1. Photo of the prototype (71.12mm x 62.23mm).
2. **Startup**

The input and output voltage behavior at full and no-load conditions is shown in the images below.

Ch.1: Input voltage (10V/div, 20ms/div, 20MHz BWL)
Ch.3: Output voltage (10V/div, 20MHz BWL)
Load = 11A (full load), Vin = 29V

Same condition as above but with zero load:
3. Shut down

The input and output voltage behavior during shut-down at full is shown below.

Ch.1: Input voltage (10V/div, 20ms/div, 20MHz BWL)
Ch.3: Output voltage (10V/div, 20MHz BWL)

Load = 11A, Vin = 29V

4. Output voltage regulation
5. Efficiency
The efficiency data, versus input and output voltage are shown in the tables and graphs below. The load (constant-current electronic load) has been varied from 0 to 11A. The input voltage has been set to 27V and 29V. Switching frequency setup:
 a) 100KHz: pin 1-2 of J5 left open
 b) 250KHz pin 1-2 of J5 shorted

```
Vin (V) | In(mA) | Pin (W) | Vout (V) | Iout(A) | Pout (W) | Efficiency (%)
-------|--------|--------|----------|---------|---------|----------------
29.01  | 32.1   | 0.9312 | 23.77    | 0       | 0       | 0%
29.02  | 76.0   | 2.206  | 23.77    | 0.0531  | 1.262   | 57.2%
29.01  | 117.0  | 3.394  | 23.77    | 0.1025  | 2.436   | 71.8%
29.00  | 198.9  | 5.77   | 23.77    | 0.2020  | 4.80    | 83.2%
29.00  | 450.5  | 13.06  | 23.77    | 0.5035  | 11.97   | 91.6%
29.02  | 871.6  | 25.29  | 23.77    | 1.0062  | 23.92   | 94.6%
29.01  | 1704   | 49.43  | 23.76    | 2.0098  | 47.75   | 96.6%
29.00  | 4192   | 121.57 | 23.76    | 5.0190  | 119.25  | 98.1%
29.00  | 9206   | 266.97 | 23.75    | 11.021  | 261.75  | 98.0%
```

```
27Vin, Fsw = 250 KHz
Vin (V) | In(mA) | Pin (W) | Vout (V) | Iout(A) | Pout (W) | Efficiency (%)
-------|--------|--------|----------|---------|---------|----------------
27.04  | 32.1   | 0.8680 | 23.76    | 0       | 0       | 0%
27.04  | 78.9   | 2.133  | 23.76    | 0.0532  | 1.264   | 59.2%
27.03  | 122.9  | 3.322  | 23.76    | 0.1027  | 2.440   | 73.5%
27.02  | 210.6  | 5.69   | 23.76    | 0.2021  | 4.80    | 84.4%
27.01  | 481.3  | 13.00  | 23.76    | 0.5035  | 11.96   | 92.0%
27.04  | 931.8  | 25.20  | 23.76    | 1.0060  | 23.90   | 94.9%
27.04  | 1820   | 49.21  | 23.76    | 2.0115  | 47.79   | 97.1%
27.02  | 4490   | 121.32 | 23.76    | 5.0200  | 119.28  | 98.3%
27.03  | 9861   | 266.54 | 23.76    | 11.034  | 262.17  | 98.4%
```
27Vin, Fsw = 100 KHz

<table>
<thead>
<tr>
<th>Vin (V)</th>
<th>Iin(mA)</th>
<th>Pin (W)</th>
<th>Vout (V)</th>
<th>Iout(A)</th>
<th>Pout (W)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.01</td>
<td>18.3</td>
<td>0.4943</td>
<td>23.76</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>27.00</td>
<td>65.5</td>
<td>1.769</td>
<td>23.76</td>
<td>0.0535</td>
<td>1.271</td>
<td>71.9%</td>
</tr>
<tr>
<td>27.00</td>
<td>109.4</td>
<td>2.954</td>
<td>23.76</td>
<td>0.1029</td>
<td>2.445</td>
<td>82.8%</td>
</tr>
<tr>
<td>27.00</td>
<td>197.9</td>
<td>5.34</td>
<td>23.76</td>
<td>0.2024</td>
<td>4.81</td>
<td>90.0%</td>
</tr>
<tr>
<td>27.02</td>
<td>466.7</td>
<td>12.61</td>
<td>23.76</td>
<td>0.5038</td>
<td>11.97</td>
<td>94.9%</td>
</tr>
<tr>
<td>27.01</td>
<td>914.6</td>
<td>24.70</td>
<td>23.76</td>
<td>1.0065</td>
<td>23.91</td>
<td>96.8%</td>
</tr>
</tbody>
</table>

More details about efficiency:

![Efficiency Graph](#)

Light load details:

![Light Load Efficiency Graph](#)
6. **Output Ripple Voltage**

The output ripple voltage has been measured by supplying the converter at 29V while running at full load.

Ch.3: Output ripple voltage (20mV/div, AC coupling, 2usec/div, 20MHz BWL)

The following shows the measurement taken at the same conditions but without any bandwidth limit.

Ch.3: Output ripple voltage (20mV/div, AC coupling, 2usec/div, no BWL)
7. **Switch Node**

The images below show the drain of Q3 taken at Vin = 29V and full load.

Ch.3: Q3 Drain-Source voltage (10V/div, 1us/div, no BWL)

![Waveform 1](image1)

Same waveform but at smaller time base.

Ch.3: Q3 Drain-Source voltage (10V/div, 10ns/div, no BWL)

![Waveform 2](image2)
8. Behavior in short circuit

The images below show the behavior of inductor current during short circuit condition at Vin = 29V.

Ch.4: L1 inductor current (10A/div, 20ms/div, 20MHz BWL)

Same measurement but with smaller time base:
Ch.4: L1 inductor current (10A/div, 200us/div, 20MHz BWL)
9. **Current limit protection**

The images below show the behavior of the converter during current limit protection (without latch). Vin has been set to 29V and the current increased until switch-off.

Ch.4: L1 inductor current (5A/div, 20ms/div, 20MHz BWL)

Load = 14.1A

Same measurement as above, but with smaller time base:

Ch.4: L1 inductor current (5A/div, 1ms/div, 20MHz BWL)

Load = 14.1A
10. Behavior during over voltage protection

The images below show the behavior of the converter during over-voltage protection (with latch), performed by decreasing R9 to a value equivalent to \(V_{out} = 30 \text{V} \). \(V_{in} \) has been set to 29V and the load set to 1A for the first screenshot and to 10A for the second one.

Ch.1: Output voltage (10V/div, 10ms/div, 20MHz BWL)
Ch.4: L1 inductor current (5A/div, 20MHz BWL)
Load = 1A

Ch.1: Output voltage (10V/div, 10ms/div, 20MHz BWL)
Ch.4: L1 inductor current (5A/div, 20MHz BWL)
Load = 10A
11. Load transient response

The converter has been loaded by switching the output current between 2A and 10A while supplied at 29V. The image below shows the output voltage deviation from nominal value.

Ch.3: Output voltage (100mV/div, 500us/div, AC coupling, 20MHz BWL)
Ch.4: Output current (5A/div, 20MHz BWL)

12. Feedback Loop Analysis

The image below shows the open loop gain and phase bode plot of the converter. The board has been supplied at Vin = 29V and the load was a constant-current electronic load, set to 11A.
Crossover frequency: 12.49 KHz
Phase margin: 63.16 deg.
Gain margin: 16.44 dB
13. Thermal Analysis

During the thermal analysis, the converter has been placed vertical on the bench in still air conditions, while supplied at 29V and fully loaded.
The thermal image has been taken after 30 minutes @ Ta = 25°C.

![Thermal Image](IR20170623_1067.is2)

<table>
<thead>
<tr>
<th>Name</th>
<th>Temperature</th>
<th>Emissivity</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>68.1°C</td>
<td>0.95</td>
<td>25.0°C</td>
</tr>
<tr>
<td>Q2</td>
<td>68.1°C</td>
<td>0.95</td>
<td>25.0°C</td>
</tr>
<tr>
<td>Q3</td>
<td>66.3°C</td>
<td>0.95</td>
<td>25.0°C</td>
</tr>
<tr>
<td>R7</td>
<td>63.8°C</td>
<td>0.95</td>
<td>25.0°C</td>
</tr>
<tr>
<td>L1</td>
<td>62.9°C</td>
<td>0.95</td>
<td>25.0°C</td>
</tr>
<tr>
<td>U1</td>
<td>64.8°C</td>
<td>0.95</td>
<td>25.0°C</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated