1 Startup
The photo below shows the 3.3VSW output voltage startup waveform after 12V is applied. VIN (Red), 3.3VSW (Yellow), 3.3V output is loaded to 0A. (VIN is 2V/DIV, 3.3V is 1V/DIV, 2mS/DIV)

The photo below shows the 3.3VSW output voltage startup waveform after 12V is applied. VIN (Red), 3.3VSW (Yellow), 3.3V output is loaded to 2.5A. (VIN is 2V/DIV, 3.3V is 1V/DIV, 2mS/DIV)
The photo below shows the **LMR14030 5V USB** output voltage startup waveform after 12V is applied. VIN (Red), LMR14030 5V USB (Yellow), 5V output is loaded to 0A. (2V/DIV, 5mS/DIV)

The photo below shows the **LMR14030 5V USB** output voltage startup waveform after 12V is applied. VIN (Red), LMR14030 5V USB (Yellow), 5V output is loaded to 2.1A. (2V/DIV, 5mS/DIV)
The photo below shows the **LMR14030 5V USB** output voltage after the EN signal (Green) is applied. VIN (Red), LMR14030 5V USB (Yellow), 5V output is loaded to 2.1A. Vin =12V (2V/DIV, 5mS/DIV)

The photo below shows the **TPS57140 5V USB** output voltage startup waveform after 12V is applied. VIN (Red), TPS57140 5V USB (Blue), 5V output is loaded to 0A. (2V/DIV, 5mS/DIV)
The photo below shows the TPS57140 5V USB output voltage startup waveform after 12V is applied. VIN (Red), TPS57140 5V USB (Blue), 5V output is loaded to 1A. (2V/DIV, 5mS/DIV)

The photo below shows the TPS57140 5V USB output voltage after the EN signal (Green) is applied. VIN (Red), TPS57140 5V USB (Blue), 5V output is loaded to 1A. Vin =12V (2V/DIV, 5mS/DIV)
The photo below shows the **TPS61175 LED** current startup waveform after 12V is applied. VIN (Yellow), 3.3VSW (Red), TPS61175 LED current (Green), 3 White LEDs, 3.3VSW@1A (Vin is 5V/DIV, 3.3VSW is 2V/DIV, LED current is 50mA/DIV, 2mS/DIV)

![TPS61175 LED current startup waveform](image1)

The photo below shows the **TPS61175 LED** current startup waveform after the EN signal (Red) is applied. 3.3VSW (Yellow), TPS61175 Enable (Red), TPS61175 LED current (Green), 3 White LED, 3.3VSW@1A (2V/DIV, 50mA/DIV, 2mS/DIV)

![TPS61175 LED current startup waveform](image2)
The photo below shows the **3.3V SW, 1.2V, 1.8V and 1.2V PG1 signal** startup waveforms after 12V is applied. 3.3V SW (Red), 1.2V (Green), 1.8V (Yellow), 1.2V PG1 (Blue), 0A loads on all outputs. (0.5V/DIV, 5mS/DIV)

The photo below shows the **5V STBY, 3.3V STBY, and 3.3V MIC** startup waveforms after 12V is applied. 12Vin (Red), 5V STBY (Blue), 3.3V STBY (Green), 3.3V MIC (Yellow), 0A loads on all outputs. (2V/DIV, 100uS/DIV)
The photo below shows the **3.3VSW and PG signal** waveforms after 12V is applied. 3.3VSW (Red), 3.3VSW Power Good (Yellow), 0A loads on all outputs. (1V/DIV, 2mS/DIV)

The photo below shows the **12V ANT startup waveforms** after 12V is applied. 12Vin (Red), 12V ANT (Yellow), 50mA loads on output, 12V ANT ENABLE connected to Vin. (2V/DIV, 200uS/DIV)
2 Efficiency

Each converters is independently free-running (non-sync operation). 5V USB outputs are not cable voltage drop compensated.

3.3V Efficiency (LMR14030), 1.9MHz, Vin = 12V

![3.3V Efficiency Graph]

- Efficiency (%)
- Power Dissipation (W)

5V USB Efficiency (LMR14030), 1.9MHz, Vin = 12V

![5V USB Efficiency Graph]

- Efficiency (%)
- Power Dissipation (W)
5V USB Efficiency (TPS57140), 1.9MHz, Vin = 12V

TPS61175 LED Driver Efficiency, 3 LEDs, 1.9MHz, I_LED = 0.163A
3 USB Cable Drop Compensation

LMR14030 Cable Drop Compensation (J12, 0.2ohms), Vin =12V, 3.3SW@1A

TPS57140 Cable Drop Compensation (J19, 0.2ohms), Vin =12V, 3.3SW@1A
4 Output Ripple Voltage

The 3.3VSW output ripple voltage (AC coupled) is shown in the figure below. The voltage is measured across C16 with the output loaded to 2.5A. The input voltage is set to 7V. (10mV/DIV, 500nS/DIV)

The 3.3VSW output ripple voltage (AC coupled) is shown in the figure below. The voltage is measured across C16 with the output loaded to 2.5A. The input voltage is set to 16V. (10mV/DIV, 500nS/DIV)
The **LMR14030 5V USB** output ripple voltage (AC coupled) is shown in the figure below. The voltage is measured across C29 with the output loaded to 2.1A. The input voltage is set to 16V. (50mV/DIV, 500nS/DIV)

The **LMR14030 5V USB** output ripple voltage (AC coupled) is shown in the figure below. The voltage is measured across C28 with the output loaded to 2.1A. The input voltage is set to 16V. (50mV/DIV, 500nS/DIV)
The TPS57140 5V USB output ripple voltage (AC coupled) is shown in the figure below. The voltage is measured across C42 with the output loaded to 1A. The input voltage is set to 16V. (20mV/DIV, 500nS/DIV)

The TPS57140 5V USB output ripple voltage (AC coupled) is shown in the figure below. The voltage is measured across C45 with the output loaded to 1A. The input voltage is set to 16V. (20mV/DIV, 500nS/DIV)
The **TPS74701 1.2V Lin Reg** output ripple voltage (AC coupled) is shown below. The voltage is measured across C56 with the output loaded to 0.7A. The input voltage is set to 12V. 3.3VSW@1A (10mV/DIV, 500nS/DIV)

![Graph of TPS74701 1.2V Lin Reg output ripple voltage.]

The **TLV70018 1.8V Lin Reg** output ripple voltage (AC coupled) is shown below. The voltage is measured across C54 with the output loaded to 0.155A. The input voltage is set to 12V. 3.3VSW@1A (10mV/DIV, 500nS/DIV)

![Graph of TLV70018 1.8V Lin Reg output ripple voltage.]

Power Management Solutions
The **TPS7B6933 3.3V MIC Lin Reg** output ripple voltage (AC coupled) is shown below. The voltage is measured across C47 with the output loaded to 0.15A. The input voltage is set to 12V.
(10mV/DIV, 500nS/DIV)

The **TPS7B6950 5.0V STBY Lin Reg** output ripple voltage (AC coupled) is shown below. The voltage is measured across C49 with the output loaded to 0.15A. The input voltage is set to 12V.
(10mV/DIV, 500nS/DIV)
The **TLV70033 3.3V STBY Lin Reg** output ripple voltage (AC coupled) is shown below. The voltage is measured across C52 with the output loaded to 0.05A. The input voltage is set to 12V.

(10mV/DIV, 500nS/DIV)
5 Load Transients

The **3.3VSW** load transient response (ac coupled) is shown for a load current step between 1.5A and 2.5A. Vin = 12V.

(100mV/DIV, 1A/DIV, 100μS/DIV)

The **3.3VSW** load transient response (ac coupled) is shown for a load current step between 0.5A and 2.5A. Vin = 12V.

(100mV/DIV, 1A/DIV, 100μS/DIV)
The **LMR14030 5V USB** load transient response (ac coupled) is shown for a load current step between 0A and 2.1A. Vin = 12V. The voltage is measured at C29 (before cable drop compensation). (200mV/DIV, 1A/DIV, 200μS/DIV)

The **LMR14030 5V USB** load transient response (ac coupled) is shown for a load current step between 0A and 2.1A. Vin = 12V. The voltage is measured at R22 (0.2 Ohm resistor, after cable drop compensation). (200mV/DIV, 1A/DIV, 200μS/DIV)
The **TPS57140 5V USB** load transient response (ac coupled) is shown for a load current step between 0A and 1A. Vin = 12V. The voltage is measured at C42 (before cable drop compensation).

(200mV/DIV, 1A/DIV, 200uS/DIV)

The **TPS57140 5V USB** load transient response (ac coupled) is shown for a load current step between 0A and 1A. Vin = 12V. The voltage is measured at R35 (0.2 Ohm resistor, after cable drop compensation).

(200mV/DIV, 1A/DIV, 200uS/DIV)
The photo below shows the 3.3VSW switching voltage for an input voltage of 6V and a 2.5A load.
(2V/DIV, 200nS/DIV)

The photo below shows the 3.3VSW switching voltage for an input voltage of 16V and a 2.5A load.
(5V/DIV, 200nS/DIV)
The photo below shows the **3.3VSW** switching voltage for an input voltage of 12V and a 0A load. (2V/DIV, 1μS/DIV)

The photo below shows the **LMR14030 5V USB** switching voltage for an input voltage of 7V and a 2.1A load. (2V/DIV, 200nS/DIV)
The photo below shows the **LMR14030 5V USB** switching voltage for an input voltage of 16V and a 2.1A load. (5V/DIV, 200nS/DIV)

![Graph](image1)

The photo below shows the **TPS57140 5V USB** switching voltage for an input voltage of 7V and a 1A load. (2V/DIV, 200nS/DIV)

![Graph](image2)
The photo below shows the **TPS57140 5V USB** switching voltage for an input voltage of 16V and a 2.1A load. (5V/DIV, 200ns/DIV)

The photo below shows the **TPS61175 LED driver** switching voltage for an input voltage of 6V and driving 3 white LEDs. 3.3VSW@1A

3.3VSW Switch Node (Yellow), TPS61175 Switch Node (Red), TPS61175 LED current (Green) (2V/DIV, 50mA/DIV, 200ns/DIV)
The photo below shows the **TPS61175 LED driver** switching voltage for an input voltage of 16V and driving 3 white LEDs. 3.3VSW@1A
3.3VSW Switch Node (Yellow), TPS61175 Switch Node (Red), TPS61175 LED current (Green)
(3.3VSW is 5V/DIV, TPS61175 is 2V/DIV, 50mA/DIV, 200nS/DIV)

The photo below shows the **TPS61175 LED driver** switching voltage for an input voltage of 12V with open LEDs (fault condition). 3.3VSW@1A
3.3VSW Switch Node (Yellow), TPS61175 Switch Node (Red), TPS61175 LED current (Green)
(5V/DIV, 50mA/DIV, 200nS/DIV)
The photo below shows the **TPS61175 LED driver** switching voltage and the **sync signal** at R21. The input voltage is 12V and the load is 3 white LEDs. 3.3VSW@1A
R21 Sync Signal (Yellow), TPS61175 Switch Node (Red), TPS61175 LED current (Green)
(sync signal is 1V/DIV, TPS61175 switch node is 2V/DIV, 50mA/DIV, 200nS/DIV)
7 Loop Gain

The plot below shows the **3.3VSW** loop gain for 12Vin and load of 2.5A.

Loop Gain (Vin = 12V)
BW: 76.2KHz
PM: 52 degrees

The plot below shows the **LMR14030 5V USB** loop gain for 12Vin and load of 2.1A. R33 opened.

Loop Gain (Vin = 12V)
BW: 52.2KHz
PM: 58 degrees
The plot below shows the **LMR14030 5V USB** loop gain for 12Vin and load of 2.1A. R33 installed.

Loop Gain (Vin = 12V)
BW: 47.2KHz
PM: 69 degrees

The plot below shows the **TPS57140 5V USB** loop gain for 12Vin and load of 1A. R48 opened.

Loop Gain (Vin = 12V)
BW: 50.7KHz
PM: 51 degrees
The plot below shows the **TPS57140 5V USB** loop gain for 12Vin and load of 1A. R48 installed.

Loop Gain (Vin = 12V) BW: 48.2KHz PM: 59 degrees

![TPS57140 Loop Gain Graph](image1)

The plot below shows the **TPS61175 LED Driver** loop gain for 12Vin and a 3 white LED load (0.163A).

Loop Gain (Vin = 12V) BW: 29.0KHz PM: 63 degrees

![TPS61175 Loop Gain Graph](image2)
8 MISC Waveforms

The photo below shows the 12V ANT output voltage during an overload. The 12V ANT load current is ramped up from 0A to 150mA. The 12V ANT SHORT signal trips at 78mA.

12V ANT (Yellow), 12V ANT SHORT signal (Red), 12V ANT current (Green)
(2V/DIV, 50mA/DIV, 200μS/DIV)
9 Photo

The photo below shows the PMP11136 REVB assy.
10 Thermal Image

A thermal image is shown below operating at 12V input and room temp with no airflow. The outputs are loaded to:

3.3VSW @ 1.5A
3X White LED @ 0.163A (~10.5V)
12V ANT @ 48mA (10.56V out, 220 ohms)
5V USB @ 2.25A (5.46V out)
5V USB @ 1A (5.14V out)
3.3V MIC @ 48mA (3.29V, 68.1 ohm)
5V STBY @ 93mA (5.01V, 53.6 ohm)
3.3V STBY @ 48mA (3.29V, 68.1 ohm)
1.2V @ 0.7A
1.8V @ 0.123A (1.802, 14.6 ohm)
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Designer(s)") who are developing systems that incorporate TI products. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.

TI’s provision of reference designs and any other technical, applications or design advice, quality characterization, reliability data or other information or services does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such reference designs or other items.

TI reserves the right to make corrections, enhancements, improvements and other changes to its reference designs and other items.

Designer understands and agrees that Designer remains responsible for using its independent analysis, evaluation and judgment in designing Designer’s systems and products, and has full and exclusive responsibility to assure the safety of its products and compliance of its products (and of all TI products used in or for such Designer’s products) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to its applications, it has the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any systems that include TI products, Designer will thoroughly test such systems and the functionality of such TI products as used in such systems.

Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

Designers are authorized to use, copy and modify any individual TI reference design only in connection with the development of end products that include the TI product(s) identified in that reference design. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of the reference design or other items described above may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS AND OTHER ITEMS DESCRIBED ABOVE ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNERS AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS AS DESCRIBED IN A TI REFERENCE DESIGN OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

TI’s standard terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products. Additional terms may apply to the use or sale of other types of TI products and services.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated