Design Guide: TIDA-01580

Wireless ECG, SpO2, PTT and Heart Rate Monitor Reference Design for Medical and Consumer Wearables

Description

This reference design is a simple, wearable, multi-parameter, patient monitor that uses a single-chip, biosensing front end, the AFE4900 device, for synchronized electrocardiography (ECG) and photoplethysmography (PPG) measurements. The measured data is transferred to a remote location using the CC2640R2F device (supporting BLE 4.2 and 5). The reference design is operated using a single CR3032 battery and provides a battery life of 30 days. The raw data is available for the user to calculate heart rate, oxygen concentration in blood (SpO2), pulse-transit time (PTT), and ECG. Two onboard light-emitting diodes (LEDs) indicate low-battery detection and ECG lead-off detection for users.

Features

- Simple, wearable, multi-parameter, patient monitor for PPG and ECG
- Provides raw data to calculate heart rate, SpO2, and PTT
- Uses single-chip, biosensing front-end AFE4900 device for synchronized ECG and PPG measurements
 - PPG (optical heart-rate monitoring and SpO2) supports four LEDs and three photodiodes (PDs), with digital ambient subtraction to improve signal-to-noise ratio (SNR)
 - ECG (LEAD I) signals
- Integrated Arm® Cortex®-M3 and 2.4-GHz RF transceiver (CC2640R2F) supports wireless data transfer – BLE 4.2 and 5.0
- Operated by CR3032 (3-V, 500-mA Coin-Cell Battery), with battery life of 30 days using highly efficient DC/DC converters
- Small form factor helps with easy adaptation to wearable applications

Applications

- Medical sensor patches, Electrocardiogram
- Pulse oximeter
- Wearable fitness and activity monitor
- Smartwatch, Smart trackers
1 System Description
1.1 Introduction to Parameters Measured Using TIDA-01580

The TIDA-01580 device can be used to measure the following parameters: ECG, PPG, HRM, SpO2, and PTT.

ECG is an electrical measurement of the activity in the heart whereas PPG is an optical measurement of the volume of an organ. In principle, ECG uses multiple electrodes to measure the electrical activity of the heart, whereas PPG illuminates the skin and subcutaneous tissue with light of a specific wavelength from a light-emitting diode (LED) to measure organ volume. This light is absorbed, passed through, or reflected back. A photodiode sensor measures the light that is either transmitted or reflected, depending on where it is placed relative to the LED. The light is then converted to an electrical signal. In both cases, the information can be used to determine the heart rate of a person, but each application offers its own set of diagnostic information. ECG focuses on the electrical activity of the cardiac muscle tissue, because the exact sequence of contraction is well-known to trained cardiologists. Physicians use ECG to diagnose all kinds of heart diseases and abnormalities.

PPG provides more information about blood flow and blood pressure. This measurement can be conducted at various locations on the body, to examine the blood flow to different regions. When measured closest to the aorta of the heart (for example, the left arm), some additional information can be gained regarding the cardiac output and heart valve function. One advantage that PPG has is the number of skin contacts which are required to measure it. Because users can determine PPG from reflected or transmitted light, only a single point of contact is necessary to measure it. This feature allows for easy, continuous, time measurements, which is the most attractive advantage to wearable electronics such as fitness trackers. In contrast, ECG requires that the potential be measured across the heart. This means that users need at least two points of contact: positive and negative. Typically, this connection is only made for a finite period of time.
Figure 1-1 shows the typical waveforms for ECG (blue) and PPG (red). The time difference between the R-peak in the ECG waveform and the arrival of the blood pressure wave in the extremities is another measurement known as PTT. PTT involves simultaneous measurement of ECG and PPG.

Because the frequency of both ECG and PPG signals is same, heart rate can be calculated using both waveforms. Mostly green LEDs are used for measuring heart rates. A green LED has often been used in the reflective sensor to extract the PPG signal. Due to its wavelength, green light is known to penetrate the tissue less than higher wavelength LEDs. Hence, more unabsorbed (reflected) light comes out of the tissue with green than with other colors. Sensing the green light from more than one PD or eliminating from more than one LED surrounding the PD helps.

Red and infrared (IR) lights are used for pulse oximetry, to estimate the true hemoglobin oxygen saturation of arterial blood. Oxyhemoglobin (HbO2) absorbs visible and infrared IR light differently than deoxyhemoglobin (Hb), and appears bright red as opposed to the darker brown of Hb. Absorption in the arterial blood is represented by an AC signal that is superimposed on a DC signal, representing absorptions in other substances like pigmentation in tissue, venous, capillary, bone, and so forth. The cardiac-synchronized AC signal is approximately 1% of the DC level. This value is referred to as the perfusion index %. Equation 1 approximates the ratio of ratios, R, and % SpO2 is calculated as follows:

$$ R = \frac{\text{ACrms of Red}}{\text{DC of Red}} \div \frac{\text{ACrms of IR}}{\text{DC of IR}} $$

(1)

Equation 2 gives the standard model of computing SpO2. This model is often used in this literature in the context of medical devices. However, accurate % SpO2 is computed based on the empirical calibration of the ratio of ratios for the specific device.

$$ \% \text{SpO}_2 = 110 - (25 \times R) $$

(2)
1.2 High-Level System Description

Typically wireless, wearable, patient monitors are tied to the human body in such a way that they can measure multiple parameters for the body. Figure 1-2 shows a high-level block diagram of such a system. A typical patient monitor has a radio module, or radio IC, on it and operates over a battery. The communication can be established from a remote location (like a cell phone, tablet, or a computer).

Figure 1-2. System-Level Block Diagram
1.3 Typical Applications

- **Medical sensor patches**: Medical sensor patches measure vital signs and send data across to a remote location through wireless technology (Bluetooth®, BLE, Wi-Fi®, or NFC). These monitors are typically battery-powered and have low operating currents, to work for longer battery life. The solutions are notably compact, unlike bedside multi-parameter patient monitors.

- **Wearable Fitness and Activity Monitor**: Fitness monitors measure both the amount and rate of exercise of a person (for example, miles and pace run), as well as effort expended (for example, through monitoring heart rate). Typically, a wristwatch or wrist-worn display is used for control and providing feedback. Stored data can be downloaded to a computer through a USB or wireless USB dongle. All parts of the system require ultra-low-power, embedded controllers and low-power RF for communication. Heart-rate monitoring and exercise-output monitoring (for example, a running pace sensor or power sensor) require additional signal conditioning.

- **ECG**: Basic functions of an ECG machine include ECG waveform display, either through an LCD screen or printed paper media, and heart rhythm indication, as well as a simple user interface through buttons. Additional features are required in more and more ECG products, such as patient-record storage using convenient media, wireless or wired transfer, and 2D/3D display on a large LCD screen with touchscreen capabilities. Multiple levels of diagnostic capabilities also assist doctors and people without specific ECG training to understand ECG patterns and their indication of a certain heart condition. After the ECG signal is captured and digitized, it is sent for display and analysis, which involves further signal processing.

- **Pulse Oximeter**: The pulse oximeter measures blood oxygenation by sensing the IR and red-light absorption properties of deoxygenated and oxygenated hemoglobin. The oximeter is comprised of a sensing probe that attaches to the ear lobe, toe, or finger of a patient, and is connected to a data acquisition system for calculation and display of the oxygen saturation level, heart rate, and blood flow. Light sources, typically LEDs, shine visible red and IR light. Deoxygenated hemoglobin allows more infrared light to pass through and absorbs more red light. Highly oxygenated hemoglobin allows more red light to pass through and absorbs more IR light. The oximeter senses and calculates the amount of light at those wavelengths, proportional to the oxygen saturation (or desaturation) of the hemoglobin. The use of light in the absorbency measurement requires the designer to have a true light-to-voltage conversion using current as the input signal.
1.4 System Specifications and Design Features

The TIDA-01580 reference design realizes a wearable patient monitor and has following design features:

- Simple, wearable, multi-parameter, patient monitor that provides raw data to calculate heart rate, SpO2, and PTT
- Single-chip, biosensing, front-end for synchronized ECG and PPG measurements (AFE4900 device)
 - Only device on the market with this level of integration, low power, size, and flexibility
 - PPG (optical heart-rate monitoring and SpO2) supports 4 LEDs and 3 PDs with digital ambient subtraction to improve the SNR
 - ECG (LEAD I) signals
 - Flexibility of ultra-low-power modes and integrated FIFO can keep the MCU in sleep mode to increase the battery operation time
- Wireless data transfer supporting BLE 4.2 and 5.0
 - Integrated Arm Cortex-M3 and 2.4-GHz RF transceiver (CC2640R2F device)
 - Internal DC/DC converter helps improve the overall efficiency
 - Built-in, low-battery detection algorithm helps reduce the external components
 - Better routing in small form factor (all digital peripheral pins can be routed to any GPIO)
- Operated from CR3032 (3-V, 500-mA coin-cell battery), which offers 100 hours of continuous operation
- Low-power (battery life of 30 days for 1 second/minute transmission)
- Can also be operated using CR2032 (3-V, 225-mA coin cell battery) with reduced operating time
- Plug-in board approach enables easy adaptation to custom PPG sensors

1.5 Key System Specifications

Table 1-1 lists the different characteristics and specifications of the TIDA-01580 board.

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage (V_IN)</td>
<td>1.8 V to 3 V (coin-cell CR3032 battery)</td>
</tr>
<tr>
<td>TX_SUP</td>
<td>4.2 V</td>
</tr>
<tr>
<td>RX_SUP</td>
<td>2.1 V</td>
</tr>
<tr>
<td>IO_SUP</td>
<td>2.1 V</td>
</tr>
<tr>
<td>Number of LEDs for PPG measurement</td>
<td>Three (green, red, and IR)</td>
</tr>
<tr>
<td>Number of photo diodes for PPG</td>
<td>Two (for SFH7072)</td>
</tr>
<tr>
<td>measurement</td>
<td>One (for OCS112)</td>
</tr>
<tr>
<td>Number of electrodes for ECG</td>
<td>Two (Lead-I) for standard operation (support for three electrodes is possible with a few modifications on the board)</td>
</tr>
<tr>
<td>measurement</td>
<td></td>
</tr>
<tr>
<td>ECG lead-off detection</td>
<td>AC</td>
</tr>
<tr>
<td>External memory</td>
<td>Supported, but not populated onboard</td>
</tr>
<tr>
<td>LED indications</td>
<td></td>
</tr>
<tr>
<td>Lead-off detect</td>
<td></td>
</tr>
<tr>
<td>Low-battery flag</td>
<td></td>
</tr>
<tr>
<td>BLE status</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>SPI</td>
</tr>
<tr>
<td>Interface to controller</td>
<td>8-pin connector (100 mil, part number PRPC008SADN-RC)</td>
</tr>
</tbody>
</table>
2 System Overview

2.1 Block Diagram

Figure 2-1 shows the high-level block diagram for the TIDA-01580 device, which is a simple, wearable, multi-parameter, patient monitor. The AFE4900 is a single-chip, biosensing, front end for synchronized ECG and PPG measurements. The AFE4900 device can drive LEDs and support receive signal chains for the photo diodes. The AFE4900 device communicates with the CC2640R2F device over SPI (or I²C). The CC2640R2F is a microcontroller with an integrated Arm Cortex-M3 and 2.4-GHz RF transceiver. The design supports wired data capture using a JTAG connection, as well as wireless data capture by sending it over BLE through the antenna.

The board is powered using a 3-V, 500-mA coin-cell battery, CR3032. A boost converter (TPS61099) powers TX_SUP for the AFE4900 device, which supports the internal LED drivers for PPG measurement. A buck-boost converter (TPS63036) powers RX_SUP and IO_SUP for the AFE4900 device and VDDS2 and VDDS3 for the CC2640R2F device. VDDS for the CC2640R2F device is directly powered by the battery.

The board supports connections to external data-log memory, but it is currently not populated. The board indicates battery power source availability, low-battery detection, BLE connection status, and lead-off detection through onboard LEDs.

All the connections from the main to the external world are protected by ESD diodes (TPD1E10B06). The design contains a main board, an ECG board, and a sensor board.

2.2 Highlighted Products

Key features of the highlighted devices are mentioned in the following sections.

2.2.1 AFE4900

The AFE4900 device is an analog front-end (AFE) for synchronized ECG and PPG signal acquisition. The device can also be used for optical biosensing applications, such as heart-rate monitoring (HRM) and SpO2.
PPG signal chain supports up to four switching LEDs and up to three PDs. The LEDs can be switched on using a fully-integrated LED driver. The current from the PD is converted into voltage by the trans-impedance amplifier (TIA) and digitized using an analog-to-digital converter (ADC). The ECG signal-chain has an instrumentation amplifier (INA), with a programmable gain that interfaces to the same ADC. A right-leg drive (RLD) amplifier set can be used to bias the ECG input pins. AC and DC lead-off detect schemes are supported. The ADC codes from the PPG and ECG phases can be stored in a 128-sample first in, first out (FIFO) block and read out using either an I2C or SPI.

2.2.2 CC2640R2F

The CC2640R2F device is a wireless MCU targeting BLE 4.2 and 5 applications. The device is a member of the SimpleLink™ ultra-low-power CC26xx family of cost-effective, 2.4-GHz RF devices. Low active RF and MCU current and low-power mode current consumption provide excellent battery lifetime and allow for operation on small coin-cell batteries and in energy-harvesting applications. The SimpleLink BLE CC2640R2F device contains a 32-bit Arm Cortex-M3 core, which runs at 48 MHz as the main processor and a rich peripheral feature set, which includes a unique ultra-low power sensor controller. This sensor controller is ideal for interfacing external sensors and for collecting analog and digital data autonomously while the rest of the system is in sleep mode. Thus, the CC2640R2F device is great for a wide range of applications where long battery lifetime, small form factor, and ease of use are important. The power and clock management and radio systems of the CC2640R2F wireless MCU require specific configuration and handling by software, which has been implemented in the TI-RTOS, to operate correctly.

2.2.3 TPS61099

The TPS61099 boost converter uses a hysteretic control topology to obtain maximum efficiency at minimal quiescent current. The TPS61099 device only consumes 1-μA quiescent current under a light load condition and can achieve up to 75% efficiency at a 10-μA load with a fixed output voltage version. The TPS61099 device can also support up to 300-mA output current from 3.3 V to 5 V conversion and achieve up to 93% at a 200-mA load. The TPS61099 device also offers both Down Mode and Pass-Through operations for different applications. In Down Mode, the output voltage can still be regulated at a target value even when the input voltage is higher than the output voltage. In Pass-Through Mode, the output voltage follows the input voltage. The TPS61099x device exits Down Mode and enters into Pass-Through Mode when VIN > VOUT + 0.3 V. The TPS61099x device supports true shutdown function when it is disabled, which disconnects the load from the input supply to reduce the current consumption. The TPS61099x device offers both an adjustable output voltage version and fixed output voltage version. The TPS61099x device is available in a 6-ball, 1.23-mm × 0.88-mm, WCSP package.

2.2.4 TPS63036

The TPS63036 is a noninverting, buck-boost converter capable of providing a regulated output voltage from an input supply that can be higher or lower than the output voltage. The buck-boost converter is based on a fixed-frequency, pulse width modulation (PWM) controller, which uses synchronous rectification to obtain maximum efficiency. At low-load currents, the converter enters a power-save mode to maintain high efficiency over a wide-load current range. The power save mode can be disabled, forcing the converter to operate at a fixed switching frequency. The maximum average current in the switches is limited to a typical value of 1000 mA. The output voltage is programmable using an external resistor divider. The converter can be disabled to minimize battery drain.

2.2.5 TPD1E10B06

The TPD1E10B06 device is a single-channel, electrostatic discharge (ESD), transient voltage suppression (TVS) diode in a small 0402 package. This TVS protection product offers ±30-kV contact ESD, ±30-kV IEC air-gap protection, and an ESD clamp circuit, with a back-to-back TVS diode for bipolar or bidirectional signal support. The 0402 package is an industry standard and is convenient for component placement in space-saving applications.

2.3 System Design Theory and Design Considerations

This section explains the design theory (and equations, if required) for each of the devices used in the design.
2.3.1 AFE4900 and Power Supply

Figure 2-2 shows different connections for the AFE4900 device.

The AFE4900 device needs three power supplies: TX_SUP, RX_SUP, and IO_SUP. TX_SUP (4.2 V) is generated using the TPS61099 device. RX_SUP (2.1 V) is generated using the TPS63036 device. IO_SUP is the same as RX_SUP.

For PPG measurement, the LEDs are driven using the TX2, TX3, and TX4 pins (TX1 is not connected in the design). The reflected signals are detected using PDs connected to the INP-INM and INP2-INM2 pins (INP3-INM3 pins are not connected in the design).

For ECG measurement, the signals coming from electrodes are connected to the INP_ECG and INM_ECG pins. The right-leg drive signal is available on RLD_OUT pin.

The BG pin is connected to the internal bandgap voltage. The BG pin is decoupled using a 0.1-μF capacitor (C11) on the board.

For the AFE4900 device, RX_SUP is filtered using an LC filter consisting of the ferrite bead L1 and capacitors C6 and C7.
Table 2-1 lists the connections between the AFE4900 and CC2640R2F devices.

| Table 2-1. Connections Between AFE4900 and CC2640R2F |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| **AFE4900 PIN NUMBER** | **FUNCTION** | **CC2640R2F PIN NUMBER** | **FUNCTION** | **COMMENTS** |
| E1 | /RESET | 6 | DIO_1 | Reset for the AFE |
| A4 | I2C_SPI_SEL | N/A | N/A | Selection between SPI and I2C. For this design, SPI is selected, so this pin is connected to RX_SUP through a 0-Ω resistor (R2). |
| F3 | I2C_CLK | 16 | DIO_10 | SPI_CLK |
| F2 | I2C_DAT | 14 | DIO_8 | SPI_IN |
| E2 | SDOUT | 15 | DIO_9 | SPI_OUT |
| E3 | SEN | 5 | DIO_0 | AFE_SPI_EN |
| D3 | PROG_OUT1 | 21 | DIO_15 | |
| F4 | ADC_RDY | 28 | DIO_18 | ADC ready signal |
| F1 | CLK | 29 | DIO_19 | AFE clock |
| B4 | CONTROL1 | N/A | N/A | Enables or disables the internal LDO. For this design, the internal LDO is enabled, so this pin is connected to GND through a 0-Ω resistor (R4). |

2.3.2 CC2640R2F Microcontroller

Figure 2-3 shows the schematic for configuring the CC2640R2F MCU.

The VDSS power supply for the MCU, 2.1 V, is derived using the TPS63036 device. The VDDR power supply is generated using the internal DC/DC of the CC2640R2F MCU, and L8, C20, C25, and C27 form the filter components for the same. Y1 is the 24-MHz, high-frequency, external clock and Y2 is the 32-kHz, low-frequency, external clock. The GPIO pins of the CC2640R2F MCU (DIO_0 to DIO_30) interface with different functions such as Memory interface lines, AFE4900 interface lines, SPI communication, LED drives, and so on.

The RF front end is used in differential-ended configurations with internal biasing. A Balun LFB182G45BG5D920 device is used for the RF front end and tuned for application. J7 is a connector for conducted RF measurements (if required). The antenna is a PCB antenna.
VBATT is connected to VDSS through L5 (a GHz noise-suppression chip ferrite bead), providing a low-noise supply to the MCU. C19 and C22 are the decoupling capacitors. A 2.1 V is connected to the VDSS2 and VDSS3 pins through L6 (a GHz noise-suppression chip ferrite bead), providing a low-noise supply to the MCU. C23 and C24 are the decoupling capacitors (see Figure 2-4).

Figure 2-5. MCU Programming Connector
The MCU is programmed using a JTAG connection, as shown in Figure 2-5. The connector inputs are protected by ESD diodes (TPD1E10B06DPYR) from Texas Instruments. The TPD1E10B06 device is a single-channel, ESD, TVS diode in a small 0402 package. This TVS protection product offers ±30-kV contact ESD, ±30-kV IEC air-gap protection, and an ESD clamp circuit, with a back-to-back TVS diode for bipolar or bidirectional signal support.

2.3.3 PPG Measurement

For PPG measurement, three LEDs and two PDs are used in a single package. Table 2-2 lists details about the OCS112 (from Taiwan Biophotonic Co.) and SFH7072 (from OSRAM®).

<table>
<thead>
<tr>
<th>SENSOR</th>
<th>OCS112</th>
<th>SFH7072</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of LEDs</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Number of PDs</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>LED1 color</td>
<td>Red</td>
<td>Green</td>
</tr>
<tr>
<td>LED1 wavelength</td>
<td>655 nm</td>
<td>526 nm</td>
</tr>
<tr>
<td>LED2 color</td>
<td>IR</td>
<td>Green</td>
</tr>
<tr>
<td>LED2 wavelength</td>
<td>945 nm</td>
<td>526 nm</td>
</tr>
<tr>
<td>LED3 color</td>
<td>Green</td>
<td>Red</td>
</tr>
<tr>
<td>LED3 wavelength</td>
<td>525 nm</td>
<td>660 nm</td>
</tr>
<tr>
<td>LED4 color</td>
<td>–</td>
<td>IR</td>
</tr>
<tr>
<td>LED4 wavelength</td>
<td>–</td>
<td>950 nm</td>
</tr>
<tr>
<td>LED1 VF (typ)</td>
<td>2.1</td>
<td>1.3</td>
</tr>
<tr>
<td>LED1 VF (max)</td>
<td>2.4</td>
<td>1.8</td>
</tr>
<tr>
<td>LED2 VF (typ)</td>
<td>1.4</td>
<td>2.1</td>
</tr>
<tr>
<td>LED2 VF (max)</td>
<td>1.55</td>
<td>2.8</td>
</tr>
<tr>
<td>LED3 VF (typ)</td>
<td>3.2</td>
<td>3</td>
</tr>
<tr>
<td>LED3 VF (max)</td>
<td>3.7</td>
<td>3.4</td>
</tr>
<tr>
<td>LED4 VF (typ)</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>LED4 VF (max)</td>
<td>–</td>
<td>3.4</td>
</tr>
</tbody>
</table>

The Sensor boards are designed to fit on the main board with 5-pin connectors, based on the LEDs and PDs available in the Optical Sensor. All the LEDs are configured in push-pull (common anode mode). See Figure 2-6 and Figure 2-7 for the connection diagrams.

![Figure 2-6. Sensor Board Schematic With SFH7072 Device](image-url)
Figure 2-7. Sensor Board Schematic With OCS112 Device

The Sensor boards are fit onto the main board using the J1 and J2 connector, as shown in Figure 2-8.

Figure 2-8. PPG Connection From Sensor Board to AFE4900 Device on Main Board

The J1 connector has 5 connections: TX_SUP, TX drive pins, and GND. The J2 connector has 5 connections: PD1 Anode and Cathode, PD2 Anode and Cathode, and GND. The connector inputs are protected using ESD diodes (TPD1E10B06DPYR) from Texas Instruments. The TPD1E10B06 device is a single-channel, ESD, TVS diode in a small 0402 package. This TVS protection product offers ±30-kV contact ESD, ±30-kV IEC air-gap protection, and an ESD clamp circuit with a back-to-back TVS diode for bipolar or bidirectional signal support. The TX_SUP pin is decoupled using a 33-µF capacitor.

The PD signals are filtered using SMD Common Mode Chokes (having specifications as 90 Ω at 100 MHz, 370-mA DCR 300 mΩ). The chokes help in improving the immunity to external common mode noise signals and improve overall SNR of the system.
2.3.4 ECG Measurement

The single-lead ECG measurement can be done using either two electrodes or three electrodes. The ECG signal is acquired as the differential signal between the right-arm and left-arm electrodes. The RLD electrode is used to set the bias on the body. The filtering for the signal can be first order or second order (based on frequency roll-off requirement). The electrode-to-skin contact impedance can be modeled as a parallel R-C circuit comprising of 620kΩ and 4700 pF.

Note

Refer to the AFE4900 data sheet for the updated electrode interface circuit

2.3.4.1 Two-Electrode Configuration

This configuration does not use a third wire or connection for RLD. The common mode voltage is provided to the inputs using a resistor divider network, as shown in Figure 2-9. The signals coming from the electrodes are AC-coupled using capacitors.

![Figure 2-9. Interface for ECG Measurement (Two Electrodes)](image)

2.3.4.2 Three-Electrode Configuration

This configuration uses a third wire or connection for RLD. The common mode voltage is provided to the inputs using the RLD terminal shown in Figure 2-10. The signals coming from the electrodes are directly connected to the inputs of the AFE. The body connections should happen with the metal pads.

![Figure 2-10. Interface for ECG Measurement (Three Electrodes)](image)
Note

For use with dry electrodes where the skin-electrode contact impedance may be high, care should be taken to ensure that the input impedance of the ECG signal chain (including the contribution from external interface components) should be very high. Refer to the latest AFE4900 data sheet for recommendations.

In both configurations, the series protection resistors and capacitors should be selected based on the low-pass filter cut-off requirement. The body connection should happen through 3-pin ECG cable via connector J4.

2.3.5 Selecting TX Supply (TX_SUP) Value for Driving LEDs

Table 2-3 shows the recommended TX_SUP voltage range, taken from the AFE4900 device data sheet.

<table>
<thead>
<tr>
<th>TX_SUP</th>
<th>Transmitter supply</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX_SUP</td>
<td>Receiver supply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IO_SUP</td>
<td>I/O supply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digital inputs</td>
<td></td>
<td>0</td>
<td>RX_SUP V</td>
</tr>
<tr>
<td></td>
<td>Analog inputs</td>
<td></td>
<td>0</td>
<td>RX_SUP V</td>
</tr>
<tr>
<td>T_A</td>
<td>Operating temperature range</td>
<td>-20</td>
<td>70</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) V_LED refers to the maximum voltage drop across the external LED (at maximum LED current). This value is usually governed by the forward drop voltage (V_FB) of the LED. V_HR refers to the headroom voltage of the LED driver as listed in Table 2-4 for various LED current settings. The extra 0.3 V is the suggested margin.

Table 2-4 shows the headroom voltage, V_HR.

<table>
<thead>
<tr>
<th>ILED_FS REGISTER CONTROL</th>
<th>ONE LED DRIVER ON</th>
<th>TWO LED DRIVERS ON, THROUGH ONE LED</th>
<th>TWO LED DRIVERS ON, THROUGH TWO LEDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FULL-SCALE CURRENT (1)</td>
<td>V_HR (2)</td>
<td>FULL-SCALE CURRENT (1)</td>
</tr>
<tr>
<td>0</td>
<td>50 mA</td>
<td>320 mV</td>
<td>100 mA</td>
</tr>
<tr>
<td>1</td>
<td>100 mA</td>
<td>600 mV</td>
<td>200 mA</td>
</tr>
</tbody>
</table>

(1) Full-scale current per LED.
(2) Typical voltage headroom required for the LED driver.

TX_SUP = V_LED + V_HR + 0.3 + 0.625 + 0.3 = 4.125 V

Select TX_SUP = 4.2 V.

2.3.6 Generating TX Supply for Driving LEDs

Table 2-5. Specifications for TX_SUP

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>1.8 V to 3.0 V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>4.2 V</td>
</tr>
<tr>
<td>Output current</td>
<td>50 mA</td>
</tr>
<tr>
<td>Output voltage ripple</td>
<td>±50 mV</td>
</tr>
</tbody>
</table>

2.3.6.1 Programming Output Voltage

The output voltage is programmed to 4.2 V using Equation 3, where V_REF = 1.0 V. For best accuracy, the current following through R36 should be 100 times larger than the FB pin leakage current.
\[V_{\text{OUT}} = V_{\text{REF}} \times \frac{R35 + R36}{R36} \]

(3)

Because \(V_{\text{OUT}} = 4.2 \text{ V} \) and \(R36 = 100 \text{ k}\Omega \), \(R35 = 320 \text{ k}\Omega \). TI recommends high-accuracy resistors for better output voltage accuracy. The TIDA-01580 device uses both resistors with 0.05% tolerance.

2.3.6.2 Maximum Output Current

The maximum output capability of the TPS61099 device is determined by the input-to-output ratio and the current limit of the boost converter. Equation 4 shows \(I_{\text{OUT(max)}} = 300 \text{ mA} \) (\(V_{\text{IN}} = 1.8 \text{ V} \), \(I_{\text{LIM}} = 1 \text{ A} \), \(I_{\text{LH}} = 350 \text{ mA} \), \(\eta = 85\% \), and \(V_{\text{OUT}} = 4.2 \text{ V} \)).

\[I_{\text{OUT(max)}} = \frac{V_{\text{IN}} \times \left(I_{\text{LIM}} - \frac{I_{\text{LH}}}{2}\right) \times \eta}{V_{\text{OUT}}} \]

(4)

2.3.6.3 Input and Output Capacitor Selection

For the best output and input voltage filtering, TI recommends low-ESR X5R or X7R ceramic capacitors. The input capacitor minimizes input voltage ripple, suppresses input voltage spikes, and provides a stable system rail for the device. An input capacitor value of 10 \(\mu \text{F} \) (C47) is used to improve transient behavior of the regulator and EMI behavior of the total power supply circuit. TI recommends placing a ceramic capacitor as close as possible to the VIN and GND pins of the IC.

For the output capacitor of the VOUT pin, ceramic capacitors (C49 and C53) are placed as close as possible to the VOUT and GND pins of the IC. This capacitor must be placed as close as possible to the VOUT and GND pins of the IC. From the power-stage point of view, the output capacitor sets the corner frequency of the converter, while the inductor creates a Right-Half-Plane-Zero. Consequently, with a larger inductor, a larger output capacitor must be used. The TPS61099x device is optimized to work with the inductor from 1 \(\mu \text{H} \) to 2.2 \(\mu \text{H} \), so the minimal output capacitor value is 20 \(\mu \text{F} \) (nominal value). Increasing the output capacitor makes the output ripple smaller in PWM mode.

2.3.6.4 Switching Frequency

The switching frequency is calculated as Equation 5.

\[f = \frac{V_{\text{IN}} \times \left(V_{\text{OUT}} - V_{\text{IN}} \times \eta\right)}{L \times I_{\text{LH}} \times V_{\text{OUT}}} = \frac{1.8 \times (4.2 - 1.8 \times 0.85)}{2.2 \mu \times 0.35 \times 4.2} = 1.48 \text{ MHz} \]

(5)

Figure 2-11 shows the schematic for the boost converter, TPS61099.
Figure 2-11. TPS61099 Boost Converter ($V_{OUT} = 4.2$ V)
2.3.6.5 WEBENCH® Simulation for TPS61099 Boost Converter

Figure 2-12 and Figure 2-13 show the WEBENCH® simulation for the TPS61099 boost converter. For any custom requirement, simulation is available on the TPS61099 product page.
2.3.7 Generating RX Supply for AFE4900

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>1.8 V to 3.0 V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>2.1 V</td>
</tr>
<tr>
<td>Output current</td>
<td>10 mA</td>
</tr>
<tr>
<td>Output voltage ripple</td>
<td>±50 mV</td>
</tr>
</tbody>
</table>
Conversely, larger inductor values cause a slower load-transient response. The peak current for the inductor in steady-state operation can be calculated to avoid saturation of the inductor with the chosen inductance value. The equation which defines the switch current in boost mode is reported, because it provides the highest value of current and represents the critical current value for selecting the right inductor.

\[
I_{\text{PEAK}} = I_{\text{SW _ MAX}} + \frac{V_{\text{IN}} \times D}{2 \times f \times L} = 1 + \frac{1.8 \times 0.143}{2 \times 2 \times 1 \times 1 \mu} = 1.06435 \text{ A}
\]

(11)

where

- \(D \) = Duty cycle in boost mode
- \(F \) = converter switching frequency (typical 2 MHz)
- \(L \) = Selected inductor value
- \(H \) = Estimated converter efficiency
- \(I_{\text{SW _ MAX}} \) = Maximum average input current

Figure 2-14 shows the schematic for the buck-boost converter, TPS63036.

Figure 2-14. TPS63036 Buck-Boost Converter (\(V_{\text{OUT}} = 2.1 \text{ V} \))
2.3.7.5 **TINA-TI™ Simulation for TPS63036**

Figure 2-15 and Figure 2-16 show the TINA-TI™ simulation for the TPS63036 buck-boost converter. The TINA simulation file for any custom requirement can be downloaded from the TPS63036 product page.

![Figure 2-15. TINA-TI™ Simulation for TPS61099 Boost Converter (Schematic)](image)

![Figure 2-16. TINA-TI™ Simulation for TPS61099 Boost Converter (Test Results)](image)
2.3.8 Generating I/O Supply

The I/O supply selected is the same as RX-SUP (2.1 V) through R28 (0Ω). There is an option to mount an LDO at position U18 though.

![Diagram of IO SUP Same as RX SUP](image)

Figure 2-17. IO_SUP Same as RX_SUP

Note

U18 is currently not mounted on the TIDA-01580 board. The user can mount U18 if IO_SUP must be different than 2.1 V. LDOs with low drop-out voltages (for example, < 300 mV) have higher quiescent currents – which may affect the battery operating time.

2.3.9 Battery Input and Reservoir Capacitors

The power source for this TIDA-01580 device is the CR3032, a lithium-ion coin cell. Selection of the CR2032 coin-cell battery as the power source was due to the ubiquity of the battery type, particularly in small form factor systems. The voltage characteristics of the CR3032 lithium-ion coin cell battery are also ideal. The output voltage remains relatively flat throughout the discharge life, until the cell is nearly depleted. When the remaining charge in the coin-cell battery is nearly depleted, the output voltage drops off relatively quickly. The temperature characteristics of lithium-ion batteries are also superior to that of alkaline cells, particularly at lower temperatures. This superiority is due to lithium-ion cells having a non-aqueous electrolyte that performs better than the aqueous electrolytes commonly found in alkaline batteries.

![Diagram of Battery Connector and Reservoir](image)

Figure 2-18. Battery Connector and Reservoir

Given an appropriate weather-proof enclosure, this TI reference design system is suited for both indoor and outdoor use. Immediately following the battery is a bulk capacitor. This TI reference design uses a coin-cell battery tray that prevents an end-user from inserting the battery backwards, which may eliminate the need for the reverse Schottky diode. The bulk capacitor is sized to prevent too much voltage sag, particularly during the initial transition into the on state (see Figure 2-18).
2.3.10 Battery Life Calculations

This section explains the calculations for battery life of the CR3032 coin-cell battery. The possible current paths in this design are:

- Battery to AFE4900, through the Boost (TPS61099) to the TX SUP pin
- Battery to AFE4900, through the Buck-Boost (TPS63036) to the RX_SUP/IO_SUP pin
- Battery to CC2640R2F, through the Buck-Boost (TPS63036) to the VDDS2/3 pin
- Battery to CC2640R2F, directly to the VDDS pin

2.3.10.1 AFE4900 Current Consumption

The current consumption of the AFE4900 device depends on the sampling rate (for example, PTT mode at 1-kHz sampling rate for both ECG and PPG).

Typical specifications are at $T_A = 25^\circ C$; TX SUP = 5 V, RX SUP = 1.8 V (with CONTROL1 = 1.8 V to bypass internal LDOs), IO SUP = 1.8 V, external clock mode with 32-kHz clock on CLK pin (period = $t_{TE} = 31.25 \mu s$), the AFE operates with ULP mode enabled (ENABLE ULP = 1); PPG: 1-kHz sampling rate, SAMP width of $3 \times t_{TE}$, LED ON width of $4 \times t_{TE}$, C_F chosen such that there are 7-8 TIA time constants within the SAMP width, NUMAV = 1 (2 ADC averages), noise-reduction filter bandwidth set to 2.5 kHz, $C_{IN} = 100 \ pF$ (capacitor across the input pins to model the zero bias differential capacitance of the PD); ECG: 1-kHz sampling rate, INA gain of 12, chopper mode enabled (unless otherwise noted).

Table 2-8. Current Consumption for AFE4900 in Different Modes

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX SUP current excluding switching current from I2C or SPI readout</td>
<td>Low PRF PPG signal acquisition(3)</td>
<td>50</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX SUP current resulting from switching current at I2C readout</td>
<td>High PRF ECG, PPG signal acquisition(4)</td>
<td>600</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardware power-down (PWDN) mode(2)</td>
<td>< 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software power-down (PDNAFE) mode(2)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>At PRF of 50 Hz, readout with FIFO enabled with FIFO_PERIOD = 60, FIFO_NPHASE = 4(6)</td>
<td>6</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power-down mode</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IO SUP current</td>
<td>Low PRF, PPG signal acquisition(3)</td>
<td>1</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High PRF, ECG, PPG signal acquisition(4)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardware power-down (PWDN) mode(2)</td>
<td>< 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software power-down (PDNAFE) mode(2)</td>
<td>< 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX SUP current</td>
<td>Low PRF, PPG signal acquisition(3)</td>
<td>4</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High PRF, ECG, PPG signal acquisition(4)</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardware power-down (PWDN) mode(2)(1)</td>
<td>< 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software power-down (PDNAFE) mode(2)(1)</td>
<td>< 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Digital Inputs

| V_{IH} | High-level input voltage |
|-----------|
| Digital inputs except CONTROL1, I2C_SPI_SEL |
| 0.9 × IO SUP |
| CONTROL1 and I2C_SPI_SEL(7) |
| 0.85 × RX SUP |

| V_{IL} | Low-level input voltage |
|-----------|
| Digital inputs except CONTROL1, I2C_SPI_SEL |
| 0 × IO SUP |
| CONTROL1 and I2C_SPI_SEL(7) |
| 0 × RX SUP |

Digital Outputs

| V_{OH} | High-level output voltage |
|-----------|
| IO SUP |
| V |

| V_{OL} | Low-level output voltage |
|-----------|
| IO SUP |
| 0 |

(1) With LED currents set to 0 mA
(2) External clock switched off.
(3) Acquisition of four phases of signal in PPG mode at 50-Hz PRF.
(4) PTT mode at 1-kHz sampling rate for both ECG and PPG
(5) The additional current for FIFO readout is negligible when operating in the SPI mode.
(6) This current depends on the percentage of time for which the I2C_CLK is low; and scales with FIFO_NPHASE and PRF. This extra component of current is negligible when operating in the SPI interface mode.
(7) CONTROL1 and I2C_SPI_SEL can also be driven directly by the MCU (with IO_SUP levels) if the V_{IL}, V_{IH} levels are satisfied.

![Figure 2-19. Current Consumption for AFE4900 in LDO Enable Mode](image)

The TX_SUP current is taken to be 3 mA at normal operating conditions (10% duty cycle for 100 mA) – worst case.

Over operating free-air temperature range (unless otherwise noted).

Table 2-9. LED Drive Currents With Duty Cycles

<table>
<thead>
<tr>
<th>PARAMETER(1) (2)</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RXSUP to GND LDO bypassed</td>
<td>−0.3</td>
<td>2.1</td>
<td>V</td>
</tr>
<tr>
<td>RXSUP to GND LDO enabled</td>
<td>−0.3</td>
<td>4</td>
<td>V</td>
</tr>
<tr>
<td>IO_SUP to GND</td>
<td>−0.3</td>
<td>Min [4.0, (RX_SUP + 0.3)]</td>
<td>V</td>
</tr>
<tr>
<td>TX_SUP to GND</td>
<td>−0.3</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Voltage applied to analog inputs</td>
<td>Max [−0.3, (GND − 0.3)]</td>
<td>Min [4.0, (RX_SUP + 0.3)]</td>
<td>V</td>
</tr>
<tr>
<td>Voltage applied to digital inputs</td>
<td>Max [−0.3, (GND − 0.3)]</td>
<td>Min [4.0, (IO_SUP + 0.3)]</td>
<td>V</td>
</tr>
<tr>
<td>Maximum duty cycle (cumulative): sum of all LED phase durations as a function of the total period</td>
<td>50-mA LED current</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>100-mA LED current</td>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200-mA LED current</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction temperature, T_J</td>
<td>105</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature, T_{stg}</td>
<td>−60</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) If subjected to additional processing steps (for example during PCB assembly or product manufacturing), avoid exposure of the device to UV radiation and exposure to high temperatures (350°C and higher).

(3) Voltages higher than 2.1 V can be applied on RX_SUP only when CONTROL1 pin is at 0.

The RX_SUP and IO_SUP current are taken to be 700 µA (600 µA + 10 µA (I/O) + 50 µA (LDO enabled) + 40 µA (buffer)).
2.3.10.2 CC2640R2F Current Consumption

The net total of the current supplied to the CC2640R2F device is taken as 10 mA (including peripherals and TX only). A 50-µA average current is chosen at VDDS/2.

Measured on the TI CC2650EM-5XD reference design with $T_c = 25^\circ$C, $V_{DDS} = 3.0$ V with an internal DC/DC converter, unless otherwise noted.

Table 2-10. Power Consumption for CC2640R2F

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{core}</td>
<td>Core current consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reset. RESET_N pin asserted or VDDS below Power-on-Reset threshold</td>
<td>100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>Shutdown. No clocks running, no retention</td>
<td>150</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td>Standby. With RTC, CPU, RAM and (partial) register retention. RCOSC_LF</td>
<td>1.1</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>Standby. With RTC, CPU, RAM and (partial) register retention. XOSC_LF</td>
<td>1.3</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>Standby. With Cache, RTC, CPU, RAM and (partial) register retention. RCOSC_LF</td>
<td>2.8</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>Standby. With Cache, RTC, CPU, RAM and (partial) register retention. XOSC_LF</td>
<td>3.0</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>Idle. Supply Systems and RAM powered.</td>
<td>550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active. Core running CoreMark</td>
<td>1.45 mA + 31 µA/MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radio RX $^{(1)}$</td>
<td>5.9</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Radio RX $^{(2)}$</td>
<td>6.1</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Radio TX, 0-dBm output $^{(1)}$</td>
<td>6.1</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Radio TX, 5-dBm output $^{(2)}$</td>
<td>9.1</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I_{peri}</th>
<th>Peripheral Current Consumption (Adds to core current I_{core} for each peripheral activated) $^{(3)}$</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral power domain</td>
<td>Delta current with domain enabled</td>
<td>20</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Serial power domain</td>
<td>Delta current with domain enabled</td>
<td>13</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>RF Core</td>
<td>Delta current with power domain enabled, RF core idle</td>
<td>237</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>µDMA</td>
<td>Delta current with clock enabled, module idle</td>
<td>130</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Timers</td>
<td>Delta current with clock enabled, module idle</td>
<td>113</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I²C</td>
<td>Delta current with clock enabled, module idle</td>
<td>12</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I2S</td>
<td>Delta current with clock enabled, module idle</td>
<td>36</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>SSI</td>
<td>Delta current with clock enabled, module idle</td>
<td>93</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>UART</td>
<td>Delta current with clock enabled, module idle</td>
<td>164</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>

$^{(1)}$ Single-ended RF mode is optimized for size and power consumption. Measured on CC2650EM-4XS.

$^{(2)}$ Differential RF mode is optimized for RF performance. Measured on CC2650EM-5XD.

$^{(3)}$ I_{peri} is not supported in Standby or Shutdown.
2.3.10.3 On-State Current Calculations

Now, the reflected current on the input side of the TPS61099 device is given in Equation 12.

\[
I_{\text{TPS61099}} = \frac{V_O \times I_O}{(V_{\text{imin}} \times \eta)} = \frac{4.2 \times 3 \text{ mA}}{(1.8 \times 0.85)} = 8.5 \text{ mA}
\]

(12)

Where, efficiency is taken to be 85% (max 88% at low load of 10 µA), see Equation 13.

\[
I_{\text{TPS63036}} = \frac{V_O \times I_O}{(V_{\text{imin}} \times \eta)} = \frac{2.1 \times 750 \text{ µA}}{(1.8 \times 0.9)} = 975 \text{ µA} = 1 \text{ mA}
\]

(13)

Where efficiency is taken to be 50%. Therefore, the net total current from all the branch is given in Equation 14.

\[
I_{\text{net}} = 8.5 \text{ mA} + 1 \text{ mA} + 12 \text{ mA} = 21.5 \text{ mA}
\]

(14)

Therefore, the calculated battery life of the coin cell is given in Equation 15.

For CR3032, rating = 500 mAh

\[
\text{Life (hrs)} = \frac{500 \text{ mAh}}{21.5 \text{ mA}} \times 0.85 = 19.76 \text{ hrs}
\]

(15)

The measured currents on the TIDA-01580 device are much less than these calculated values, because the calculations are for worst-case performance. The measured values include the following:

\[
I_{\text{net}} = 4.09 \text{ mA at } V_{\text{in}} = 3 \text{ V}
\]

\[
I_{\text{net}} = 6.05 \text{ mA at } V_{\text{in}} = 1.8 \text{ V}
\]

So \(I_{\text{avg}} = 5.06 \text{ mA}\), which gives battery life of 98.7 hours.

2.3.10.4 Off-State Current Calculations (Considering Battery Voltage = 3 V)

The RX_SUP current at low-power operation (15 µA at software power-down mode and 1 µA at hardware power-down mode) = 16 µA (worst case). The TX_SUP current at low-power operation (1 µA at software power-down mode, 1 µA at hardware power-down mode) = 2 µA (worst case). The net total current supplied to the CC2640R2F device is taken as 200 nA (shutdown), 5 µA (standby), and 550 µA (idle).

Now, reflected current on the input side of TPS61099 is

\[
I_{\text{TPS61099}} = \frac{V_o \times I_o}{(V_{\text{imin}} \times \eta)} = \frac{4.2 \times 2 \text{ µA}}{(1.8 \times 0.85)} = 5.62 \text{ µA}
\]

(16)

\[
I_{\text{TPS63036}} = \frac{V_o \times I_o}{(V_{\text{imin}} \times \eta)} = \frac{2.1 \times 16 \text{ µA}}{(1.8 \times 0.31)} = 60.22 \text{ µA}
\]

(17)

\[
I_{\text{net (shutdown)}} = 5.62 \text{ µA} + 60.22 \text{ µA} + 0.2 \text{ µA} = 66.04 \text{ µA}
\]

(18)

\[
I_{\text{net (standby)}} = 5.62 \text{ µA} + 60.22 \text{ µA} + 5 \text{ µA} = 70.84 \text{ µA}
\]

(19)

\[
I_{\text{net (idle)}} = 5.62 \text{ µA} + 60.22 \text{ µA} + 600 \text{ µA} = 665.84 \text{ µA}
\]

(20)
Table 2-11 lists the battery lifetime for the cases shown.

Table 2-11. Battery Life Calculations

<table>
<thead>
<tr>
<th>MODE</th>
<th>ON-STATE CURRENT (mA)</th>
<th>OFF-STATE CURRENT (µA)</th>
<th>BATTERY LIFE FOR 20s/MIN DUTY CYCLE (DAYS)</th>
<th>BATTERY LIFE FOR 5 s/MIN DUTY CYCLE (DAYS)</th>
<th>BATTERY LIFE FOR 1 s/MIN DUTY CYCLE (DAYS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown</td>
<td>4.09</td>
<td>66.04</td>
<td>14.8</td>
<td>52</td>
<td>156</td>
</tr>
<tr>
<td>Standby</td>
<td>4.09</td>
<td>70.84</td>
<td>14.7</td>
<td>51</td>
<td>151</td>
</tr>
<tr>
<td>Idle</td>
<td>4.09</td>
<td>665.84</td>
<td>11.5</td>
<td>22</td>
<td>29</td>
</tr>
</tbody>
</table>

With TI’s newer ultra-low noise Iq device (TPS63900), the off current of the system will change significantly. Table 2-12 shows the updated numbers with this new buck-boost converter.

$$I_{TPS61099} = \frac{V_o \times I_o}{(V_{min} \times \eta)} = \frac{4.2 \times 2 \mu A}{(1.8 \times 0.85)} = 5.62 \mu A$$

(21)

$$I_{TPS63900} = \frac{V_o \times I_o}{(V_{min} \times \eta)} = \frac{2.1 \times 16 \mu A}{(1.8 \times 0.9)} = 20.74 \mu A$$

(22)

$$I_{net(\text{shutdown})} = 5.62 \mu A + 20.74 \mu A + 0.2 \mu A = 26.56 \mu A$$

(23)

$$I_{net(\text{standby})} = 5.62 \mu A + 20.74 \mu A + 5 \mu A = 31.36 \mu A$$

(24)

$$I_{net(\text{idle})} = 5.62 \mu A + 20.74 \mu A + 600 \mu A = 626.36 \mu A$$

(25)

Table 2-12. Battery Life Calculations (TPS63900)

<table>
<thead>
<tr>
<th>MODE</th>
<th>ON-STATE CURRENT (mA)</th>
<th>OFF-STATE CURRENT (µA)</th>
<th>BATTERY LIFE FOR 20s/MIN DUTY CYCLE (DAYS)</th>
<th>BATTERY LIFE FOR 5 s/MIN DUTY CYCLE (DAYS)</th>
<th>BATTERY LIFE FOR 1 s/MIN DUTY CYCLE (DAYS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown</td>
<td>4.09</td>
<td>26.56</td>
<td>15</td>
<td>57</td>
<td>221</td>
</tr>
<tr>
<td>Standby</td>
<td>4.09</td>
<td>31.36</td>
<td>15</td>
<td>56</td>
<td>210</td>
</tr>
<tr>
<td>Idle</td>
<td>4.09</td>
<td>626.36</td>
<td>11.7</td>
<td>23</td>
<td>30</td>
</tr>
</tbody>
</table>
2.3.11 External Memory

Note

U16 is currently not mounted on the TIDA-01580 board. The user can mount it if external-data log memory is required. When selecting the memory, the user must check the IO_SUP value and operating VCC for the memory.

The TIDA-01580 board has a provision for external memory connection over SPI, as shown in Figure 2-20.

Table 2-13 lists the connections between the memory chip and the CC2640R2F device.

<table>
<thead>
<tr>
<th>MEMORY PIN NUMBER</th>
<th>FUNCTION</th>
<th>CC2640R2F PIN NUMBER</th>
<th>FUNCTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/CS</td>
<td>18</td>
<td>DIO_12</td>
<td>Memory SPI enable</td>
</tr>
<tr>
<td>2</td>
<td>D0 (IO1)</td>
<td>15</td>
<td>DIO_9</td>
<td>SPI OUT for memory</td>
</tr>
<tr>
<td>3</td>
<td>/WP (IO2)</td>
<td>19</td>
<td>DIO_13</td>
<td>Memory write protect</td>
</tr>
<tr>
<td>5</td>
<td>D1 (IO0)</td>
<td>14</td>
<td>DIO_8</td>
<td>SPI IN for memory</td>
</tr>
<tr>
<td>6</td>
<td>CLK</td>
<td>16</td>
<td>DIO_10</td>
<td>SPI CLK for memory</td>
</tr>
<tr>
<td>7</td>
<td>/HOLD or /RESET</td>
<td>20</td>
<td>DIO_14</td>
<td>Memory hold</td>
</tr>
</tbody>
</table>

2.3.12 LED Indications

The board has four LEDs for indication, see Figure 2-21 and Figure 2-18.
Table 2-14 lists the functions of each LED.

<table>
<thead>
<tr>
<th>LED NUMBER</th>
<th>COLOR</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Green</td>
<td>Incoming power supply or battery indicator</td>
</tr>
<tr>
<td>D2</td>
<td>Red</td>
<td>Lead-off detection</td>
</tr>
<tr>
<td>D3</td>
<td>Red</td>
<td>Low-battery indication</td>
</tr>
<tr>
<td>D4</td>
<td>Red</td>
<td>BLE connection status</td>
</tr>
</tbody>
</table>

2.3.13 Connections Between Sensor Board and ECG Board

Figure 2-22 shows the connectors which connect all the boards together. The J1, J2, J3, J1_M, and J2_M connectors are used for connecting the ECG board to the main board. The J1_S and J2_S connectors are used for connecting the PPG sensor boards.

Figure 2-22. Connections Between Sensor Board and ECG Board
3 Hardware, Software, Testing Requirements, and Test Results

3.1 Required Hardware and Software

3.1.1 Hardware

Figure 3-1 and Figure 3-2 show top and bottom views of the TIDA-01352 PCB, respectively. The important sections are highlighted with red boxes and captions.
Figure 3-2. TIDA-01580 PCB - Bottom View
3.1.1.1 Connecting Optical Sensor and ECG Boards to Main Board

Figure 3-3 shows the ECG and PPG board mounted on the main board.

![ECG and PPG Board Mounted on Main Board (Top View)](image)

Figure 3-3. ECG and PPG Board Mounted on Main Board (Top View)
Figure 3-4 shows separate PPG and ECG boards. The PPG board must be soldered on the ECG board in such a way that the PPG sensor faces towards the cut-slot on the ECG board.
Figure 3-6. ECG and PPG Board Mounted on Main Board (Side View)
3.1.1.2 Difference Between PPG Sensor Boards

One PPG sensor board uses the SFH 7072 device from OSRAM. The default configuration for the PPG sensor board follows:

- LED1 (green1) of the SFH7072 = connected to TX4 of the AFE4900 device
- LED2 (green2) of the SFH7072 = not connected to the AFE4900 device
- LED3 (red) of the SFH7072 = connected to TX2 of the AFE4900 device
- LED4 (IR) of the SFH7072 = connected to TX3 of the AFE4900 device
- The Dual_PD_Enable bit is set in the 0x4E register in the AFE4900 device (see Figure 3-7).
- PD1 of the AFE4900 device is connected to Broadband PD, and PD2 of the AFE4900 device is connected to Infrared-Cut PD.

Registers to be read for getting raw data follow:

- 0x2A – Raw PPG data from the red LED
- 0x2B – Raw PPG data from the IR LED
- 0x2C – Raw PPG data from the green LED
- 0x2D – Raw ECG data

![Figure 3-7. Timing and Settings for SFH 7072 PPG Sensor](image)
The other PPG sensor board uses the OCS112 device from tBPC. The default configuration for the PPG sensor board follows:

- LED1 (red) of the OCS112 device = connected to TX2 of the AFE4900 device
- LED2 (IR) of the OCS112 device = connected to TX3 of the AFE4900 device
- LED3 (green) of the OCS112 device = connected to TX4 of the AFE4900 device

Because this sensor has only one PD, the Dual_PD_Enable bit is not set in the 0x4E register in the AFE4900 device (see Figure 3-8). PD1 of the AFE4900 device is always connected to PD of the sensor.

Registers to be read for getting raw data follow:

- 0x2A – Raw PPG data from the red LED
- 0x2B – Raw PPG data from the IR LED
- 0x2C – Raw PPG data from the green LED
- 0x2D - Raw ECG data

Figure 3-8. Timing and Settings for OCS112 PPG Sensor

Note

Figure 3-7 and Figure 3-8 are screen shots from the AFE4900EVM GUI (available at AFE4900EVM).
3.1.2 Software

The following software tools were used to test and obtain the results for this TI reference design:

- Code Composer Studio™ (CCS), version 7 or higher (should be installed with CC26xx support. Run installer again if CC26xx support is not already installed)
- SIMPLELINK-CC2640R2-SDK Software
- LAUNCHXL-CC2640R2
- LabVIEW™ 2016 Development Engine or Runtime Engine (32-bit)
- JAVA Runtime Engine (32-bit)

The following instructions assume that CCS, SIMPLELINK-CC2640R2-SDK, LabVIEW and JAVA are installed on the PC. Download the LabVIEW application setup (zip file) from the TIDA-01580 product page. This setup installs the firmware containing four project folders (two for the transmit section and two for the receive section) and the LabView application folder containing executable file and source files.

3.1.2.1 Software Loading for TIDA-01580 Board (Transmit Side of BLE)

1. Plug in the LAUNCHXL-CC2640R2 board on the USB port of the PC. See the setup in Figure 3-9 and Figure 3-10. Table 3-1 lists the connections between the TIDA-01580 board and the LAUNCHXL-CC2640R2 board.

2. Insert one CR3032 battery into the BT1 connector on the TIDA-01580 board, and power it on by using the S2 switch (ensure J8 is shorted on the TIDA-01580 board).

3. Open CCS as administrator (Right click on the CCS icon and run as administrator).

4. Click on the Project option in the main toolbar and then click Import CCS projects.

5. Browse to select the installed firmware (Default: C:\Program Files (x86)\Texas Instruments \TIDA-01580\TIDA-01580_firmware) and import all projects. Click the OK button.

6. Click View, Project Explorer and select TIDA-01580_firmware_tx.
7. Click on the Run and Debug buttons. This action programs the board with the selected project file.
8. Disconnect the TIDA-01580 board from the LAUNCHXL-CC2640R2 device.

Table 3-1. Connections for Programming TIDA-01580 Using LAUNCHXL-CC2640R2

<table>
<thead>
<tr>
<th>CONNECTION ON LAUNCHXL-CC2640R2 (ON XDS110 OUTSIDE)</th>
<th>PIN NO.</th>
<th>CONNECTION ON TIDA-01580 BOARD (CONNECTOR J6)</th>
<th>PIN NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>1</td>
<td>GND</td>
<td>1</td>
</tr>
<tr>
<td>RESET</td>
<td>6</td>
<td>CC_RESET</td>
<td>7</td>
</tr>
<tr>
<td>TMS</td>
<td>7</td>
<td>JTAG_TMSC</td>
<td>6</td>
</tr>
<tr>
<td>TCK</td>
<td>8</td>
<td>JTAG_TCKC</td>
<td>5</td>
</tr>
<tr>
<td>TDI</td>
<td>9</td>
<td>TDI</td>
<td>4</td>
</tr>
<tr>
<td>TDO</td>
<td>10</td>
<td>TDO</td>
<td>3</td>
</tr>
</tbody>
</table>
3.1.2.2 LabVIEW™ File Execution for Checking Measurement Data (Receive Side of BLE)

Note

Only one device, the LAUNCHXL-CC2640R2 or XDS110, can be connected to the PC while running the executable file.

1. Insert one CR3032 battery into the BT1 connector on the TIDA-01580 board and power it on by using the S2 switch (ensure J8 is shorted on the TIDA-01580 board). Ignore this step if it was already done during programming of the TIDA-01580 board.
2. Revert back to the original LaunchPAD jumper settings.
3. Plug in the LAUNCHXL-CC2640R2 device on the USB port of the PC.
4. Open the Setup_TIDA-01580.exe file and go through the installation process, explained as follows.
 a. Setup Welcome Screen – click Next.

![Setup Welcome Screen](image)

Figure 3-11. Setup Welcome Screen

 b. License Agreement Screen – Accept the agreement and click Next.
c. Installation Directory Screen – click Next.

d. Select Components Screen – click Next.
e. Ready to Install Screen – click Next.
The setup starts installing and the progress screen is displayed (see Figure 3-16).

![Figure 3-16. Installing GUI](image)

f. When installed, click Finish. Look for the TIDA-01580 Application.exe at the installed location (default location: C:\Program Files (x86)\Texas Instruments\TIDA-01580\TIDA-01580 Application).

![Figure 3-17. Completing TIDA-01580 Setup Wizard](image)
While launching the GUI, a splash screen appears, as shown in Figure 3-18.

![Splash Screen on Launching TIDA-01580 GUI](image)

Figure 3-18. Splash Screen on Launching TIDA-01580 GUI

The Instructions tab provides instructions and safety precautions for the user, as shown in Figure 3-19.

![TIDA-01580 GUI Instructions Tab](image)

Figure 3-19. TIDA-01580 GUI Instructions Tab
The Configurations tab (see Figure 3-20) provides information about the software paths.

1. Ensure the CCS base-folder path is set to `<CCS installation path>\ccsv7\ccs_base`.
2. Ensure the project .OUT file path is set to `<installation folder>\TIDA-01580_firmware \TIDA-01580_firmware_rx\FlashROM_StackLibrary\TIDA-01580_firmware_rx.out`.
3. The START/STOP button can connect and program the LAUNCHXL-CC2640R2 device to capture the data. After clicking the START/STOP button, the TIDA-01580 board must immediately be power cycled using the S2 switch. The START/STOP button can also disconnect the link.
The HRM tab (see Figure 3-21) shows PPG data taken from green LED and ECG data. The HRM tab estimates heart-rate from both sets of data (time difference in seconds between two peaks of PPG or ECG data / 60).

Note

As soon as the BLE connection is established, the Configurations tab switches to the HRM tab.
The SpO2 tab (see Figure 3-22) shows PPG data taken from the red and IR LEDs. The SpO2 tab estimates % SpO2 from both sets of data.

- The LED indication of BLE Connected? turns on if the LAUNCHXL-CC2640R2 receiver is connected with the TIDA-01580 board over BLE.
- The LED indication of Low Battery turns on if the battery voltage is less than 2 V.
- The LED indication of Lead Off Detect turns on if any one of the ECG electrodes are not connected to the human body.
- The Exit button can disconnect and quit the .exe file.

Figure 3-22. TIDA-01580 GUI SpO2 Tab
3.2 Testing and Results

This section describes the test setup and test results for the TIDA-01580 board (see Figure 3-23).

![Figure 3-23. Test Setup for Capturing Data](image)

3.2.1 Test Setup

1. Plug in the LAUNCHXL-CC2640R2 device on the USB port of the PC.
2. Open TIDA-01580 Application.exe file.
3. Connect the human body (fingers or wrist) to the TIDA-01580 board for the measurement. Ensure the PPG sensor on the bottom side is covered by a finger. For ECG measurement, two electrodes are used. One electrode is on the bottom side touched by one hand, and another electrode is formed by touching the top side using a second hand.
4. Ensure the paths are correct for the CCS Base Folder and Project .out file on the Configurations tab.
5. Click on the START/STOP button in the Configurations tab on the TIDA-01580 GUI.
6. Power-cycle the TIDA-01580 board by toggling the S2 switch.
7. The Configurations Tab shows the following message:

```
Welcome...
Advanced filtering is disabled in the Run Time Engine
PASS // core0 connected as Cortex_M3_0...
PASS // program file loaded on core0...
PASS // program running on core0...
```
As soon as the TIDA-01580 board connects to the receiving LAUNCHXL-CC2640R2 board, the BLE Connected? LED turns on, and the HRM tab should be open showing PPG (green LED) and ECG data. If the ECG electrodes are not connected properly, the Lead Off Detect LED turns on. The SpO2 tab can be used for measuring PPG data from the red and IR LEDs.

8. Once evaluation is over, click on the START/STOP button in the Configurations tab. The tab shows the following message:

```
PASS // closing tcp session on port 1444..
```

9. Click on the Exit button to quit the .exe file.

3.2.2 Test Results

3.2.2.1 Heart-Rate Measurement Using PPG (Green LED) and ECG

Figure 3-24 and Figure 3-25 show HRM and ECG data from the SFH 7072 and OCS112 sensors.

![Figure 3-24. HRM Data From SFH 7072 Sensor and ECG Data](image-url)
Figure 3-25. HRM Data From OCS112 Sensor and ECG Data
3.2.2.2 SpO2 Measurement Using Red and IR LEDs

Figure 3-26 and Figure 3-27 show SpO2 and ECG data from the SFH 7072 and OCS112 sensors.

![Figure 3-26. SpO2 Data From SFH 7072 Sensor and ECG Data](image)
Figure 3-27. SpO2 Data From OCS112 Sensor and ECG Data
3.2.2.3 PTT Measurement

Figure 3-28 shows the PTT measurement.

![Figure 3-28. Measurement Showing Constant PTT](image)

Note

During testing, it was observed that the power line noise and other motion artifacts getting coupled to the PPG signals drastically reduced the SNR. For HRM applications, it is imperative to remove the noise and baseline drift. Heart-rate estimation usually requires an algorithm that filters the noise and detects the beat-to-beat heart rate and average heart rate. Even under rest conditions, extraction of heart rate data can get complicated, due to sudden changes in the DC level of the signal, due to respiration and motion artifacts. The heart rate can be calculated by measuring the separation between the successive peaks of the signal after eliminating the effect of the sudden DC-level shifts. In the presence of artifacts such as motion, the PPG signal can be buried. This occurrence requires motion cancellation algorithms, usually aided by data from accelerometers, to be able to remove the motion artifact and extract the heart rate.

3.2.2.4 Lead-Off Detect

Lead-off detect is implemented on the TIDA-01580 board. The onboard LED D2 indicates the same. Lead-off detection is also highlighted on the TIDA-01580 GUI by turning on the LED.
3.2.2.4.1 AC Lead-Off Detect

Figure 3-29 shows the settings for AC lead-off detection (using the AFE4900 EVM GUI).

![Figure 3-29. Settings for AC Lead-Off Detection](image)

3.2.2.4.2 DC Lead-Off Detect

Figure 3-30 shows the settings for DC lead-off detection (using the AFE4900 EVM GUI).

![Figure 3-30. Settings for DC Lead-Off Detection](image)
3.2.2.5 Low-Battery Indication

Low-battery indication is implemented on the TIDA-01580 board. The onboard LED D3 indicates the same. Low-battery is also highlighted on the TIDA-01580 GUI by turning on the LED. The low-battery detection threshold is set at 1.9 V.

3.2.2.6 Waveforms for DC/DC Converters

Figure 3-31 through Figure 3-35 show waveforms for DC/DC converters.

Figure 3-31. Waveform Showing Ibattery (Pink), RX_SUP (Yellow), TX_SUP (Green), and Vbattery (Purple)
Figure 3-32. Waveform Showing $I_{battery}$ (Pink), Ripple on RX_SUP (Yellow), Ripple on TX_SUP (Green), and Ripple on $V_{battery}$ (Purple)

Figure 3-33. Pink Waveform Shows 100-ms Advertising Time for BLE
3.2.2.7 Battery Life Test

The battery life test is done by keeping the TIDA-01580 board on for continuous transmission of the data. The CR3032 battery works continuously for 100 hours.
4 Design Files

4.1 Schematics
To download the schematics, see the design files at TIDA-01580.

4.2 Bill of Materials
To download the bill of materials (BOM), see the design files at TIDA-01580.

4.3 PCB Layout Recommendations
Device-specific layout guidelines for each TI part used in this design can be found in the corresponding data sheets. Figure 3-1 and Figure 3-2 show top and bottom views of the TIDA-01580 PCB, respectively. The important sections are highlighted with red arrows and captions.

4.3.1 Layout for Main Board

![Figure 4-1. Top Layer for TIDA-01580 Board](image-url)
Figure 4-2. Bottom Layer for TIDA-01580 Board

Figure 4-3. Power Layer for TIDA-01580 Board
4.3.2 Connection From PDs to AFE

Figure 4-5. Traces From PDs to AFE
4.3.3 Connections From LEDs to AFE

![Figure 4-6. Traces From LEDs to AFE](image-url)
4.3.4 Connections From ECG PADs to AFE

Figure 4-7. Traces From ECG PADs to AFE
4.3.5 Connections Between BT and AFE

Figure 4-8. Traces Between CC2640R2F and AFE4900
4.3.6 Connections Between BT Antenna and Chip

Figure 4-9. Traces Between CC2640R2F and Antenna
4.3.7 Boost Converter

Figure 4-10. Layout and Traces for Boost Converter, TPS61099
4.3.8 Buck-Boost Converter

Figure 4-11. Layout and Traces for Buck-Boost Converter, TPS63036
4.3.9 Layouts for PPG Sensor Boards

Figure 4-12. Layout for SFH 7072 Board (Top Layer)

Figure 4-13. Layout for SFH 7072 Board (Bottom Layer)
Figure 4-14. Layout for OCS112 Board (Top Layer)

Figure 4-15. Layout for OCS112 Board (Bottom Layer)
4.3.10 Layout for ECG Sensor Board

Figure 4-16. Layout for ECG Board (Top Layer)
Connectors to solder sensor boards

Figure 4-17. Layout for ECG Board (Bottom Layer)
4.3.11 Layout Prints
To download the layer plots, see the design files at TIDA-01580.

4.4 Altium Project
To download the Altium project files, see the design files at TIDA-01580.

4.5 Gerber Files
To download the Gerber files, see the design files at TIDA-01580.

4.6 Assembly Drawings
To download the assembly drawings, see the design files at TIDA-01580.

5 Software Files
To download the software files, see the design files at TIDA-01580.

6 Related Documentation
1. Texas Instruments, TINA-TI Simulation Software
2. Texas Instruments, Miniaturized Pulse Oximeter Reference Design Getting Started Guide
3. Texas Instruments, How to Design Peripheral Oxygen Saturation (SpO2) and Optical Heart Rate Monitoring (OHRM) Systems Using the AFE4403, application report
4. Texas Instruments, Understanding Lead-Off Detection in ECG, application report
5. Texas Instruments, Measuring Bluetooth® Low Energy Power Consumption, application report

6.1 Trademarks
TI E2E™, SimpleLink™, TINA-TI™, and Code Composer Studio™ are trademarks of Texas Instruments. LabVIEW™ is a trademark of National Instruments. Arm® and Cortex® are registered trademarks of Arm Limited. Bluetooth® is a registered trademark of Bluetooth SIG. WI-FI® is a registered trademark of Wi-Fi Alliance. OSRAM® is a registered trademark of OSRAM Opto Semiconductors GmbH. WEBENCH® is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.
7 About the Authors

SANJAY PITHADIA is a systems designer at Texas Instruments, where he is responsible for developing subsystem design solutions for the Medical Healthcare and Fitness sector. Sanjay has been with TI since 2008 and has been involved in designing reference designs related to energy, smart grid, industrial motor drives, and medical imaging. Sanjay brings to this role his experience in analog design, mixed signal design, industrial interfaces, and power supplies. Sanjay earned his bachelor of technology in electronics engineering at the Veermata Jijabai Technological Institute, Mumbai.

KIRAN RAJMOHAN is a test engineer at Texas Instruments, where he is responsible for testing and characterization of high-performance analog IPs like ADC, DAC, PGA, PLL, and RF-signal chains in TI microcontrollers. Kiran has been with TI since 2015. Kiran earned his bachelor of technology in electronics and communication engineering at the College of Engineering, Trivandum, Kerala.

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (May 2019) to Revision B (October 2020)

<table>
<thead>
<tr>
<th>Changes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Added TPS63900.</td>
<td>1</td>
</tr>
<tr>
<td>• Added note.</td>
<td>14</td>
</tr>
<tr>
<td>• Deleted Table: Component Mounting for Two-Electrode and Three electrode Configurations (DC and AC Lead-Off Detection)</td>
<td>14</td>
</tr>
<tr>
<td>• Changed equations 16, 17, 18, 19, and 20.</td>
<td>26</td>
</tr>
<tr>
<td>• Added equations 21, 22, 23, 24 and 25.</td>
<td>26</td>
</tr>
<tr>
<td>• Changed table: Battery Life Calculations.</td>
<td>26</td>
</tr>
<tr>
<td>• Added table: Battery Life Calculations (TPS63900).</td>
<td>26</td>
</tr>
</tbody>
</table>

Changes from Revision * (April 2018) to Revision A (May 2019)

<table>
<thead>
<tr>
<th>Changes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Changed title from Wearable, Wireless, Multi-Parameter Patient Monitor Reference Design to Wireless ECG, SpO2, PTT and Heart Rate Monitor Reference Design for Medical and Consumer Wearables</td>
<td>1</td>
</tr>
<tr>
<td>• Deleted wireless patient monitor from Applications.</td>
<td>1</td>
</tr>
<tr>
<td>• Added medical sensor patches, smartwatch, and smart trackers to Applications</td>
<td>1</td>
</tr>
<tr>
<td>• Added information to ECG Measurement section.</td>
<td>14</td>
</tr>
<tr>
<td>• Added information to Three-Electrode Configuration section.</td>
<td>14</td>
</tr>
<tr>
<td>• Changed values in Component Mounting for Two-Electrode and Three-Electrode Configurations (DC and AC Lead-Off Detection) table</td>
<td>14</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated