PMP40312 Test Results

1. Efficiency

Test at USB type-C board end with dual channels

Vin=9V Vo=5V

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Vo1(V)</th>
<th>Vo2(V)</th>
<th>Iout1(A)</th>
<th>Iout2(A)</th>
<th>Pin(W)</th>
<th>Pout(W)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.999</td>
<td>0.641</td>
<td>4.968</td>
<td>4.960</td>
<td>0.499</td>
<td>0.502</td>
<td>5.768</td>
<td>4.969</td>
<td>86.14%</td>
</tr>
<tr>
<td>9.002</td>
<td>1.215</td>
<td>4.956</td>
<td>4.947</td>
<td>0.998</td>
<td>1.000</td>
<td>10.937</td>
<td>9.893</td>
<td>90.45%</td>
</tr>
<tr>
<td>9.030</td>
<td>3.574</td>
<td>4.882</td>
<td>4.867</td>
<td>2.999</td>
<td>3.006</td>
<td>32.273</td>
<td>29.271</td>
<td>90.70%</td>
</tr>
</tbody>
</table>

Vin=12V Vo=5V

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Vo1(V)</th>
<th>Vo2(V)</th>
<th>Iout1(A)</th>
<th>Iout2(A)</th>
<th>Pin(W)</th>
<th>Pout(W)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.012</td>
<td>0.506</td>
<td>4.970</td>
<td>4.950</td>
<td>0.499</td>
<td>0.505</td>
<td>6.078</td>
<td>4.980</td>
<td>81.93%</td>
</tr>
<tr>
<td>11.993</td>
<td>0.935</td>
<td>4.951</td>
<td>4.941</td>
<td>0.998</td>
<td>1.003</td>
<td>11.213</td>
<td>9.897</td>
<td>88.26%</td>
</tr>
<tr>
<td>12.034</td>
<td>1.373</td>
<td>4.933</td>
<td>4.923</td>
<td>1.499</td>
<td>1.504</td>
<td>16.523</td>
<td>14.799</td>
<td>89.57%</td>
</tr>
<tr>
<td>12.023</td>
<td>1.814</td>
<td>4.913</td>
<td>4.905</td>
<td>1.999</td>
<td>2.001</td>
<td>21.810</td>
<td>19.636</td>
<td>90.03%</td>
</tr>
<tr>
<td>12.016</td>
<td>2.710</td>
<td>4.877</td>
<td>4.866</td>
<td>2.999</td>
<td>3.005</td>
<td>32.563</td>
<td>29.248</td>
<td>89.82%</td>
</tr>
</tbody>
</table>

Vin=14.5V Vo=5V

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Vo1(V)</th>
<th>Vo2(V)</th>
<th>Iout1(A)</th>
<th>Iout2(A)</th>
<th>Pin(W)</th>
<th>Pout(W)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.500</td>
<td>0.431</td>
<td>4.967</td>
<td>4.952</td>
<td>0.499</td>
<td>0.506</td>
<td>6.250</td>
<td>4.984</td>
<td>79.75%</td>
</tr>
<tr>
<td>14.509</td>
<td>0.791</td>
<td>4.951</td>
<td>4.938</td>
<td>0.998</td>
<td>1.002</td>
<td>11.477</td>
<td>9.889</td>
<td>86.17%</td>
</tr>
<tr>
<td>14.520</td>
<td>1.522</td>
<td>4.915</td>
<td>4.902</td>
<td>1.999</td>
<td>2.002</td>
<td>22.099</td>
<td>19.639</td>
<td>88.87%</td>
</tr>
<tr>
<td>14.503</td>
<td>1.890</td>
<td>4.895</td>
<td>4.888</td>
<td>2.498</td>
<td>2.501</td>
<td>27.411</td>
<td>24.453</td>
<td>89.21%</td>
</tr>
<tr>
<td>14.458</td>
<td>2.274</td>
<td>4.876</td>
<td>4.874</td>
<td>2.999</td>
<td>3.004</td>
<td>32.877</td>
<td>29.265</td>
<td>89.01%</td>
</tr>
</tbody>
</table>

Vin=9V Vo=9V

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Vo1(V)</th>
<th>Vo2(V)</th>
<th>Iout1(A)</th>
<th>Iout2(A)</th>
<th>Pin(W)</th>
<th>Pout(W)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.002</td>
<td>1.096</td>
<td>8.990</td>
<td>8.965</td>
<td>0.499</td>
<td>0.502</td>
<td>9.866</td>
<td>8.986</td>
<td>91.08%</td>
</tr>
<tr>
<td>9.002</td>
<td>2.116</td>
<td>8.970</td>
<td>8.960</td>
<td>0.998</td>
<td>1.000</td>
<td>19.048</td>
<td>17.912</td>
<td>94.04%</td>
</tr>
<tr>
<td>8.996</td>
<td>4.221</td>
<td>8.950</td>
<td>8.926</td>
<td>1.999</td>
<td>2.000</td>
<td>37.972</td>
<td>35.743</td>
<td>94.13%</td>
</tr>
<tr>
<td>9.003</td>
<td>5.269</td>
<td>8.873</td>
<td>8.903</td>
<td>2.498</td>
<td>2.500</td>
<td>47.437</td>
<td>44.422</td>
<td>93.65%</td>
</tr>
</tbody>
</table>
Vin = 12V, Vo = 9V

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Vo1(V)</th>
<th>Vo2(V)</th>
<th>Iout1(A)</th>
<th>Iout2(A)</th>
<th>Pin(W)</th>
<th>Pout(W)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.003</td>
<td>0.843</td>
<td>8.967</td>
<td>8.960</td>
<td>0.499</td>
<td>0.506</td>
<td>10.119</td>
<td>9.008</td>
<td>89.03%</td>
</tr>
<tr>
<td>12.000</td>
<td>1.611</td>
<td>8.952</td>
<td>8.946</td>
<td>0.998</td>
<td>1.005</td>
<td>19.332</td>
<td>17.925</td>
<td>92.72%</td>
</tr>
<tr>
<td>11.991</td>
<td>3.176</td>
<td>8.920</td>
<td>8.912</td>
<td>1.999</td>
<td>2.004</td>
<td>38.083</td>
<td>35.691</td>
<td>93.72%</td>
</tr>
<tr>
<td>12.004</td>
<td>3.960</td>
<td>8.898</td>
<td>8.895</td>
<td>2.498</td>
<td>2.503</td>
<td>47.536</td>
<td>44.491</td>
<td>93.60%</td>
</tr>
<tr>
<td>12.052</td>
<td>4.746</td>
<td>8.870</td>
<td>8.867</td>
<td>2.999</td>
<td>3.003</td>
<td>57.199</td>
<td>53.229</td>
<td>93.06%</td>
</tr>
</tbody>
</table>

Vin = 14.5V, Vo = 9V

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Vo1(V)</th>
<th>Vo2(V)</th>
<th>Iout1(A)</th>
<th>Iout2(A)</th>
<th>Pin(W)</th>
<th>Pout(W)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.531</td>
<td>0.712</td>
<td>8.970</td>
<td>8.960</td>
<td>0.499</td>
<td>0.503</td>
<td>10.346</td>
<td>8.983</td>
<td>86.82%</td>
</tr>
<tr>
<td>14.496</td>
<td>1.355</td>
<td>8.950</td>
<td>8.950</td>
<td>0.998</td>
<td>1.002</td>
<td>19.642</td>
<td>17.900</td>
<td>91.13%</td>
</tr>
<tr>
<td>14.513</td>
<td>2.645</td>
<td>8.916</td>
<td>8.910</td>
<td>1.998</td>
<td>2.004</td>
<td>38.387</td>
<td>35.670</td>
<td>92.92%</td>
</tr>
<tr>
<td>14.495</td>
<td>3.298</td>
<td>8.884</td>
<td>8.880</td>
<td>2.498</td>
<td>2.503</td>
<td>47.805</td>
<td>44.419</td>
<td>92.92%</td>
</tr>
<tr>
<td>14.502</td>
<td>3.960</td>
<td>8.866</td>
<td>8.870</td>
<td>2.999</td>
<td>3.004</td>
<td>57.428</td>
<td>53.235</td>
<td>92.70%</td>
</tr>
</tbody>
</table>

Vin = 9V, Vo = 12V

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Vo1(V)</th>
<th>Vo2(V)</th>
<th>Iout1(A)</th>
<th>Iout2(A)</th>
<th>Pin(W)</th>
<th>Pout(W)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.000</td>
<td>1.486</td>
<td>12.043</td>
<td>12.117</td>
<td>0.498</td>
<td>0.498</td>
<td>13.374</td>
<td>12.029</td>
<td>89.95%</td>
</tr>
<tr>
<td>9.002</td>
<td>2.870</td>
<td>12.028</td>
<td>12.094</td>
<td>0.993</td>
<td>0.999</td>
<td>25.836</td>
<td>24.023</td>
<td>92.98%</td>
</tr>
<tr>
<td>9.000</td>
<td>5.754</td>
<td>11.985</td>
<td>12.055</td>
<td>1.996</td>
<td>2.000</td>
<td>51.786</td>
<td>48.031</td>
<td>92.75%</td>
</tr>
<tr>
<td>8.962</td>
<td>7.270</td>
<td>11.960</td>
<td>12.023</td>
<td>2.490</td>
<td>2.501</td>
<td>65.154</td>
<td>59.844</td>
<td>91.85%</td>
</tr>
<tr>
<td>9.000</td>
<td>7.880</td>
<td>11.933</td>
<td>12.008</td>
<td>2.698</td>
<td>2.702</td>
<td>70.920</td>
<td>64.636</td>
<td>91.14%</td>
</tr>
</tbody>
</table>

Vin = 12V, Vo = 12V

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Vo1(V)</th>
<th>Vo2(V)</th>
<th>Iout1(A)</th>
<th>Iout2(A)</th>
<th>Pin(W)</th>
<th>Pout(W)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.952</td>
<td>1.110</td>
<td>12.036</td>
<td>12.109</td>
<td>0.498</td>
<td>0.498</td>
<td>13.267</td>
<td>12.022</td>
<td>90.62%</td>
</tr>
<tr>
<td>12.009</td>
<td>2.127</td>
<td>12.019</td>
<td>12.086</td>
<td>0.992</td>
<td>0.999</td>
<td>25.543</td>
<td>23.994</td>
<td>93.94%</td>
</tr>
<tr>
<td>11.964</td>
<td>3.192</td>
<td>12.000</td>
<td>12.070</td>
<td>1.501</td>
<td>1.499</td>
<td>38.189</td>
<td>36.109</td>
<td>94.55%</td>
</tr>
<tr>
<td>11.998</td>
<td>4.221</td>
<td>11.980</td>
<td>12.030</td>
<td>1.995</td>
<td>2.000</td>
<td>50.644</td>
<td>47.959</td>
<td>94.70%</td>
</tr>
<tr>
<td>12.002</td>
<td>5.267</td>
<td>11.960</td>
<td>11.945</td>
<td>2.490</td>
<td>2.501</td>
<td>63.215</td>
<td>59.649</td>
<td>94.36%</td>
</tr>
<tr>
<td>11.996</td>
<td>5.710</td>
<td>11.938</td>
<td>11.898</td>
<td>2.698</td>
<td>2.701</td>
<td>68.497</td>
<td>64.350</td>
<td>93.95%</td>
</tr>
</tbody>
</table>

Vin = 14.5V, Vo = 12V

<table>
<thead>
<tr>
<th>Vin(V)</th>
<th>Iin(A)</th>
<th>Vo1(V)</th>
<th>Vo2(V)</th>
<th>Iout1(A)</th>
<th>Iout2(A)</th>
<th>Pin(W)</th>
<th>Pout(W)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.480</td>
<td>0.929</td>
<td>12.013</td>
<td>12.078</td>
<td>0.497</td>
<td>0.498</td>
<td>13.449</td>
<td>11.984</td>
<td>89.11%</td>
</tr>
<tr>
<td>14.494</td>
<td>1.780</td>
<td>11.996</td>
<td>12.070</td>
<td>0.992</td>
<td>0.999</td>
<td>25.799</td>
<td>23.957</td>
<td>92.86%</td>
</tr>
<tr>
<td>14.496</td>
<td>2.647</td>
<td>11.980</td>
<td>12.055</td>
<td>1.501</td>
<td>1.499</td>
<td>38.371</td>
<td>36.051</td>
<td>93.95%</td>
</tr>
<tr>
<td>Vin=9V Vo=15V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Vin(V)</td>
<td>Iin(A)</td>
<td>Vo1(V)</td>
<td>Vo2(V)</td>
<td>Iout1(A)</td>
<td>Iout2(A)</td>
<td>Pin(W)</td>
<td>Pout(W)</td>
<td>Efficiency</td>
</tr>
<tr>
<td>8.995</td>
<td>1.522</td>
<td>15.010</td>
<td>15.010</td>
<td>0.399</td>
<td>0.397</td>
<td>13.690</td>
<td>11.948</td>
<td>87.27%</td>
</tr>
<tr>
<td>9.025</td>
<td>3.295</td>
<td>14.991</td>
<td>14.999</td>
<td>0.899</td>
<td>0.911</td>
<td>29.737</td>
<td>27.145</td>
<td>91.28%</td>
</tr>
<tr>
<td>9.022</td>
<td>5.800</td>
<td>14.955</td>
<td>14.958</td>
<td>1.598</td>
<td>1.602</td>
<td>52.328</td>
<td>47.861</td>
<td>91.46%</td>
</tr>
<tr>
<td>8.905</td>
<td>7.368</td>
<td>14.941</td>
<td>14.953</td>
<td>1.989</td>
<td>2.000</td>
<td>65.612</td>
<td>59.624</td>
<td>90.87%</td>
</tr>
<tr>
<td>8.993</td>
<td>7.960</td>
<td>14.950</td>
<td>15.023</td>
<td>2.158</td>
<td>2.171</td>
<td>71.584</td>
<td>64.882</td>
<td>90.64%</td>
</tr>
</tbody>
</table>

Vin=12V Vo=15V								
Vin(V)	Iin(A)	Vo1(V)	Vo2(V)	Iout1(A)	Iout2(A)	Pin(W)	Pout(W)	Efficiency
11.974	1.125	15.013	15.010	0.399	0.400	13.471	11.994	89.04%
12.006	2.166	14.999	14.998	0.799	0.802	26.005	24.013	93.34%
12.095	3.188	14.880	14.980	1.199	1.213	38.559	36.132	93.71%
12.015	4.243	14.963	14.960	1.598	1.600	50.980	47.847	93.85%
12.024	5.305	14.944	14.945	1.998	2.000	63.787	59.748	93.67%
12.002	5.784	14.940	15.016	2.159	2.171	69.420	64.857	93.43%

Vin=14.5V Vo=15V								
Vin(V)	Iin(A)	Vo1(V)	Vo2(V)	Iout1(A)	Iout2(A)	Pin(W)	Pout(W)	Efficiency
14.497	0.925	15.003	15.008	0.399	0.402	13.410	12.019	89.63%
14.990	1.722	14.783	14.999	0.799	0.805	25.813	24.046	93.15%
14.500	2.630	14.969	14.979	1.199	1.212	38.135	36.102	94.67%
14.492	3.481	14.951	14.949	1.598	1.602	50.447	47.840	94.83%
14.508	4.349	14.933	14.933	1.998	2.004	63.095	59.762	94.72%
14.999	4.570	14.933	14.984	2.158	2.171	68.545	64.756	94.47%
2. Ripple and noise

- **Vin=9V, Vo=5V, Io=0A**
 - VBUS ripple

- **Vin=12V, Vo=5V, Io=0A**
 - VBUS ripple

- **Vin=12V, Vo=5V, Io=3A**
 - VBUS ripple

![Graph showing 15V output efficiency](image)

- **Vin=9V, Vo=5V, Io=3A**
 - VBUS ripple

- **Vin=12V, Vo=5V, Io=3A**
 - VBUS ripple
Vin=14.5V, Vo=5V, Io=0A
VBUS ripple

Vin=14.5V, Vo=5V, Io=3A
VBUS ripple

Vin=9V, Vo=9V, Io=0A
VBUS ripple

Vin=9V, Vo=9V, Io=3A
VBUS ripple

Vin=12V, Vo=9V, Io=0A
VBUS ripple

Vin=12V, Vo=9V, Io=3A
VBUS ripple
Vin=14.5V, Vo=12V, Io=0A
VBUS ripple

Vin=9V, Vo=15V, Io=0A
VBUS ripple

Vin=12V, Vo=15V, Io=0A
VBUS ripple

Vin=14.5V, Vo=12V, Io=2.7A
VBUS ripple

Vin=9V, Vo=15V Io=2.17A
VBUS ripple

Vin=12V, Vo=15V, Io=2.17A
VBUS ripple
3. Port attach and Detach
Vo=9V, attach
CH1: DVDD; CH3: VBUS

Vo=15V, attach
CH1: DVDD; CH3: VBUS

Vo=9V, detach
CH1: DVDD; CH3: VBUS

Vo=15V, detach
CH1: DVDD; CH3: VBUS

4. Load Transient
Vo=5V, Vin=9V
From 0A to 0.75A, Slew Rate: 150mA/μs
CH1: VBUS (AC coupled)
CH2: Io

Vo=5V, Vin=9V
From 0.75A to 0A, Slew Rate: 150mA/μs
CH1: VBUS (AC coupled)
CH2: Io

Vo=5V, Vin=9V
From 0.75A to 1.5A, Slew Rate: 150mA/μs
CH1: VBUS (AC coupled)
CH2: Io

Vo=5V, Vin=9V
From 1.5A to 2.25A, Slew Rate: 150mA/μs
CH1: VBUS (AC coupled)
CH2: Io

Vo=5V, Vin=9V
From 2.25A to 1.5A, Slew Rate: 150mA/μs
CH1: VBUS (AC coupled)
CH2: Io

Vo=5V, Vin=9V
From 2.25A to 3A, Slew Rate: 150mA/μs
CH1: VBUS (AC coupled)
CH2: Io

Vo=5V, Vin=9V
From 3A to 2.25A, Slew Rate: 150mA/μs
CH1: VBUS (AC coupled)
CH2: Io
Vo=5V, Vin=12V
From 0A to 0.75A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io
Vo=5V, Vin=12V
From 0.75A to 1.5A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io
Vo=5V, Vin=12V
From 1.5A to 2.25A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io
Vo=5V, Vin=12V
From 2.25A to 1.5A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io
Lit. Number

14

Vo=5V, Vin=14.5V
From 1.5A to 2.25A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: lo

Vo=5V, Vin=14.5V
From 2.25A to 1.5A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: lo

Vo=5V, Vin=14.5V
From 2.25A to 3A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: lo

Vo=5V, Vin=9V
From 0A to 0.75A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: lo

Vo=9V, Vin=9V
From 0.75A to 0A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: lo
Table of Measurements

<table>
<thead>
<tr>
<th>Condition</th>
<th>Voltage Range</th>
<th>Current Range</th>
<th>Slew Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1: VBUS (AC coupled)</td>
<td>CH2: Io</td>
<td>CH1: VBUS (AC coupled)</td>
<td>CH2: Io</td>
</tr>
<tr>
<td>From 0.75A to 1.5A</td>
<td>9V, 9V</td>
<td>1.5A to 0.75A</td>
<td>150mA/μs</td>
</tr>
<tr>
<td>From 1.5A to 0.75A</td>
<td>9V, 9V</td>
<td>2.25A to 1.5A</td>
<td>150mA/μs</td>
</tr>
<tr>
<td>From 2.25A to 3A</td>
<td>9V, 9V</td>
<td>3A to 2.25A</td>
<td>150mA/μs</td>
</tr>
<tr>
<td>From 3A to 2.25A</td>
<td>9V, 9V</td>
<td>2.25A to 3A</td>
<td>150mA/μs</td>
</tr>
</tbody>
</table>
Vo=9V, Vin=12V
From 0A to 0.75A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io
Vo=9V, Vin=12V
From 0.75A to 0A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io
Vo=9V, Vin=12V
From 0.75A to 1.5A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io
Vo=9V, Vin=12V
From 1.5A to 2.25A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io
Vo=9V, Vin=12V
From 2.25A to 1.5A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io
Vo=9V, Vin=12V
From 2.25 to 3A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io

Vo=9V, Vin=14.5V
From 0A to 0.75A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io
Vo=9V, Vin=14.5V
From 1.5A to 2.25A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io

Vo=12V, Vin=9V
From 0A to 0.75A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io

Vo=12V, Vin=9V
From 0.75A to 1.5A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io

Vo=12V, Vin=9V
From 0.75A to 1.5A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io
Vo=12V, Vin=9V
From 1.5A to 2.25A, Slew Rate: 150mA/µs
CH1: VBUS(AC coupled)
CH2: Io

Vo=12V, Vin=9V
From 2.25A to 1.5A, Slew Rate: 150mA/µs
CH1: VBUS(AC coupled)
CH2: Io

Vo=12V, Vin=9V
From 2.7A to 2.25A, Slew Rate: 150mA/µs
CH1: VBUS(AC coupled)
CH2: Io

Vo=12V, Vin=12V
From 0A to 0.75A, Slew Rate: 150mA/µs
CH1: VBUS(AC coupled)
CH2: Io

Vo=12V, Vin=12V
From 0.75A to 0A, Slew Rate: 150mA/µs
CH1: VBUS(AC coupled)
CH2: Io
Vo=12V, Vin=12V
From 0.75A to 1.5A, Slew Rate: 150mA/us
CH1: VBUS(AC coupled)
CH2: Io

Vo=12V, Vin=12V
From 1.5A to 0.75A, Slew Rate: 150mA/us
CH1: VBUS(AC coupled)
CH2: Io

Vo=12V, Vin=12V
From 1.5A to 2.25A, Slew Rate: 150mA/us
CH1: VBUS(AC coupled)
CH2: Io

Vo=12V, Vin=12V
From 2.25A to 1.5A, Slew Rate: 150mA/us
CH1: VBUS(AC coupled)
CH2: Io

Vo=12V, Vin=12V
From 2.25 to 2.7A, Slew Rate: 150mA/us
CH1: VBUS(AC coupled)
CH2: Io

Vo=12V, Vin=12V
From 2.7A to 2.25A, Slew Rate: 150mA/us
CH1: VBUS(AC coupled)
CH2: Io
Vo=12V, Vin=14.5V
From 0A to 0.75A, Slew Rate: 150mA/µs
CH1: VBUS(AC coupled)
CH2: Io

Vo=12V, Vin=14.5V
From 0.75A to 0A, Slew Rate: 150mA/µs
CH1: VBUS(AC coupled)
CH2: Io

Vo=12V, Vin=14.5V
From 0.75A to 1.5A, Slew Rate: 150mA/µs
CH1: VBUS(AC coupled)
CH2: Io

Vo=12V, Vin=14.5V
From 1.5A to 2.25A, Slew Rate: 150mA/µs
CH1: VBUS(AC coupled)
CH2: Io

Vo=12V, Vin=14.5V
From 2.25A to 1.5A, Slew Rate: 150mA/µs
CH1: VBUS(AC coupled)
CH2: Io
Vo=12V, Vin=14.5V
From 2.25 to 2.7A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io

Vo=9V, Vin=14.5V
From 2.25 to 3A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io

Vo=15V, Vin=9V
From 0A to 0.5A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io
From 0.5A to 1A, Slew Rate: 150mA/μs
CH1: VBUS (AC coupled)
CH2: Io

From 1A to 0.5A, Slew Rate: 150mA/μs
CH1: VBUS (AC coupled)
CH2: Io

From 1.5A to 1A, Slew Rate: 150mA/μs
CH1: VBUS (AC coupled)
CH2: Io

From 2A to 1.5A, Slew Rate: 150mA/μs
CH1: VBUS (AC coupled)
CH2: Io
Vo=15V, Vin=12V
From 0A to 0.5A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io

Vo=15V, Vin=12V
From 0.5A to 1A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io

Vo=15V, Vin=12V
From 1A to 1.5A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io

Vo=15V, Vin=12V
From 1.5A to 2A, Slew Rate: 150mA/us
CH1: VBUS (AC coupled)
CH2: Io
Lit. Number 25

- **Vo=15V, Vin=12V**
 - From 1.5A to 2A, Slew Rate: 150mA/µs
 - CH1: VBUS (AC coupled)
 - CH2: io

- **Vo=15V, Vin=14.5V**
 - From 0A to 0.5A, Slew Rate: 150mA/µs
 - CH1: VBUS (AC coupled)
 - CH2: io
 - From 0.5A to 1A, Slew Rate: 150mA/µs
 - CH1: VBUS (AC coupled)
 - CH2: io
 - From 1A to 0.5A, Slew Rate: 150mA/µs
 - CH1: VBUS (AC coupled)
 - CH2: io
5. Thermal

Vin=12V, Vo1=Vo2=15V, Io1=Io2=2.17A
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated