For sake of convenience, the rails will be referred to by the following names throughout the report.

1. Rail 1 – Vdd – 0.9V @ 15.5A
2. Rail 2 – Vddm – 1.2V @ 12.5A
3. Rail 3 – Vccp – 2.5V @ 0.315A
4. Rail 4 – Vddk – 1.5V @ 0.04A
5. Rail 5 – Vddpllx – 1.2V @ 2.6A
The tests performed were as follows:

1. Turn-On (No Load)
2. Turn-Off (Full Load Load)
3. Switch Node
 i. No Load (with BWL)
 ii. Full Load (with BWL)
 iii. Ringing Full Load (No BWL)
4. Output Voltage Ripple
 i. No Load
 ii. Full Load
5. Transient Response
6. Efficiency
7. Load Regulation
8. Gain and Phase
9. Board Photo
10. Thermal Images
1. **Turn – On (No load)**

The photos below show the startup waveform. The input voltage is 12V, the output is not loaded.

Channel 2 – Pink: Output Voltage – (500mV/Division)
The time-base is set to 2ms/Division.

![Rail 1](image)

Channel 2 – Pink: Output Voltage – (500mV/Division)
The time-base is set to 2ms/Division.

![Rail 2](image)
Channel 2 – Pink: Output Voltage – (1V/Division)
The time-base is set to 200µs/Division.

Channel 2 – Pink: Output Voltage – (500mV/Division)
The time-base is set to 50us/Division.
Channel 2 – Pink: Output Voltage – (500mV/Division)
The time-base is set to 2ms/Division.

2. Turn – Off (Full load)

The photos below show the startup waveform. The input voltage is 12V. The output is load to full load rating of the rail.

Channel 2 – Pink: Output Voltage – (500mV/Division)
The time-base is set to 200μs/Division.
Channel 2 – Pink: Output Voltage – (500mV/Division)
The time-base is set to 50µs/Division.

Channel 2 – Pink: Output Voltage – (1V/Division)
The time-base is set to 200µs/Division.
Channel 2 – Pink: Output Voltage – (500mV/Division)
The time-base is set to 50µs/Division.

Channel 2 – Pink: Output Voltage – (500mV/Division)
The time-base is set to 100µs/Division.
3. Switch Node

Rail 1 - No Load (with BWL)

The picture below shows the switching waveform for the converter without a load. The input voltage is 12V. The time-base is set to 1µs/Division.

Channel 2 – Pink: Switch Node – (5V/Division)

Rail 1 - Full Load (with BWL)

The picture below shows the switching waveform for the converter without a load. The input voltage is 12V. The time-base is set to 1µs/Division. Switching frequency = 476.19 kHz.

Channel 2 – Pink: Switch Node – (5V/Division)
Rail 1 – Ringing Full Load (without BWL)
The picture below shows the switching waveform for the converter without a load. The input voltage is 12V. The time-base is set to 50ns/Division. Max voltage = 21.1V

Channel 2 – Pink: Switch Node – (5V/Division)

Rail 2 – No Load (with BWL)
The picture below shows the switching waveform for the converter without a load. The input voltage is 12V. The time-base is set to 1μs/Division.

Channel 2 – Pink: Switch Node – (5V/Division)
Rail 2 – Full Load (with BWL)

The picture below shows the switching waveform for the converter without a load. The input voltage is 12V. The time-base is set to 1µs/Division. Switching frequency = 502.51 kHz.

Channel 2 – Pink: Switch Node – (5V/Division)

Rail 2 – Ringing Full Load (without BWL)

The picture below shows the switching waveform for the converter without a load. The input voltage is 12V. The time-base is set to 50ns/Division. Max voltage = 22.8V

Channel 2 – Pink: Switch Node – (5V/Division)
Rail 3 – No Load (with BWL)

The picture below shows the switching waveform for the converter without a load. The input voltage is 12V. The time-base is set to 1µs/Division.

Channel 2 – Pink: Switch Node – (5V/Division)

Rail 3 – Full Load (with BWL)

The picture below shows the switching waveform for the converter without a load. The input voltage is 12V. The time-base is set to 200ns/Division. Switching Frequency = 2.345 MHz

Channel 2 – Pink: Switch Node – (5V/Division)
Rail 3 – Ringing Full Load (without BWL)
The picture below shows the switching waveform for the converter without a load. The input voltage is 12V. The time-base is set to 20ns/Division. Max voltage = 13.4V

Channel 2 – Pink: Switch Node – (5V/Division)

Rail 4 – No Load (with BWL)
The picture below shows the switching waveform for the converter without a load. The input voltage is 12V. The time-base is set to 1µs/Division.

Channel 2 – Pink: Switch Node – (5V/Division)
Rail 4 – Full Load (with BWL)
The picture below shows the switching waveform for the converter without a load. The input voltage is 12V. The time-base is set to 500ns/Division. Switching Frequency = 827.1 kHz

Channel 2 – Pink: Switch Node – (5V/Division)

![Image of waveform for Rail 4 – Full Load (with BWL)]

Rail 4 – Ringing Full Load (without BWL)
The picture below shows the switching waveform for the converter without a load. The input voltage is 12V. The time-base is set to 50ns/Division. Max voltage = 15.2V

Channel 2 – Pink: Switch Node – (5V/Division)

![Image of waveform for Rail 4 – Ringing Full Load (without BWL)]
Rail 5 – No Load (with BWL)
The picture below shows the switching waveform for the converter without a load. The input voltage is 12V. The time-base is set to 1µs/Division.

Channel 2 – Pink: Switch Node – (5V/Division)

Rail 5 – Full Load (with BWL)
The picture below shows the switching waveform for the converter without a load. The input voltage is 12V. The time-base is set to 1µs/Division. Switching Frequency = 505.23 kHz

Channel 2 – Pink: Switch Node – (5V/Division)
4. **Output Voltage Ripple (No Load and Full Load)**

The output voltage ripple of the power rails is shown in the figures below. The input voltage is 12V.

Rail 1 - Channel 2 – Pink: Output Voltage (10mV/Division; AC Coupled)

Time base = 2µs/div
Rail 2 - Channel 2 – Pink: Output Voltage (20mV/Division; AC Coupled)
Time base = 2µs/div

No Load Full Load

Rail 3 - Channel 2 – Pink: Output Voltage (10mV/Division; AC Coupled)
Time base = 20ms/div (left)

Channel 2 – Pink: Output Voltage (20mV/Division; AC Coupled)
Time base = 500ns/div (right)

No Load Full Load
Rail 4 - Channel 2 – Pink: Output Voltage (10mV/Division; AC Coupled)
Time base =1ms/div (left)
Time base = 2µs/div (right)

No Load

Full Load

Rail 5 - Channel 2 – Pink: Output Voltage (10mV/Division; AC Coupled)
Time base =5ms/div (left)

No Load

Full Load
5. **Transient Response**

The transient response of the power rails from no load to full load is shown in the figures below. The input voltage is 12V.

Rail 1 - Channel 2 – Pink: Output Voltage (50mV/Division; AC Coupled)
Channel 4 – Green: Output Current (10A/division)
Time base = 200µs/div
Max deviation = 29mV = 2.55%

Rail 2 - Channel 2 – Pink: Output Voltage (50mV/Division; AC Coupled)
Channel 4 – Green: Output Current (10A/division)
Time base = 200µs/div
Max deviation = 53.5mV = 4.45%
Rail 3 - Channel 2 – Pink: Output Voltage (50mV/Division; AC Coupled)
Channel 4 – Green: Output Current (100mA/division)
Time base = 200µs/div
Max deviation = 33mV = 1.32%

Rail 4 - Channel 2 – Pink: Output Voltage (50mV/Division; AC Coupled)
Channel 4 – Green: Output Current (20mA/division)
Time base = 200µs/div
Max deviation = 11.6mV = 0.77%
Rail 5 - Channel 2 – Pink: Output Voltage (20mV/Division; AC Coupled)
Channel 4 – Green: Output Current (1A/division)
Time base = 200µs/div
Max deviation = 35.6mV = 2.97%

6. Efficiency

The figures below highlight efficiency data of each power rail from 10% load to full load.
Rail 2

Rail 3
Rail 4

Rail 5
7. Load Regulation

The figures below show output voltage variation of the power rails from no load to full load.

![Load regulation](image1)

Voltage at full load = 0.897V
Rail 1 load regulation at full load = 0.3%

![Load regulation](image2)

Voltage at full load = 1.206V
Rail 2 load regulation at full load = 0.24%
Voltage at no load = 2.56V
Rail 3 load regulation at no load = 2.59%

Voltage at full load = 1.493V
Rail 4 load regulation at full load = 0.53%
Voltage at no load = 1.205V
Rail 5 load regulation at no load = 0.42%

8. **Gain and Phase**

Gain and phase measurements performed for power rails with voltage mode and current mode compensation only.
Rail 2

Rail 5

Vin = 12V
Max = 1.2V @ 2.5A
9. Thermal Images

The figure below shows a thermal capture of the board with all power rails running at full load.

<table>
<thead>
<tr>
<th>Circuit Element</th>
<th>Temperature at Full Load (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail 1 – IC</td>
<td>76.2</td>
</tr>
<tr>
<td>Rail 1 – Inductor</td>
<td>52.3</td>
</tr>
<tr>
<td>Rail 2 – IC</td>
<td>61.7</td>
</tr>
<tr>
<td>Rail 2 – Inductor</td>
<td>53.1</td>
</tr>
<tr>
<td>Rail 2 - FETs</td>
<td>86.0</td>
</tr>
<tr>
<td>Rail 3 – IC</td>
<td>32.8</td>
</tr>
<tr>
<td>Rail 3 – Inductor</td>
<td>33.6</td>
</tr>
<tr>
<td>Rail 4 – IC</td>
<td>30.3</td>
</tr>
<tr>
<td>Rail 4 – Inductor</td>
<td>26.6</td>
</tr>
<tr>
<td>Rail 5 – IC</td>
<td>31.5</td>
</tr>
<tr>
<td>Rail 5 – Inductor</td>
<td>34.7</td>
</tr>
<tr>
<td>Rail 5 - FETs</td>
<td>40.3</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated (‘TI’) reference designs are solely intended to assist designers (‘Designer(s)’) who are developing systems that incorporate TI products. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design.

TI’s provision of reference designs and any other technical, applications or design advice, quality characterization, reliability data or other information or services does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such reference designs or other items.

TI reserves the right to make corrections, enhancements, improvements and other changes to its reference designs and other items.

Designer understands and agrees that Designer remains responsible for using its independent analysis, evaluation and judgment in designing Designer’s systems and products, and has full and exclusive responsibility to assure the safety of its products and compliance of its products (and of all TI products used in or for such Designer’s products) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to its applications, it has the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any systems that include TI products, Designer will thoroughly test such systems and the functionality of such TI products as used in such systems.

Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

Designers are authorized to use, copy and modify any individual TI reference design only in connection with the development of end products that include the TI product(s) identified in that reference design. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of the reference design or other items described above may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS AND OTHER ITEMS DESCRIBED ABOVE ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNERS AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS AS DESCRIBED IN A TI REFERENCE DESIGN OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

TI’s standard terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products. Additional terms may apply to the use or sale of other types of TI products and services.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-compliance with the terms and provisions of this Notice.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated