1 Startup

The photo below shows the output voltage startup waveforms after the application of 5V in. The 5.2V output was loaded to 0A. (Vin is 5V/DIV, Vout is 2V/DIV, 5mS/DIV)

![Startup Waveform 1](image1)

The photo below shows the output voltage startup waveforms after the application of 5V in. The 5.2V output was loaded to 2A. (Vin is 5V/DIV, Vout is 2V/DIV, 5mS/DIV)

![Startup Waveform 2](image2)
The photo below shows the output voltage startup waveforms after the application of 12V in. The 5.2V output was loaded to 0A. (Vin is 5V/DIV, Vout is 2V/DIV, 5mS/DIV)

The photo below shows the output voltage startup waveforms after the application of 12V in. The 5.2V output was loaded to 2A. (Vin is 5V/DIV, Vout is 2V/DIV, 5mS/DIV)
The photo below shows the output voltage startup waveforms after the application of 24V in. The 5.2V output was loaded to 0A. (Vin is 5V/DIV, Vout is 2V/DIV, 5mS/DIV)

The photo below shows the output voltage startup waveforms after the application of 24V in. The 5.2V output was loaded to 2A. (Vin is 5V/DIV, Vout is 2V/DIV, 5mS/DIV)
2 Efficiency

The converter efficiency is shown in the figures below for input voltages of 5V, 12V and 24V.

5.2V SEPIC Converter, Vin = 5V

- Efficiency (%)
- Power Dissipation (W)

5.2V SEPIC Converter, Vin = 12V

- Efficiency (%)
- Power Dissipation (W)
3 Output Ripple Voltage

The 5.2V output ripple voltage is shown in the figure below. The image was taken with the output loaded to 2A. The input voltage is set to 5V. (50mV/DIV, 2μS/DIV)

The 5.2V output ripple voltage is shown in the figure below. The image was taken with the output loaded to 2A. The input voltage is set to 12V. (50mV/DIV, 2μS/DIV)
The 5.2V output ripple voltage is shown in the figure below. The image was taken with the output loaded to 2A. The input voltage is set to 24V. (50mV/DIV, 2μS/DIV)

The 5.2V output ripple voltage is shown in the figure below. The image was taken with the output loaded to 2A. The input voltage is set to 40V. (50mV/DIV, 2μS/DIV)
4 Load Transients

The waveform below shows the output voltage (ac coupled) when the load current is stepped between 1A and 2A. Vin = 5V. (200mV/DIV, 1A/DIV, 500uS/DIV)

The waveform below shows the output voltage (ac coupled) when the load current is stepped between 0.1A and 2A. Vin = 5V. (200mV/DIV, 1A/DIV, 500uS/DIV)
The waveform below shows the output voltage (ac coupled) when the load current is stepped between 1A and 2A. Vin = 12V. (100mV/DIV, 1A/DIV, 500μS/DIV)

![Waveform 1](image1)

The waveform below shows the output voltage (ac coupled) when the load current is stepped between 0.1A and 2A. Vin = 12V. (200mV/DIV, 1A/DIV, 500μS/DIV)

![Waveform 2](image2)
The waveform below shows the output voltage (ac coupled) when the load current is stepped between 1A and 2A. Vin = 40V. (200mV/DIV, 1A/DIV, 500μS/DIV)

The waveform below shows the output voltage (ac coupled) when the load current is stepped between 0.1A and 2A. Vin = 40V. (200mV/DIV, 1A/DIV, 500μS/DIV)
5 Switch Node Waveforms

The photo below shows the 5.2V SEPIC switch node (TP1). The input voltage is 4.75V and the output is loaded to 2A. (5V/DIV, 1uS/DIV)

The photo below shows the 5.2V SEPIC switch node (TP1). The input voltage is 12V and the output is loaded to 2A. (10V/DIV, 1uS/DIV)
The photo below shows the 5.2V SEPIC switch node (TP1). The input voltage is 12V and the output is loaded to 0.15A. The converter is operating in discontinuous mode. (10V/DIV, 1uS/DIV)

The photo below shows the 5.2V SEPIC switch node (TP1). The input voltage is 40V and the output is loaded to 2A. (10V/DIV, 1uS/DIV)
6 Control Loop Gain / Stability

The plot below shows the 5.2V loop gain and phase margin with the output loaded to 2A. The input voltage was set to 5V.

Band Width = 3.10KHz, Phase Margin = 50 degrees

The plot below shows the 5.2V loop gain and phase margin with the output loaded to 2A. The input voltage was set to 12V.

Band Width = 4.03KHz, Phase Margin = 75 degrees
The plot below shows the 5.2V loop gain and phase margin with the output loaded to 2A. The input voltage was set to 24V.

Band Width = 4.05KHz, Phase Margin = 77 degrees

The plot below shows the 5.2V loop gain and phase margin with the output loaded to 2A. The input voltage was set to 40V.

Band Width = 3.68KHz, Phase Margin = 70 degrees
The photo below shows the PMP20016 REVB assembly built on the PMP8903 REVA PWB.
8 Thermal Image

A thermal image is shown below when operating at 5V input and 2A output, with no airflow.

A thermal image is shown below when operating at 12V input and 2A output, with no airflow.
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ('TI') reference designs are solely intended to assist designers ('Designer(s)') who are developing systems that incorporate TI products. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.

TI’s provision of reference designs and any other technical, applications or design advice, quality characterization, reliability data or other information or services does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such reference designs or other items.

TI reserves the right to make corrections, enhancements, improvements and other changes to its reference designs and other items. Designer understands and agrees that Designer remains responsible for using its independent analysis, evaluation and judgment in designing Designer’s systems and products, and has full and exclusive responsibility to assure the safety of its products and compliance of its products (and of all TI products used in or for such Designer’s products) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to its applications, it has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any systems that include TI products, Designer will thoroughly test such systems and the functionality of such TI products as used in such systems. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

Designers are authorized to use, copy and modify any individual TI reference design only in connection with the development of end products that include the TI product(s) identified in that reference design. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of the reference design or other items described above may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS AND OTHER ITEMS DESCRIBED ABOVE ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNERS AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS AS DESCRIBED IN A TI REFERENCE DESIGN OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

TI’s standard terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products. Additional terms may apply to the use or sales of other types of TI products and services. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2016, Texas Instruments Incorporated