1 Startup

The photo below shows the output voltage startup waveform after the application of 9V in. The 35V output was loaded to 0A. (10V/DIV, 50mS/DIV)

The photo below shows the output voltage startup waveform after the application of 16V in. The 35V output was loaded to 0A. (10V/DIV, 50mS/DIV)
The photo below shows the output voltage startup waveform after the application of 9V in. The 35V output was loaded to 5.72A (200W). (10V/DIV, 50mS/DIV)

The photo below shows the output voltage startup waveform after the application of 16V in. The 35V output was loaded to 5.72A (200W). (10V/DIV, 50mS/DIV)
2 Efficiency

The converter efficiency is shown below.

![35V Boost Converter Efficiency, Vin = 12V](image1)

![35V Boost Converter Efficiency, Vin = 9V](image2)
35V Boost Converter Efficiency, Vin = 16V

- Efficiency
- Power Dissipation

Load Current (Amps)

Efficiency
- 91%
- 92%
- 93%
- 94%
- 95%
- 96%
- 97%
- 98%

Power Dissipation (W)
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
3 Output Ripple Voltage

The 35V output ripple voltage (AC coupled) is shown in the figure below. The image was taken with the output loaded to 5.72A (200W). The input voltage is set to 9V. (200mV/DIV, 2uS/DIV)

The 35V output ripple voltage (AC coupled) is shown in the figure below. The image was taken with the output loaded to 5.72A (200W). The input voltage is set to 12V. (200mV/DIV, 2uS/DIV)
The 35V output ripple voltage (AC coupled) is shown in the figure below. The image was taken with the output loaded to 5.72A (200W). The input voltage is set to 16V. (200mV/DIV, 2uS/DIV)
4 Load Transients

The photo below shows the 35V output voltage (ac coupled) when the load current is stepped between 2A and 5.72A. Vin = 12V. (200mV/DIV, 2A/DIV, 200uS/DIV)

The photo below shows the 35V output voltage (ac coupled) when the load current is stepped between 0A and 5.72A. Vin = 12V. (200mV/DIV, 2A/DIV, 200uS/DIV)
5 Switch Node Waveforms

The photo below shows the FET switching voltage for an input voltage of 9V and a 0A load. (10V/DIV, 2μS/DIV)

The photo below shows the FET switching voltage for an input voltage of 9V and a 5.72A load. (10V/DIV, 2μS/DIV)
The photo below shows the FET switching voltage for an input voltage of 16V and a 0A load. (10V/DIV, 2uS/DIV)

The photo below shows the FET switching voltage for an input voltage of 16V and a 5.72A load. (10V/DIV, 2uS/DIV)
The plot below shows the loop gain with the input voltage set to 9V and 16V for an output load of 5.72A (200W).

Loop Gain (Vin = 16V) BW: 3.40KHz PM: 63 degrees
Loop Gain (Vin = 9V) BW: 1.91KHz PM: 62 degrees
7 Photo

The photo below shows the PMP20093 REVC assembly.
8 Thermal Image

A thermal image is shown below operating at 12V input and 35V@2A (70W) output at room temp and no airflow.

<table>
<thead>
<tr>
<th>Spot analysis</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 Temperature</td>
<td>49.4°C</td>
</tr>
<tr>
<td>Q2 Temperature</td>
<td>43.8°C</td>
</tr>
<tr>
<td>L1 Temperature</td>
<td>36.3°C</td>
</tr>
<tr>
<td>Q3 Temperature</td>
<td>49.2°C</td>
</tr>
</tbody>
</table>

A thermal image is shown below operating at 12V input and 35V@5.72A (200W) output at room temp and no airflow.

<table>
<thead>
<tr>
<th>Spot analysis</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2 Temperature</td>
<td>84.6°C</td>
</tr>
<tr>
<td>Q3 Temperature</td>
<td>88.9°C</td>
</tr>
<tr>
<td>L1 Temperature</td>
<td>95.2°C</td>
</tr>
<tr>
<td>U1 Temperature</td>
<td>57.2°C</td>
</tr>
<tr>
<td>Q1 Temperature</td>
<td>61.1°C</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampters.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated