ABSTRACT

PMP15018 is a power Evaluation Module to showcase the implementation of TPS56C215 and TPS54541 to power two rails of a Processor from 24 V DC bus. This design also displays the trade-off between efficiency and solution size while operating at low and high frequencies. This design is made on a 2.5 inch X 2.5 inch board demonstrating the small printed-circuit-board areas that may be achieved while using TPS56C215. All the converters on the board are designed for a DC regulation of +/- 2% and DC+AC regulation of +/- 5%.

Contents

1. Introduction
 1.1 Description
 1.2 Board Photo
 1.3 Test Setup
2. TPS56C215 – 12 V to 1.2 V at 400 kHz
 2.1 Efficiency and Power Loss
 2.2 Loop Response
 2.3 Load Regulation
 2.4 Output Ripple
 2.5 Transient Response
 2.6 Start Up and Shut Down
 2.7 Switch Node
3. TPS56C215 – 12 V to 1.2 V at 1.2 MHz
 3.1 Efficiency and Power Loss
 3.2 Loop Response
 3.3 Load Regulation
 3.4 Output Ripple
 3.5 Transient Response
 3.6 Switch Node
4. TPS54541 – 24 V to 12 V at 500 kHz
 4.1 Efficiency and Power Loss
 4.2 Loop Response
 4.3 Load Regulation
 4.4 Output Ripple
 4.5 Transient Response
1. Introduction

1.1 Description
The TPS56C215 dc/dc converter is a synchronous buck converter designed to provide up to a 14 A output. The input (V_{IN}) is rated for 4.5 V to 17 V. The TPS56C215 uses a proprietary DCAP3 Control mode and a MODE pin is used to select output current limit, switching frequency, and Forced Continuous Conduction Mode (FCCM)/Discontinuous Conduction Mode (DCM) operation. The high-side and low-side MOSFETs are incorporated inside the TPS56C215 package along with the gate drive circuitry. The low drain-to-source on-resistance of the MOSFET allows the TPS56C215 to achieve high efficiencies and helps keep the junction temperature low at high output currents. An external divider allows for an adjustable output voltage. Additionally, the TPS56C215 provides adjustable slow start and undervoltage lockout inputs and a power good output.

The TPS54541 device is a 42 V, 5 A step-down regulator with an integrated high-side MOSFET. The device survives load dump pulses up to 45 V per ISO 7637. Current mode control provides simple external compensation and flexible component selection. A low-ripple pulse-skip mode reduces the no-load supply current to 152 μA. When the enable pin is pulled low, the shutdown supply current is reduced to 2 μA. Cycle-by-cycle current limit, frequency foldback, and thermal shutdown protect internal and external components during an overload condition. The output voltage startup ramp is controlled by the soft-start pin that can also be configured for sequencing and tracking. An opendrain power-good signal indicates the output is within 93% to 106% of the nominal voltage.

This design uses TPS54541 to step-down 24 V dc to 12 V dc at a frequency of 500 kHz. The converter is designed to operate with an input range of 15 V to 42 V and supports a load current of 5 A. To step down 12 V to processor level voltages of 1 V and 1.2 V, two TPS56C215 converters operating at different frequencies are used. The TPS56C215 converter which steps down 12 V to 1 V is designed to operate at a frequency of 1.2 MHz and the other TPS56C215 converter steps down 12 V to 1.2 V operates at a frequency of 400 kHz. Both the converters are configured to a maximum output current of 10 A, DCM mode, output DC regulation less than +/- 2% and DC+AC regulation less than +/- 5%.

The block diagram of the design is as shown below.
1.2 Board Photo
The board dimensions are 2.5 inch X 2.5 inch. The top view of the board is as shown below.
The three converters on the board are marked for identification.

1.3 Test Setup
This section describes how to properly connect, set up, and use the evaluation module. The PMP15018 is provided with input/output connectors and test points as shown in Table 1. A power supply capable of supplying voltage greater than 24V and 3 A must be connected to J1 through a pair of 20-AWG wires or better. J2 can be used to load the TPS54541 converter up to 5 A, if the converter is to be tested alone without loading on J3 and J4. A maximum load of 10 A each can be connected to J3 and J4 through a pair of 20-AWG wires or better. Wire lengths must be minimized to reduce losses in the wires.

As EN of TPS56C215 has internal pull up, the converter starts up with a PGOOD high from TPS54541 even without external pull up. The PG-PU may be used if user wants to use external pull up source for EN.

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>(V_{IN}) input voltage connector. Range 15 V to 40 V</td>
</tr>
<tr>
<td>J2</td>
<td>(V_{OUT}), 12 V at 5 A maximum</td>
</tr>
<tr>
<td>J3</td>
<td>(V_{OUT}), 1 V at 10 A maximum</td>
</tr>
<tr>
<td>J4</td>
<td>(V_{OUT}), 1.2 V at 10 A maximum</td>
</tr>
<tr>
<td>Vin</td>
<td>(V_{IN}) test point</td>
</tr>
<tr>
<td>12V</td>
<td>12 V test point</td>
</tr>
<tr>
<td>1V</td>
<td>1 V test point</td>
</tr>
<tr>
<td>1.2V</td>
<td>1.2 V test point</td>
</tr>
<tr>
<td>PGND</td>
<td>GND test point</td>
</tr>
<tr>
<td>AGND-1</td>
<td>AGND test point of 12 V to 1 V converter</td>
</tr>
<tr>
<td>AGND-2</td>
<td>AGND test point of 12 V to 1.2 V converter</td>
</tr>
<tr>
<td>SW-1</td>
<td>SW node test point of 24 V to 12 V, TPS54541 converter</td>
</tr>
<tr>
<td>SW-2</td>
<td>SW node test point of 12 V to 1 V, TPS56C215 converter</td>
</tr>
<tr>
<td>SW-3</td>
<td>SW node test point of 12 V to 1.2 V, TPS56C215 converter</td>
</tr>
<tr>
<td>BODE</td>
<td>Test point between voltage divider network and output of TPS54541 converter. Used for loop response measurements</td>
</tr>
<tr>
<td>COMP</td>
<td>COMP test point of TPS54541 converter. Used for loop response measurements</td>
</tr>
<tr>
<td>PG-PU</td>
<td>PGood Pull up to enable 12 V to 1 V, TPS56C215 converter. Maximum 5 V</td>
</tr>
</tbody>
</table>

2. **TPS56C215 – 12 V to 1.2 V at 400 kHz**

2.1 **Efficiency and Power Loss**

The efficiency and power loss tests on the entire system by applying 24 \(V_{IN} \) to TPS54541 at J1 and obtaining 1.2 \(V_{OUT} \) of TPS56C215 at J4 is done. The performance of TPS56C215 converter alone is
done by applying 12 V_IN at J2 and disabling TPS54541. The efficiency and power loss for both cases are shown below.

![Efficiency and Power Loss of TPS56C215 - 1.2 Vout, 400 kHz](image)

2.2 Loop Response

The plot below shows the loop-response characteristics of TPS56C215 – 1.2 V, 400 kHz converter. Gain and phase plots are shown for V_{IN} voltage of 12 V. Load current for the measurement is 7 A. The phase margin measured is 59 degrees.

![TPS56C215 - 1.2 V, 400 kHz Loop Response](image)

2.3 Load regulation

The Load regulation of TPS56C215 – 1.2 V, 400 kHz converter in both cases with 24 V_IN applied to TPS54541 at J1 and 12 V_IN applied at J2 is shown below.
2.4 Output Ripple

The output Voltage graphs of TPS56C215 – 1.2 V, 400 kHz converter shown below are AC coupled for 1A and 7A load respectively. The output voltage is measured across output capacitors by tip and barrel method. The length of the ground wire should be as small as possible to avoid switching noise getting coupled.
2.5 Transient Response
The figures below show TPS56C215 – 1.2 V, 400 kHz converter’s response to load transients. The current step is from 2 A to 6 A. The current step slew rate is 2.5 A/μs. Total peak-to-peak voltage variation is as shown, including ripple and noise on the output.

2.6 Start Up and Shut Down
The Start Up of the converters is designed to be sequential. The TPS56C215 – 1.2 V, 400 kHz converter powers up immediately after the PGOOD signal from TPS54541 (PG-1) goes high. Once the output voltage reaches 93% the PGOOD (PG-2) is de-asserted and floats after a 200 μs de-glitch time which is pulled high by EN of TPS56C215 – 1 V, 1.2 MHz. The soft start capacitor is selected to set a soft start time of 4.7 μs for both the converters. Start Up sequence of converters with full load is shown below.
The Shut Down is also sequential. Shut Down of TPS54541 pulls the PG-1 low which causes the Shut Down of TPS56C215 – 1.2 V, 400 kHz converter. The TPS56C215 – 1 V, 1.2 MHz converter follows immediately upon PG-2 going low. Shut Down sequence of converters operating at their full load is shown below.

2.7 Switch Node

The switch node waveform of the TPS56C215 – 1.2 V, 400 kHz converter operating at 7A load is shown below.
3. TPS56C215 – 12 V to 1 V at 1.2 MHz

3.1 Efficiency and Power Loss
The efficiency and power loss tests on the entire system by applying 24 V\textsubscript{IN} to TPS54541 at J1 and obtaining 1 V\textsubscript{OUT} of TPS56C215 at J3 is done. The performance of TPS56C215 converter alone is done by applying 12 V\textsubscript{IN} at J2 and disabling TPS54541. The efficiency and power loss for both cases are shown below.

3.2 Loop Response
The plot below shows the loop-response characteristics of TPS56C215 – 1 V, 1.2 MHz converter. Gain and phase plots are shown for V\textsubscript{IN} voltage of 12 V. Load current for the measurement is 7 A. The phase margin measured is 73 degrees.
3.3 Load regulation
The Load regulation of TPS56C215 – 1 V, 1.2 MHz converter in both cases with 24 V\textsubscript{IN} applied to TPS54541 at J1 and 12 V\textsubscript{IN} applied at J2 is shown below.

3.4 Output Ripple
The output Voltage graphs of TPS56C215 – 1 V, 1.2 MHz converter shown below are AC coupled for 0A and 7A load respectively. The output voltage is measured across output capacitors by tip and barrel method. The length of the ground wire should be as small as possible to avoid switching noise getting coupled.
3.5 Transient Response
The figures below show TPS56C215 – 1 V, 1.2 MHz converter’s response to load transients. The current step is from 2 A to 6 A. The current step slew rate is 2.5 A/μs. Total peak-to-peak voltage variation is as shown, including ripple and noise on the output.
3.6 Switch Node
The switch node waveform of the TPS56C215 – 1 V, 1.2 MHz converter operating at 7 A load is shown below.

4. TPS54541 – 24 V to 12 V at 500 kHz

4.1 Efficiency and Power Loss
The efficiency and power loss tests of TPS54541 are done at 24 V\textsubscript{IN} applied to J1 and 12 V\textsubscript{OUT} obtained from J2. The results obtained are shown below.
4.2 Loop Response
The plot below shows the loop-response characteristics of TPS54541 – 12 V, 500 MHz converter. Gain and phase plots are shown for V\text{IN} voltage of 24 V. Load current for the measurement is 5 A. The phase margin measured is 82 degrees.

4.3 Load Regulation
The Load regulation of TPS54541 – 12 V, 500 MHz converter with 24 V\text{IN} applied at J1 and 12 V\text{OUT} obtained at J2 is shown below.
4.4 Output Ripple
The output Voltage graph of TPS54541 – 12 V, 500 kHz converter shown below is AC coupled at a load of 5 A. The output voltage is measured across output capacitors by tip and barrel method. The length of the ground wire should be as small as possible to avoid switching noise getting coupled.

4.5 Transient Response
The figures below show TPS54541 – 12 V, 500 kHz converter’s response to load transients. The load step is from 1 A to 4 A. The current step slew rate is 2.5 A/μs. Total peak-to-peak voltage variation is as shown, including ripple and noise on the output.
4.6 Switch Node
The switch node waveform of the TPS54541 – 12 V, 500 kHz converter operating at 5A load is shown below.

5. Thermal Image
The thermal image of the board when the TPS56C215 1.2 V, 400 kHz and TPS56C215 1 V, 1.2 MHz converters are operating at their respective full loads is shown below. The cursor in the image is pointed on the TPS56C215 1 V, 1.2 MHz converter which is the hottest IC on the board for its high switching losses.
6. Schematic and Layout
The schematic of PMP15018 is shown below.
In board layout of PMP15018, the top, bottom, and internal layers are 2-oz. copper. The top layer contains the main power traces for VIN, VOUT, and SW. The quite analog ground planes of TPS56C215, 1.2 V, 400 kHz converter and TPS56C215, 1 V, 1.2 MHz converter on the top layer are tied to power ground at single points. The top-side ground traces are connected to the bottom ground planes with multiple vias on the board. The input decoupling capacitors are all located as close to the IC’s as possible. Additionally, the voltage set point resistor divider components are kept close to the IC’s.

The top layer along with top overlay and top Solder is shown below.

![Top Layer Diagram](image)

The inner layer-1 is a ground plane and is shown below.

![Inner Layer 1 Diagram](image)

The inner layer-2 is having copper fills of V_{IN} and V_{OUT} and is shown below.

![Inner Layer 2 Diagram](image)
The Bottom Layer is an additional ground plane with output feedbacks, PGOOD and EN signal routings.

7 Efficiency vs Solution Size with different Switching Frequencies
Since the two converters used to step down 12 \(V_{\text{IN}} \) to 1 \(V_{\text{OUT}} \) and 1.2 \(V_{\text{OUT}} \) are operating at close specifications they can be used to compare their efficiency and Board area for 400 kHz and 1.2 Mhz. The peak efficiency of by the converter operating at 400 kHz is 90% when compared to 80% of the converter operating at 1.2 MHz. On the other hand the Solution size occupied by the converter operating at 400 kHz is 495mm\(^2\) which is much higher when compared to 275mm\(^2\) that of the converter operating at 1.2 MHz. The figure below shows the difference in solution size of each converter. So the trade-off between efficiency and Solution Size with low and high solution size can be seen.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Designer(s)") who are developing systems that incorporate TI products. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.

TI's provision of reference designs and any other technical, applications or design advice, quality characterization, reliability data or other information or services does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such reference designs or other items.

TI reserves the right to make corrections, enhancements, improvements and other changes to its reference designs and other items. Designer understands and agrees that Designer remains responsible for using its independent analysis, evaluation and judgment in designing Designer's systems and products, and has full and exclusive responsibility to assure the safety of its products and compliance of its products (and of all TI products used in or for such Designer's products) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to its applications, it has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any systems that include TI products, Designer will thoroughly test such systems and the functionality of such TI products as used in such systems. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

Designers are authorized to use, copy and modify any individual TI reference design only in connection with the development of end products that include the TI product(s) identified in that reference design. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of the reference design or other items described above may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS AND OTHER ITEMS DESCRIBED ABOVE ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNERS AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS AS DESCRIBED IN A TI REFERENCE DESIGN OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

TI's standard terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products. Additional terms may apply to the use or sale of other types of TI products and services. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated