Attaining the best performance from electronic circuits may require to tight control of the operating temperature of the circuits or at least the temperature of the critical components. Heatsinks help keep the temperature close to the ambient temperature. But if the ambient temperature is not properly controlled or components of the circuit generate heat during operation (which cannot be easily predicted as accurate as needed), active control of the temperature may be required.

Using thermoelectric coolers (TECs) may help to solve this problem. TECs are used for active cooling and heating of the attached components. To control the temperature of the components with a TEC, the current flowing through it must be controlled. Depending on the direction of the current flow they are either cooling or heating the attached components. This requires a power supply solution which can source and sink current. This application note details a circuit implementation based on TI's single inductor buck-boost converter technology which offers a simple possible solution for such a power supply.

1 Overview

In the example the power supply solution is implemented based on the TPS63070. The complete circuit is shown in Figure 1.

The objective of this circuit is to control the current flowing through the TEC in both directions. An example for a circuit implementation can be found in the TI reference designs library.
2 Detailed Description

As shown in Figure 1, the circuit consists of a buck-boost converter design based on the TPS63070 almost in its default configuration. The TPS63070 is supplied by a regulated voltage rail of 5 V. The TEC is connected between the output of the TPS63070 based DCDC converter and its input supply voltage rail of 5 V. For this application the minimum input voltage of the TPS63070 is 5 V.

According to the TPS63070 datasheet (SLVSC58), its output voltage can be varied between 2.5 V and 9 V. Using this voltage range at the output of the buck-boost converter allows the voltage to vary across the TEC between V_{TECmax} of 2.5 V and V_{TECmin} of –4 V.

Use Equation 1 and Equation 2 to calculate those values.

$V_{\text{TECmax}} = V_{\text{OUTmax}} - V_{\text{IN}} \tag{1}$

$V_{\text{TECmin}} = V_{\text{OUTmin}} - V_{\text{IN}} \tag{2}$

In these equations, V_{IN} is the regulated supply voltage of the buck-boost converter, V_{OUTmax} is the maximum, and V_{OUTmin} is the minimum output voltage of the buck-boost converter.

The output voltage of the buck-boost converter is programmed with the feedback divider consisting of R_1 and R_2. To be able to vary the output voltage, an additional resistor R_3 is connected to the feedback divider to enable feeding current into the feedback node. The feedback voltage V_{FB} is regulated to a constant value of 0.8 V (TPS63070 datasheet, SLVSC58), so the control voltage V_{CTRL} defines this current flowing through R_3.

To calculate an appropriate value for the resistance of R_3, use Equation 3.

$$R_3 = R_1 \cdot \left(\frac{V_{\text{CTRLmax}} - V_{\text{CTRLmin}}}{V_{\text{OUTmax}} - V_{\text{OUTmin}}} \right) \tag{3}$$

In Equation 3, V_{CTRLmax} is the maximum level of the control voltage and V_{CTRLmin} is the minimum value of the control voltage.

Finally, R_2 is calculated using Equation 4:

$$R_2 = \frac{V_{FB} \cdot R_1 \cdot R_3}{R_3 \cdot V_{\text{OUTmax}} + R_1 \cdot V_{\text{CTRLmin}} - V_{FB} \cdot (R_1 + R_3)} \tag{4}$$

To drive the TEC properly, the buck-boost converter must source and sink current. When using the TPS63070, this is achieved by forcing the converter in fixed frequency operation. This is done by disabling the built-in power-save mode. Since the TPS63070 can source more current than it can sink, it is important how the TEC is connected to the circuit. In general, the devices which should be kept at a controlled temperature generates heat. For this reason, cooling typically requires more power than heating. So in most cases, the TEC is best connected in a way that it is cooling the device while the TPS63070 is sourcing current.

3 Example

In this example the input voltage V_{IN} is 5 V, V_{OUTmin} is 2.5 V and V_{OUTmax} is 7.5 V. The control voltage V_{CTRL} should be between 0.2 V to 1.4 V. With a given resistance value for R_1 of 680 kΩ, and the voltages for V_{CTRLmax} (1.4 V) and V_{CTRLmin} (0.2 V) the resistance for R_3 is calculated to be 163 kΩ. With the values for the parameters previously used, the resistance of R_2 is calculated as 130 kΩ.
4 Test Results

The following tests were performed at room temperature with the same conditions and values as shown in the example. Figure 2 shows the current flowing through the TEC depending on the control voltage. The predicted asymmetry of the maximum currents for sourcing and sinking are observed there.

![Figure 2. TEC Current vs. Control Voltage](image)

Figure 2 and Figure 4 show the efficiency of the system in sourcing (Vout > Vin) and sinking (Vout < Vin) operation.

![Figure 3. Efficiency (Vout > Vin)](image)

![Figure 4. Efficiency (Vout < Vin)](image)

This power supply solution can be used in a control system to control the temperature of the device. For example, if VCTRL is generated by a PWM signal on a GPIO of a microcontroller which is running a temperature control algorithm, a closed loop system is built to control the temperature of the components attached to the TEC.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

<table>
<thead>
<tr>
<th>Audio</th>
<th>www.ti.com/audio</th>
<th>Automotive and Transportation</th>
<th>www.ti.com/automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
<td>Energy and Lighting</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
<td>Space, Avionics and Defense</td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
<td>Video and Imaging</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
<td>TI E2E Community</td>
<td>e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>