Enterprise SSD Backup Power Supply

- **Input**: 5.0V or 12V
- **Output**: 3.3V @ 2.5A, Backup Boost at 28V, Backup Buck 5V @ 2.5A
- Free-Running-Switching Frequency for TPS62130 2.5 MHz, for TPS61170 1.2MHz, for LM43603 500 kHz
1. **Startup**

The startup waveform at 5.0V input voltage and no load on the output is shown in Figure 1.

- **Channel Ch1**: 5.0V Input Voltage
 - 5V/div, 2ms/div

- **Channel Ch2**: 3.3V Output Voltage
 - 2V/div, 2ms/div

- **Channel Ch3**: 28.0V Output Voltage
 - 20V/div, 2ms/div

- **Channel Ch4**: V Output Voltage
 - 1V/div, 2ms/div

![Figure 1](image-url)
The startup waveform at 12.0V input voltage and no load on the output is shown in Figure 2.

Channel Ch1 **12.0V Input Voltage**
2V/div, 2ms/div

Channel Ch2 **3.3V Output Voltage**
2V/div, 2ms/div

Channel Ch3 **28.0V Output Voltage**
20V/div, 2ms/div

Channel Ch4 **3.3V Output Voltage**
1V/div, 2ms/div

![Figure 2](image-url)
2. Shutdown

The shutdown waveform at 5.0V input voltage and 2.5A load on the 5V LM43603 output is shown in Figure 3.

Channel Ch1 **5.0V Input Voltage**
5V/div, 10ms/div

Channel Ch2 **3.3V Output Voltage**
2V/div, 10ms/div

Channel Ch3 **28.0V Output Voltage**
20V/div, 10ms/div

Channel Ch4 **LM43603 Switch Node**
20V/div, 10ms/div

![Figure 3](image-url)
3. Efficiency

The efficiency and load regulation of the 3.3V TPS62130 Buck converter are shown in Figure 4 and Figure 5.

![Figure 4](image-url)
Figure 5

PMP30046 Rev.C - Load Regulation

Output Voltage [V]

Output Current [A]
The efficiency and load regulation of the 5.0V LM43603 Buck converter are shown in Figure 6 and Figure 7.

![Figure 6](image-url)
Figure 7
4. Transient Response

The response to a load step at 5.0V input voltage is shown in Figure 8.

Channel Ch3 **Output Current**, Load Step 1.25A to 2.5A
1A/div, 200µs/div

Channel Ch1 **Output Voltage**, -24.8mV undershoot, 16mV overshoot
20mV/div, 200µs/div, AC coupled

![Figure 8](image-url)
The response to a load step at 28.0V input voltage is shown in Figure 9.

Channel Ch3 **Output Current**, Load Step 0A to 2.5A
2A/div, 200µs/div

Channel Ch1 **Output Voltage**, -120mV undershoot, 88mV overshoot
200mV/div, 200µs/div, AC coupled

![Figure 9](image-url)
5. Frequency Response

The frequency response of the TPS62130 at 2.5A load is shown in Figure 10.

5.0V Input 21.2 kHz Bandwidth, 80 deg Phase Margin, -24 dB Gain Margin

12.0V Input 21.5 kHz Bandwidth, 80 deg Phase Margin, -25 dB Gain Margin

![Fig 10: Frequency Response of TPS62130](image-url)
The frequency response of the TPS61170 at 0.07A load is shown in Figure 11.

3.3V Input
57.8 Hz Bandwidth, 75 deg Phase Margin, < -50 dB Gain Margin
The frequency response at 16.0A load is shown in Figure 10.

8.0V Input 27.3 kHz Bandwidth, 81 deg Phase Margin, -14 dB Gain Margin
16.0V Input 25.1 kHz Bandwidth, 80 deg Phase Margin, -14 dB Gain Margin
28.0V Input 24.4 kHz Bandwidth, 79 deg Phase Margin, -15 dB Gain Margin
6. Output Ripple

The TPS62130 output ripple voltage at 2.5A load is shown in Figure 13.

Channel M1 **Output Voltage @ 5.0V Input**, 192mV peak-peak
200mV/div, 1us/div

Channel M2 **Output Voltage @ 12.0V Input**, 264mV peak-peak
200mV/div, 1us/div

![Figure 13](image-url)
The LM43603 output ripple voltage at 2.5A load is shown in Figure 14.

Channel R1 **Output Voltage @ 8.0V Input**, 47.2mV peak-peak
50mV/div, 4μs/div

Channel R2 **Output Voltage @ 16.0V Input**, 40.8mV peak-peak
50mV/div, 4μs/div

Channel R3 **Output Voltage @ 28.0V Input**, 35.2mV peak-peak
50mV/div, 4μs/div

![Figure 14](image-url)
7. Switching Node

The drain-source voltage of the TPS62130 low-side FET at 12.0V input voltage and 2.5A load on the output is shown in Figure 15.

Channel Ch1 **Drain-Source Voltage**, -0.8V minimum, 13.4V maximum
5V/div, 80ns/div

![Figure 15](image-url)
The drain-source voltage of the low-side FET at 28.0V input voltage and 2.5A load on the output is shown in Figure 16.

Channel Ch1 **Drain-Source Voltage**, -1.8V minimum, 29.0V maximum
5V/div, 400ns/div

![Figure 16](image-url)
8. Thermal Image

The thermal image (Figure 17) shows the circuit at an ambient temperature of 20°C with an input voltage of 12.0V and 2.5A load on the 3.3V output.

![Thermal Image](image-url)
The thermal image (Figure 18) shows the circuit at an ambient temperature of 20°C with an input voltage of 5.0V and 2.5A load on the 3.3V output.

![Thermal Image](image.png)

Figure 18
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ('TI') reference designs are solely intended to assist designers ('Designer(s)') who are developing systems that incorporate TI products. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.

TI's provision of reference designs and any other technical, applications or design advice, quality characterization, reliability data or other information or services does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such reference designs or other items.

TI reserves the right to make corrections, enhancements, improvements and other changes to its reference designs and other items. Designer understands and agrees that Designer remains responsible for using its independent analysis, evaluation and judgment in designing Designer's systems and products, and has full and exclusive responsibility to assure the safety of its products and compliance of its products (and of all TI products used in or for such Designer's products) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to its applications, it has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any systems that include TI products, Designer will thoroughly test such systems and the functionality of such TI products as used in such systems. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

Designers are authorized to use, copy and modify any individual TI reference design only in connection with the development of end products that include the TI product(s) identified in that reference design. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of the reference design or other items described above may require a license from a third party under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS AND OTHER ITEMS DESCRIBED ABOVE ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNERS AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS AS DESCRIBED IN A TI REFERENCE DESIGN OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

TI's standard terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products. Additional terms may apply to the use or sale of other types of TI products and services.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.