System Description

Figure 1 is a basic LED driver circuit where the LED is connected between the Vout pin and the FB pin of the converter. The LED current is determined by V_{FB} and R_S. So the higher the FB pin voltage, the higher the loss across the R_S. Therefore, if we can make V_{FB} both contributes by the output voltage and the LED current, then the conversion efficiency can be greatly improved.

![Figure 1. Basic LED driver circuit](image)

TPS61021A is a high efficiency synchronous boost converter. It isolates the output from the input side when shutdown. So it can help to reduce the battery loss when the LED is turned off.

![Figure 2. Block Diagram of the PMP15037](image)

(A) Analog Dimming

(B) PWM Dimming with MOSFET
The block diagram of reference design PMP15037 is shown in Figure 2. This reference design delivers a high efficiency LED driver circuit with dimming function with the boost converter TPS61021A. The PWM dimming method (Figure 1. (A)) can be used in the one cell or two cell AA battery input application. The analog dimming method (Figure 1. (B)) can be used in the one cell AA battery input application. The TI design PMP15037 is very simple, it realizes the dimming function by just adding several resistors and one MOSFET into the circuit. So this is a low cost and high efficiency solution for the LED driver application.

Table 1 gives out the performance specification of the TI design PMP15037 under PWM dimming. It has 0.5A output current capability at one cell AA battery input application and has 1A output current capability at two cell AA battery input applications.

Table 1 Performance Specification under the PWM Dimming

<table>
<thead>
<tr>
<th>Input Voltage Range(V)</th>
<th>Maximum LED Current(A)</th>
<th>Dimming Frequency(HZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One cell AA Battery</td>
<td>0.5 (R1=383k)</td>
<td>200-1k</td>
</tr>
<tr>
<td>Two cell AA Battery</td>
<td>1 (R1=523k)</td>
<td>200-1k</td>
</tr>
</tbody>
</table>

Table 2 gives out the performance specification of the TI design PMP15037 under analog dimming. It has 0.5A output current capability at one cell AA battery input application. It has no limit on the dimming frequency since the dimming depth is only determined by the analog voltage level V_{ANALOG} added to the FB pin. Two cell AA battery input is not supported under the analog dimming method.

Table 2 Performance Specification under the Analog Dimming

<table>
<thead>
<tr>
<th>Input Voltage Range(V)</th>
<th>Maximum LED Current(A)</th>
<th>Dimming Frequency(HZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One cell AA Battery</td>
<td>0.5</td>
<td>Not limited</td>
</tr>
</tbody>
</table>

Design Theory

Figure 2.1 shows the schematic of the TI design PMP15037 under analog dimming. R5 and C6 forms a RC filter, it converts the PWM signal PWM1 to the analog signal V_{ANALOG}. The voltage level of V_{ANALOG} changes in accordance with the duty cycle of PWM1. The high voltage level of PWM1 set at 3V, the low voltage level of PWM1 set at GND in this TI design.

When the duty cycle of PWM1 is 0%, V_{ANALOG} is 0 V. The LED is always on. The current flowing through the LED is a DC current, which is set at 0.5A in this TI design. The FB pin voltage is determined by the output voltage V_{OUT1} and the voltage V_{RS} across the sense resistor.

$$V_{\text{OUT1}} \frac{R_p}{R_1 + R_p} + V_{\text{RS}} \frac{R_p}{R_2 + R_p} = V_{\text{FB}}$$ \hspace{1cm} (1)

Where

- V_{OUT1} is the TPS61021’s output voltage when LED current is 0.5A, V_{OUT1}=3.2V.
- V_{FB} is the TPS61021’s feedback regulation voltage (V_{FB}=0.795V).
- \(R_{p1} = \frac{R2 \times R3}{R2 + R3} \), \(R_{p2} = \frac{R1 \times R3}{R1 + R3} \)
- \(V_{RS} = I_{LED} \times R_S = 0.5 \times 0.3 = 0.15V \)

When the duty cycle of PWM1 is 100%, \(V_{ANALOG} \) is 3V. The LED is off. The FB pin voltage is contributed by the output voltage \(V_{OUT2} \) and \(V_{ANALOG} \) at this time.

\[
V_{OUT2} \times \frac{R_{p1}}{R_{p1} + R1} + V_{ANALOG} \times \frac{R_{p3}}{R_{p3} + R3} = V_{FB}
\]
(2)

Where

- \(V_{OUT2} \) is the TPS61021's output voltage when LED off, \(V_{OUT2} = 2.7V \).
- \(R_{p3} = \frac{R1 \times R2}{R1 + R2} \)

From equation (1) and (2), equation (3) and equation (4) can be deduced:

\[
(V_{OUT1} - V_{OUT2}) \times \frac{R_{p1}}{R_{p1} + R1} + V_{RS} \times \frac{R_{p2}}{R_{p2} + R2} = V_{OUT2} \times \frac{R_{p1}}{R_{p1} + R1} + V_{ANALOG} \times \frac{R_{p3}}{R_{p3} + R3}
\]
(3)

\[
(V_{OUT1} - V_{OUT2}) \times \frac{R_{p1}}{R_{p1} + R1} + V_{RS} \times \frac{R_{p2}}{R_{p2} + R2} = V_{ANALOG} \times \frac{R_{p3}}{R_{p3} + R3}
\]
(4)

In equation (4), set \(R2 = 200k \), \(R3 = 2M \), thus \(R_{p1} = 181.8k \). So only \(R1 \) is an unknown number. We can get equation (5) and (6):

\[
(V_{OUT1} - V_{OUT2}) \times \frac{181.8}{181.8 + R1} + V_{RS} \times \frac{R1 \times 2000}{R1 + 2000} + \frac{R1 \times 200}{R1 + 200} = V_{ANALOG} \times \frac{R1 \times 2000}{R1 + 200} + \frac{R1 \times 200}{R1 + 200}
\]
(5)

\[
0.5 \times \frac{181.8}{181.8 + R1} + 0.15 \times \frac{R1 \times 2000}{R1 + 200} = 3 \times \frac{R1 \times 200}{R1 + 200}
\]
(6)

Solving equation (6), we can get \(R1 \approx 665k \) ohm.
Figure 2.1 Schematic of the PMP15037 (Analog Dimming)

Figure 2.2 Schematic of the PMP15037 (PWM Dimming)

Figure 2.2 shows the schematic of the TI design PMP15037 under PWM dimming. When MOSFET Q11 is fully on, the FB pin voltage is contributed by the output voltage VOUT and the voltage V_{RS} across the sense resistor.

$$V_{OUT} \times \frac{R12}{R11 + R12} + V_{RS} \times \frac{R11}{R11 + R12} = V_{FB}$$

(7)

Where
- V_{OUT} is the TPS61021’s output voltage when LED current is 1A, $V_{OUT}=3.4\text{V}$.
- $V_{RS} = I_{LED} \times R_{S11} = 1 \times 0.3 = 0.3\text{V}$

Set $R12=100\text{k ohm}$. Then $R11$ is the only unknown value in the above equation.

$$R11 = \frac{(V_{OUT} - V_{FB}) \times R12}{(V_{FB} - V_{RS})} \quad (8)$$

Solving equation (8), we can get $R11=523\text{k ohm}$ in this TI design.

Test Result

Figure 3 shows the LED current versus the PWM duty cycle under analog dimming. The LED current changes in accordance with the PWM duty cycle, which is the voltage level of V_{ANALOG} under analog dimming.

![Figure 3. LED Current VS. PWM Duty Cycle under Analog Dimming](image)

Figure 3. LED Current VS. PWM Duty Cycle under Analog Dimming
Figure 4. Conversion Efficiency under Analog Dimming (Io=0.5A)

Figure 4 shows the conversion efficiency under analog dimming when the sense resistor is 0.3 ohm. Reducing the sense resistor from 0.3 ohm to 0.15 ohm can increase the conversion efficiency by 2%.

Figure 5 shows the conversion efficiency under PWM dimming at different dimming frequency. When MOSFET Q11 is fully on, the LED current is 1A. So the average current flowing through the LED is 0.5A at 50% duty cycle and 0.95A at 95% duty cycle.

Figure 5. Conversion Efficiency under PWM Dimming
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include: without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated