

TI Designs

24 V\(_{\text{IN}}\), 5 V\(_{\text{OUT}}\) for Factory Automation and Industrial Robotics Reference Design

Description

This TI Design uses the TPS40170 synchronous buck controller to provide a well-regulated 5-V rail from a 24-V industrial bus. In conjunction with the controller, a pair of CSD18504Q5A N-channel power FETs are used in the design to provide high efficiency across the entire 4-A load range.

Resources

- PMP15025 Design Page
- TPS40170 Product Page
- CSD18504Q5A Product Page

Features

- 24-V\(_{\text{IN}}\) to 5-V\(_{\text{OUT}}\) Synchronous Buck Regulator
- \(I_{\text{MAX}} = 4\) A
- 390-kHz Efficiency
- 90% Full Load Efficiency
- Minimal Phase Ringing at Full Load Current
- 30-kHz Loop Bandwidth With 75° of Phase Margin for Fast, Stable Transient Response

Applications

- Powering Processors, ASICs, FPGAs, and Other Equipment for Industrial Automation Applications
- Factory Automation
- Industrial Robotics Applications

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.
1 System Overview

1.1 System Description

This TI Design features a single phase, synchronous buck converter that can take in a 24-V industrial bus and supply a stable 5-V, 4-A solution capable of powering Sitara™ processor PMICs. With the CPU, PMIC, and 5-V buck regulator coming from a single vendor, a successful first-time power-up becomes much easier to achieve. The design features both high efficiency and power density, making it suitable for industrial automation applications such as robotics and motor drives.

1.2 Block Diagram

![Block Diagram](image-url)

Figure 1. PMP15025 Block Diagram
1.3 **Highlighted Products**

1.3.1 **TPS40170 4.5- to 60-V Wide Input Synchronous PWM Buck Controller**

Key features include:
- Wide input voltage range from 4.5 to 60 V
- 600-mV reference voltage with 1% accuracy
- Programmable undervoltage lockout (UVLO) and hysteresis
- Programmable switching frequency between 100 and 600 kHz
- Low-side FET sensing overcurrent protection
- High-side FET short-circuit protection with integrated thermal compensation
- Integrated bootstrap diode
- 20-pin, 3.5-mm×4.5-mm VQFN package

1.3.2 **CSD1804Q5A 40-V N-Channel NexFET Power MOSFET**

Key features include:
- $Q_G = 7.7 \text{nC (} V_{GS} = 4.5 \text{ V})$
- $R_{DS(ON)} = 7.5 \text{ m}\Omega (V_{GS} = 4.5 \text{ V})$
- Avalanche rated
- Pb free terminal plating
- RoHS compliant
- 5-mm×6-mm SON package

2 **System Design Theory**

A high-efficiency, power dense synchronous buck controller and FETs for factory automation applications (for example, industrial robotics and motor drives) provide a stable 5-V output from a 24-V bus. A 390-kHz switching frequency is chosen to minimize the size and number of output filter components while maintaining a peak efficiency of 90.0%. The voltage mode control scheme with input feedforward offers a simple, low-cost solution to be implemented that can be stabilized using standard Type III compensation.

The TPS40170 controller and CSD18504Q5A FETs are rated for input voltages of 60 V and 40 V, respectively, making them a good fit for 24-V input applications as there is sufficient margin for transients and variations without risking damage to the ICs. Additionally, the TPS40170 also offers frequency synchronization features to help cut down on noise and EMI in the overall system making it more robust.

Further design optimizations or modifications to allow for higher output current can be done in WEBENCH® Designer.
3 Getting Started Hardware

3.1 Hardware

To test this TI Design, gather the following equipment:
- 24-V power supply: provides input power to TPS40170
- Digital multimeter: measures the DC value of V_{OUT}, V_{IN}, and other nodes of interest
- Oscilloscope: monitors the phase node, V_{OUT}, V_{IN}, COMP, and so on
- Electronic load: loads the output of the regulator and provides transient waveforms
4 Testing and Results

Figure 3. Switch Node, 4-A Load

Freq(1) -- --
maximum(1) 34.34 V
rise(1) 4.7 ns
Fall(1) 7.9 ns
minimum(1) -2.38 V

<table>
<thead>
<tr>
<th>Channel</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC</td>
<td>35.6 V</td>
</tr>
<tr>
<td>2</td>
<td>DC</td>
<td>35.6 V</td>
</tr>
<tr>
<td>3</td>
<td>AC</td>
<td>50 mV</td>
</tr>
<tr>
<td>4</td>
<td>AC</td>
<td>50 mV</td>
</tr>
</tbody>
</table>
Figure 4. Startup Waveform, No Load
Figure 5. Output Ripple, 4-A Load
Testing and Results

Table 1. Efficiency and Power Loss Data, No Cooling

<table>
<thead>
<tr>
<th>V_{IN} (V)</th>
<th>I_{IN} (A)</th>
<th>V_{OUT} (V)</th>
<th>I_{OUT} (A)</th>
<th>EFFICIENCY</th>
<th>P_{LOSS} (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.08</td>
<td>0.9327</td>
<td>4.928</td>
<td>4.084</td>
<td>89.6</td>
<td>2.333</td>
</tr>
<tr>
<td>24.05</td>
<td>0.6832</td>
<td>4.924</td>
<td>3.000</td>
<td>89.9</td>
<td>1.659</td>
</tr>
<tr>
<td>24.07</td>
<td>0.4587</td>
<td>4.918</td>
<td>2.001</td>
<td>89.1</td>
<td>1.200</td>
</tr>
<tr>
<td>24.09</td>
<td>0.2413</td>
<td>4.920</td>
<td>1.001</td>
<td>84.7</td>
<td>0.888</td>
</tr>
<tr>
<td>24.10</td>
<td>0.1342</td>
<td>4.957</td>
<td>0.500</td>
<td>76.6</td>
<td>0.756</td>
</tr>
<tr>
<td>24.11</td>
<td>0.0252</td>
<td>4.960</td>
<td>0</td>
<td>0</td>
<td>0.608</td>
</tr>
</tbody>
</table>
5 Design Files

To download the schematics, BOM, and other documentation, see the design files at http://www.ti.com/tool/PMP15025.

6 Related Documentation

1. Texas Instruments, *TPS40170 4.5 V to 60 V Wide Input Synchronous PWM Buck Controller*, TPS40170 Datasheet (SLUS970)

3. Texas Instruments, WEBENCH Design Center (http://www.ti.com/webench)

6.1 Trademarks

Sitara is a trademark of Texas Instruments.
WEBENCH is a registered trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm, evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated