunt Regulator(LM431)

2.2 PLC Digital Output Module Power Tree

3. Board Photos

Top (66.37x22.61mm²)

Bottom (66.37x22.61mm²)

4. Thermal Data

IR thermal image taken at steady state at 100% load and $V_{IN} = 15$ V (secondary control) for two minutes with no airflow (4 Layer board, 1 Oz copper layer)

IR thermal image taken at steady state at 100% load and VIN = 36V (secondary control) for two minutes with no airflow (4 Layer board, 1 Oz copper layer)

5. Efficiency and Regulation

5.1 Efficiency Chart

The Efficiency measurement was taken in the condition that all three outputs were loaded at the same percentage current in respect of their full load.

5.2 Cross Regulation Chart

The regulation under balanced load condition was tested as all three outputs were loaded with the same percentage of current in respect of their full load at different input voltage condition. Since two +6V outputs are symmetrical, only one +6V output regulation is shown.

The regulation under unbalanced load was tested by sweeping different load current on the 24V output while the two +6V output were loaded with 10mA, 50mA and 100mA at 24V input. Since the two +6V outputs are symmetrical, only one rail output regulation is shown.

Test Report PMP10725

6. Waveform

V_{IN}=15V, I₁=0; I₂=0; I₃=50mA

 $V_{IN}\!\!=\!\!15V,\,I_1\!\!=\!\!0.1A;\,I_2\!\!=\!\!0.1A;\,I_3\!\!=\!\!0.5A$

Test Report PMP10725

2.00µs 1.50GS/s 10M points

3 J -7.00 V

2.00µs 10M points 3 10.0 V

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated