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Design Guide: TIDA-01605
Automotive Dual-Channel, SiC MOSFET Gate Driver
Reference Design With Two-Level Turnoff Protection

Description
This reference design is an automotive qualified,
isolated gate-driver solution for driving Silicon Carbide
(SiC) MOSFETs in half-bridge configuration. The
design includes two push-pull bias supplies for the
dual-channel isolated gate drivers, respectively, and
each supply provides 15 V and –4-V output voltage
and 1-W output power. The gate driver is capable of
delivering 4-A source and 6-A sink peak current. The
driver implements reinforced isolation and can
withstand 8-kV Peak and 5.7-kV RMS isolation voltage
and > 100-V/ns common mode transient immunity
(CMTI). The reference design contains the two-level
turnoff circuit, which protects the MOSFET from
voltage overshoot during a short-circuit scenario. The
DESAT detection threshold and the delay time for
second stage turnoff are configurable. The ISO7721-
Q1 digital isolator is implemented for interfacing the
signals of fault and reset. All was designed on a two-
layer PCB board with a compact form factor of 40 mm
× 40 mm.

Resources

TIDA-01605 Design Folder
UCC21530-Q1 Product Folder
SN6501-Q1 Product Folder
ISO7721-Q1 Product Folder
TPS7B6950-Q1 Product Folder
LMV762Q-Q1 Product Folder

ASK Our E2E™ Experts

Features
• Compact, Dual-Channel, Gate-Driver Solution For

Driving SiC MOSFETs in Half Bridge Configuration
• 4-A Source and 6-V Sink Peak Current Driving

Capability Suitable For Driving SiC MOSFET, Si
MOSFET, and IGBT With Switching Frequency Up
To 500 kHz

• Built-In, Compact, High-Efficiency, Isolated-Bias
Supply, With 15 V and –4-V Outputs

• Flexible and Configurable As Dual-Channel In Half-
Bridge, In Parallel, Dual High-Side and Dual Low-
Side

• Discrete, Two-Level Turnoff For Short-Circuit
Protection, With Adjustable Current Limit and Delay
(Blanking) Time

• Provides High CMTI of > 100 V/ns and Reinforced
Isolation of 8-kV Peak and 5.7-kV RMS Voltages

Applications
• Inverter & motor control
• On-board (OBC) & wireless charger
• Gasoline & diesel engine platform
• DC/DC converter
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http://www.ti.com/tool/TIDA-01605
http://www.ti.com/product/UCC21530-Q1
http://www.ti.com/product/SN6501-Q1
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http://www.ti.com/product/TPS7B6950-Q1
http://www.ti.com/product/LMV762Q-Q1
http://e2e.ti.com
http://e2e.ti.com/support/applications/ti_designs/
http://www.ti.com/solution/hevev_inverter_motor_control
http://www.ti.com/solution/hevev_onboard_obc_wireless_charger
http://www.ti.com/solution/engine_management_ecu_gasoline_diesel_engine_platform
http://www.ti.com/solution/power_generation_storage
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An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

1 System Description
SiC MOSFETs are gaining popularity in many high-power applications due to their significant advantages
of superior switching performance, higher dielectric-breakdown field strength, and higher ambient
operating temperatures. The SiC MOSFET has been widely used in high-voltage, high-frequency, power
electronic converters in the HEV/EV. Examples are high-voltage PFC converters, LLC, or phase-shifted
full-bridge DC/DC converters, bidirectional DC/DC converters, high-voltage Flyback converters, and so on.
Challenges are raised in the design of appropriate gate drivers. The characteristics of SiC MOSFETs
require consideration of a gate-driver circuit that optimizes the switching performance of the SiC device.
• Gate voltage must be kept as high as possible, within the specified range, to operate the devices at a

lower Rdson, so that the conduction losses can be minimized.
• The gate driver must have a low-propagation delay time and also a fast turn-on and turnoff slew rate.

Low turn-on loss (Eon) and turnoff loss (Eoff) allow the device to operate at high-switching frequencies.
SiC devices can be turned-on and turned-off within tens of nanoseconds, which largely depends on
internal and external gate resistance.

• SiC MOSFETs are (normally off) voltage-controlled devices. The off and on gate voltages are normally
in the range of 0 V and 20 V, respectively. A negative drive in the order of –5 V is preferred at the time
of turning off the device, to ensure faster turnoff and to avoid faulty turn-on due to noise or ringing at
the gate.

Considering the system requirements, many require reinforced isolation for safety reasons. A half-bridge
configuration built in a compact board is usually preferred, because of ease of layout design and reduced
parasitics. This reference design features the following benefits:
• Compact, dual-channel, gate-driver solution for driving SiC MOSFETs in half-bridge configuration
• 4-A source and 6-V sink peak-current driving capability suitable for driving SiC MOSFET, Si MOSFET,

and IGBT, with switching frequency up to 500 kHz
• Built-in, compact, high-efficiency, isolated-bias supply, with 15 V and –4 V outputs
• Flexible and configurable as dual channel in half bridge, in parallel, dual high-side and dual low-side
• Gate-driver dead time control with shoot-through protection ensures safe operation
• Low-propagation delay ensures easy control and allows increased switching frequency
• Discrete, two-level turnoff for short-circuit protection, with adjustable current limit and delay (blanking)

time
• Provide high CMTI of > 100 kV/µV and reinforced isolation of 8-kV peak and 5.7-kV RMS voltages

http://www.ti.com
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1.1 Key System Specifications
Table 1 shows the key system specifications of this TI design. All functions are included on this board.

Table 1. Key System Specifications

PARAMETER SPECIFICATIONS

Gate driver

Input voltage 3 V to 18 V
Output PWM voltage 15 V and –4 V

Drive currents 6-A peak sink and 4-A peak source

Isolation
5.7 kVrms

> 12.8 kV surge immunity
CMTI 100kV /µs

Bias supply
Input voltage 5 V ±5%

Output voltage 15 V and –4 V

Protection
Configurable DESAT detection with two-level turnoff

Configurable second turnoff level
UVLO to disable the gate driver

Interface
Input signals PWM, reset

Output signals Fault

http://www.ti.com
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2 System Overview

2.1 Block Diagram
Figure 1 shows the system block diagram. The design consists of four main functional elements:
• The isolated bias supply has integrated MOSFET switches and is based on a push-pull topology. The

isolated bias supply drives the center tap transformers with approximately 50% duty cycle to transfer
the power from the primary to the secondary.

• The dual-channel gate driver with reinforced isolation based on the UCC21530-Q1 device. The gate
driver has the driving capability of 4-A source and 6-A sink peak current. The input side is isolated from
the two output drivers by a 5.7-kV RMS reinforced isolation barrier, with a minimum of 100-V/ns CMTI.

• The short-circuit protection circuits include DESAT detection, two-level turnoff, and reset logic.
• The digital isolator is for signal isolation between the low-voltage side and high-voltage, gate-driver

side. The digital isolator transfers the signals of fault and reset.

Figure 1. TIDA-01605 Block Diagram

http://www.ti.com
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2.2 Highlighted Products
The TIDA-01605 reference design features the following Texas Instruments devices.

2.2.1 UCC21530-Q1
The UCC21530-Q1 device is an automotive-grade, isolated, dual-channel, gate driver with 4-A source and
6-A sink peak current capability. The device is designed to drive power MOSFETs, IGBTs, and SiC
MOSFETs. The input side is isolated from the two output drivers by a 5.7-kV RMS, 8-kV peak, reinforced,
isolated barrier, with a minimum of 100-V/ns CMTI. The internal, functional isolation between the two
secondary side drivers allows for a working voltage of up to 1.85-kV DC. The gate driver is also certified
according to the various isolation standards of VDE, CSA, UL, and CQC. Each driver accepts VDD supply
voltages up to 25 V and a wide input VCCI range from 3 V to 18 V. The UCC21530-Q1 device has
programmable dead time (DT) control. A disable pin shuts down both outputs simultaneously when it is set
high. The supply voltage on the secondary side has the under voltage lock-out (UVLO) protection of 12 V,
which is important for driving SiC MOSFETs.

2.2.2 SN6501-Q1
The SN6501-Q1 device is a monolithic, push-pull, transformer driver, specifically designed for small factor,
isolated power supplies. The device drives a low-profile, center-tapped transformer from a 3.3 V or 5-V DC
power supply. The SN6501-Q1 device consists of an oscillator, followed by a gate drive circuit that
provides the complementary output signals, with a 50% duty cycle to drive the ground-referenced N-
channel power switches. The device includes two, 500-mA, peak MOSFET switches at 5-V input voltage,
to ensure proper start-up under heavy loads.

2.2.3 ISO7721-Q1
The ISO7721-Q1 device is a dual-channel, digital isolator with 5-kV RMS isolation voltage. The device
implements reinforced isolation, which is certified according to VDE, CSA, UL, and CQC standards. The
ISO7221-Q1 device has an ON-OFF keying modulation scheme, to transmit the digital data across a
silicon-dioxide-based isolation barrier. The device has a low-propagation delay of 11-ns typical, and a high
CMTI of 100 V/ns. The transmitter sends a high-frequency carrier across the barrier to represent one
digital state and sends no signal to represent the other digital state.

2.2.4 LMV762Q-Q1
The LMV762Q-Q1 device is a precision comparator intended for applications requiring low noise and a
low-input offset voltage. The device includes dual comparators in one package and features a CMOS
input and push-pull output stage. The LMV762Q-Q1 device is designed to meet the demands of small
size, low-power, and high-performance applications. The input offset voltage has a typical value of 200 µV
at room temperature and a 1-mV limit overtemperature.

2.2.5 TPS7B6950-Q1
The TPS7B6950-Q1 is a low dropout linear regulator designed for up to 40V operations. It has typical 15
µA quiescent current at light load. The device is suitable for standby micro control-unit systems especially
in automotive applications. TPS7B6950-Q1 features a thermal shutdown and an integrated short-circuit
and overcurrent protection. It has an output current capability of 150 mA and offers fixed output voltage
options.

2.2.6 TL431A-Q1
The TL431-Q1 device is a three-pin, adjustable, shunt regulator with specified thermal stability over
applicable automotive temperature ranges. The TL431-Q1 device can be used as a single-voltage
reference, error amplifier, voltage clamp, or comparator with integrated reference. The TL431-Q1 device
consists of an internal reference and amplifier that outputs a sink current based on the difference between
the reference pin and the virtual internal pin. The sink current is produced by the internal Darlington pair,
which allows this device to sink a maximum current of 100 mA.
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2.3 System Design Theory

2.3.1 Design of Push-Pull Power Supply
This section describes the steps to designing the push-pull bias supply. The push-pull converter based on
the SN6501-Q1 device was selected to generate the bias power for the SiC isolated gate driver. The
device has integrated MOSFET switches and drives the center-tap transformers, with approximately 50%
duty cycle to transfer the power from the primary to the secondary[1].

One highlight of this part is that the positive temperature coefficient of these switches has a self-correcting
effect on the V-t imbalance. During a slightly longer on time, the prolonged current flow through a
MOSFET gradually heats the MOSFET, which leads to an increase in Rds(on). The higher resistance then
causes the drain-to-source voltage to increase. Therefore, the voltage across the transformer winding is
gradually reduced, hence the V-t balance is restored.

Figure 2 shows the design circuit. It consists of several discrete components: push-pull driver, transformer,
rectifier diodes, as well as input and output capacitors.

Figure 2. Isolated Push-Pull Power Supply Circuit

2.3.1.1 Transformer Design
The input peak current (Iin_peak) was calculated using Equation 1. The factor 0.97 (η) accounts for typical
transformer power-transfer efficiency.

Where:
• Pout_max is the maximum output power.
• Vin_min is the minimum input voltage. (1)

The SN6501-Q1 device switches the internal dual MOSFETs with approximately 50% duty cycle each.
Therefore, the AC current flowing through the transformer primary (Ipri) can be calculated from Equation 2.

(2)

The transformer turns ratio (Nps) is calculated from Equation 3.

Where:
• Vsec is the voltage across the secondary winding.
• Vf is the forward voltage of the diode.
• Vpri is the voltage across the primary winding. (3)
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The V-t product of the transformer must be greater than Vtmin calculated using Equation 4.

Where:
• VIN_max is the maximum input voltage.
• Fmin is the minimum switching frequency. (4)

2.3.1.2 Rectifier Diode Selection
The rectifier diode at the secondary side is selected based on two criteria: low forward-voltage drop and
short reverse-recovery time.

The forward current flowing through the diode is calculated using Equation 5.

(5)

The reverse blocking voltage of the diode (Vb) is calculated using Equation 6.

(6)

Considering a safety margin on top, a 70 V, 250 mA diode is chosen.

2.3.1.3 Capacitor Selection
Two ceramic capacitors must be placed at the input of the SN6501-Q1 device. A ceramic bypass
capacitor of 100 nF and a ripple filtering capacitor of 10 µF are connected in parallel and placed as close
as possible to the Vcc pin.

The output capacitor is required for filtering the output ripple. The output ripple specification is calculated
using Equation 7.

(7)

The required peak current which is delivered to the gate driver is 4 A according to the UCC21530-Q1 data
sheet. The required capacitance is calculated using Equation 8.

(8)

Considering it could also be used to drive SiC MOSFETs with a higher total gate charger, a total of three
4.7-µF ceramic capacitors are connected in parallel between the supply output and gate driver.

2.3.1.4 Generation of Negative Supply
The power-supply output is separated into the positive rail of 15 V and the negative rail of –4 V. The
design implements the TL431-Q1 device, which reacts at a shunt regulator. Figure 3 shows the schematic.

Figure 3. Generation of Negative Rail
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To program the cathode voltage to a regulated voltage, a resistive bridge is shunted between the cathode
and anode pins, with the mid-point tied to the reference pin. The cathode voltage is calculated using
Equation 9.

(9)

For Equation 9 to be valid, the TL431-Q1 device must be fully biased, so that it has enough open loop
gain to mitigate any gain error. The cathode current is set using Equation 10.

(10)

2.3.2 Design of Isolated Gate Driver
The isolated gate driver consists of a dual channel that can be configured in either two low-side gate
drivers or one half-bridge gate driver. The gate driver contains 5.7-kVrms isolation capability between the
primary and secondary side of the gate driver[2] . Figure 4 shows the schematic of the gate driver and the
associated components implemented for half-bridge configuration.

Figure 4. Isolated Gate Driver Circuit

2.3.2.1 Gate Driver Power Losses and Temperature Rise
The power losses of the UCC21530-Q1 device determine the thermal safety-related limits. The power
losses consist of the static power loss PGDQ, which includes quiescent power loss on the driver as well as
driver self-power consumption when operating with a certain switching frequency. Values of the static
current flowing into the VCCI pin (IVCCI), VDDA pin (IDDA), and VDDB pin (IDDB) are extracted from the data sheet.
In this design VVCCI = 5 V and VVDD = 19 V. Therefore the power losses are calculated using Equation 11.

(11)

From the data sheet of the C3M0065100K SiC MOSFET, the total gate charge is QGtot = 35 nC. The
switching frequency is assumed to be 200 kHz. The switching losses from the gate driver are calculated
using Equation 12.

(12)

Therefore, the total losses, Ptot, are summed to be 408 mW. The temperature rise of the UCC21530-Q1
device is calculated using Equation 13.

(13)
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2.3.2.2 Short Circuit Detection
The short-circuit behavior of the SiC MOSFET is similar to that of the conventional Si IGBT. Therefore, the
de-sat protection circuit is similar. The main difference is that response time of the protection circuit is
highly critical for the short-circuit protection of SiC MOSFETs due to the limited short circuit withstand
time.

Figure 5 shows the schematic for the SiC MOSFET, short-circuit detection. The high-voltage diode, D6,
interacts with the drain pin of the MOSFET where pulsed high voltage appears. The detection circuit
functions only during the on-state of the SiC MOSFET, when the gate signal is 15 V.

Figure 5. Short-Circuit Detection Circuit

The process of short-circuit protection mainly consists of three sub-periods: blanking time, delay, and two-
level turnoff. At the start of the short circuit, the current flowing in the MOSFET channel increases
dramatically until saturation, and the voltage from drain-to-source also increases and can reach up to the
DC bus voltage. During this transient, the SiC MOSFET is turned-on, and the lower section of the resistive
divider (R18 and R26) is in parallel with the drain-to-source channel. The detection circuit starts to sense
the voltage of Vds + 4 V when the driver output is high (+15 V). G2 is 15-V. Refer to S2. D6 is forward
biased during this period. The Anode voltage of D6 becomes Vds plus the forward voltage drop of D6.
Assume that Vds is 5.2 V, hence Anode voltage of D6 is 5.9 V referring to S2 and 9.9 V referring to -4 V.
Consider the resistive divider R18 and R26 (R25 is not populated), the built-up voltage across C34 (Vsense)
is calculated as:

(14)

This voltage is referred to -4 Vb, and it is compared with the voltage reference, which is set as 3 V by the
precision shunt regulator, TL431A-Q1. When the voltage becomes higher than the reference, the
comparator, LMV762, sends the flag out and triggers the protection stage. As the result, the Vds threshold
for protection is approximately 10.3 V with the designed parameters shown in Figure 5.
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2.3.2.3 Two-Level Turnoff Protection
In the event of a short-circuit or overcurrent in the load, a large voltage overshoot occurs across the SiC
MOSFETs when it is hardly turned off. The overshoot can exceed the SiC MOSEFT breakdown voltage
and destroy the switch. By introducing an additional turnoff voltage level at the gate driver output in
between ON and OFF level before it is completely turned off, the SiC MOSFET channel current is limited
and the drain to source voltage overshoot is greatly reduced. This process ensures that the SiC MOSFET
operates at its safe region. The required timing between the first and the second voltage levels is
depending on the stray inductance and the di/dt slew rate at the beginning of the interval. TIDA-01605
implements a low cost, flexible, discrete circuit to realize this function.

After a short-circuit is detected, the two-level turnoff process starts. Figure 6 shows the complete circuit.
When the voltage threshold is triggered, the first comparator (U8A) turns on Q2. Hence, 5 V is seen on the
gate of Q1, and Q1 is conducted. The gate capacitor starts exponentially discharging through R13 and
C25, and the termination voltage is calculated using Equation 15.

(15)

Figure 6. Two-Level Turnoff Schematic

After the gate voltage has reached 5.5 V, the second-level turnoff process starts. This process is triggered
by the output of the second comparator, U8B. This signal first goes through a delay time which is set by
R22 and C36 using Equation 16.

(16)

After the delay time, U8B is triggered. The U8B output is connected to the Enable pin of the UCC21530-
Q1 gate driver. As a result, the gate driver output is pulled down to the –4 V, and the SiC MOSFET gate is
discharged to the same voltage level.

The two-level turnoff circuits for the short-circuit scenario are simulated. The model of the C3M0065100k
is implemented. The top graph of Figure 7 shows the current flowing from the drain-to-source of the SiC
MOSFET. The bottom graph of Figure 7 shows the gate-to-source voltage of the SiC MOSFET. As shown,
the current reaches 150-A peak in 135 ns, and the SiC MOSFET enters its desaturation region. The top
graph of Figure 8 shows the voltage across R26 (see Figure 5), which proportionally corresponds to the
drain-to-source voltage of the SiC MOSFET. As shown, the first-level turnoff occurs when the voltage
reaches around –200 mV, and the second-level turnoff occurs after the 1-µs delay time, which is set by
R22 and C36.
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Figure 7. Simulated Drain-to-Source Current During Two-Level Turnoff

NOTE: Top graph – Short-circuit current flowing from drain-to-source of the SiC MOSFET

Bottom graph – voltage at the SiC MOSFET gate

Figure 8. Simulated Drain-to-Source Voltage Increase During Two-Level Turnoff

NOTE: Top graph – voltage across R26 in the detection circuit

Bottom graph – voltage at the SiC MOSFET gate
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2.3.3 Digital Isolator
The digital isolator, ISO7721-Q1, is implemented for signal isolation between the low-voltage side and
high-voltage side gate driver. The ISO7721-Q1 device includes one input channel and one output channel,
and both transfer signals in unidirection [3]. Channel A accepts the fault signal after a short circuit
happens and disables the gate driver at the primary side. Channel B accepts the reset signal from the
MCU and sends it to the gate-driver secondary side. The isolator is chosen according to IEC61800-5-2
standards for reinforced isolation. The ISO7721-Q1 device can withstand 5-kV RMS voltage isolation and
a CMTI of 100 V/ns.

Figure 9 shows the implemented circuit. A logic circuit (Q4, R30, and R32) is implemented to invert the
Fault flag logic, in case a gate driver with inverting Enable logic (for example, UCC21520-Q1) is
used. !~Only!~The R31 !~resistor is !~only needed when using the UCC21530-Q1 device.

Figure 9. Digital Isolator Circuit
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3 Hardware, Testing Requirements, and Test Results

3.1 Required Hardware
Figure 10 and Figure 11 show the PCB image of the TIDA-01605 from the top side and bottomed side,
respectively. Two connectors are intended for connecting the gate-to-source of the high-side SiC
MOSFET and low-side MOSFET, respectively. One connector is intended for connecting the low-voltage
control signals.

The isolated gate driver, digital isolator, LDO, and comparator are placed on the top side. The transformer
driver and the isolation transformer are placed at the bottom side.

Figure 10. TIDA-01605 PCB Board (Top Side)
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Figure 11. TIDA-01605 PCB Board (Bottom Side)

3.2 Testing and Results

3.2.1 Bias Supply
This section shows the measured waveforms of the isolated, gate-driver, bias supply, which is the open-
loop, push-pull converter based on the SN6501-Q1 device.
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3.2.1.1 Start Up
Figure 12 shows the start-up waveform of the 15-V power rail. The soft start takes about 140 ms.

Figure 12. Start-Up Waveform of 15-V Power Rail

Figure 13 shows the start-up waveform of the –4-V power rail. The soft start takes about 20 ms.

Figure 13. Start-Up Waveform of –4-V Power Rail
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3.2.1.2 Power Down
Figure 14 shows the power-down waveform of the 15-V power rail. The power down takes about 300 ms.

Figure 14. Power-Down Waveform of 15-V Power Rail

Figure 15 shows the power-down waveform of the –4-V power rail. The power down takes about 200 ms.

Figure 15. Power-Down Waveform of –4-V Power Rail
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3.2.1.3 Load Transient
The load transient response presents how well a power supply copes with the changes in the load current
demand. Figure 16 shows the load transient response of the 15-V voltage rail. The load is switching from
0 to 5 mA, with a period of 30 ms and a 50% duty cycle. The voltage dip is around 170 mV, because the
converter implements open loop control.

Figure 16. Load Transient Response of 15-V Power Rail (Load Switching From 0 to 5 mA)
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3.2.2 Isolated Gate Driver

3.2.2.1 Input and Output PWM Switching
Figure 17 shows the PWM switching waveforms at the input and output of the isolated gate driver,
UCC21530-Q1. The output voltage levels of the PWM signals follow the bias supply voltages (15 V and –4
V).

Figure 17. Gate Driver Input and Output PWM Switching Waveforms

NOTE:
• CH1: PWM signal at the input of the UCC21530-Q1 device
• CH2: PWM signal at the output of the UCC21530-Q1 device
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3.2.2.2 Propagation Delay Waveforms
Propagation delay is measured from the primary side to the secondary side of the UCC21530-Q1 device,
as shown in Figure 18. The gate driver drives the C3M0065100K SiC MOSFET, which was selected from
the company Wolfspeed.

Figure 18. Test Circuit for Propagation Delay of UCC21530-Q1

Figure 19 shows the propagation delay time of the rising slope. As shown, 23-ns delay time is generated.

Figure 19. Propagation Delay of Rising Slope

NOTE: From left to right:
• CH1: PWM signal from primary side of the UCC21530-Q1 device
• CH4: PWM signal from the secondary side of the UCC21530-Q1 device
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Figure 20 shows the propagation delay time of the falling slope. As shown, 27.6-ns delay time is
generated.

Figure 20. Propagation Delay of Falling Slope

NOTE: From left to right:
• CH1: PWM signal from primary side of the UCC21530-Q1 device
• CH4: PWM signal from the secondary side of the UCC21530-Q1 device
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3.2.3 Two-Level Turnoff, Short-Circuit Protection Test
The two-level turnoff circuit for short-circuit protection is tested under low voltage and with a high-voltage
DC bus, respectively.

3.2.3.1 Testing Under Low Voltage
The two-level turnoff circuit is tested under low voltage for a functional check, where a 20-Ω dummy load
is connected from the SiC MOSFET drain-to-source. Then from an external lab supply, a 15-V external
voltage is applied from the drain-to-source. Figure 21 shows the measured waveforms. After the drain-to-
source voltage reaches the programmed threshold (around 7.9 V), the gate driver starts the two-level
turnoff process, as shown from CH1.

Figure 21. Two-Level Turnoff Waveforms Under Low-Voltage Testing

NOTE: From the left side, top to bottom:
• CH2: Drain-to-source voltage of the SiC MOSFET
• CH4: Fault input on the Enable pin of the UCC21530-Q1 device
• CH1: Gate-to-source voltage of the SiC MOSFET
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Figure 22 shows the duration of the first-level, turnoff process. The duration lasts for 968 ns.

Figure 22. Time Period of First-Level, Turnoff Process

Figure 23 shows the propagation delay time from when the signal reached the Enable pin of the
UCC21530-Q1 device, to when the gate starts the second-level turnoff. A 25-ns delay time is generated.

Figure 23. Propagation Delay From Enable Pin of UCC21530-Q1 to SiC MOSFET Gate

NOTE:
• CH4: Enable pin of the UCC21530-Q1 device
• CH1: SiC MOSFET gate-to-source voltage
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3.2.3.2 Testing Under High-Voltage DC Bus
The two-level turnoff waveforms during short circuit protection are verified at high voltages. Figure 24
shows the waveforms under a 100-V input DC bus voltage. For load current the measurement is done
from the voltage across a 0.1 Ohm shunt resistor, which results in 100A/div by translating it into current.

When the short-circuit failure occurs, the load current increases rapidly to around 180 A, where the SiC
MOSFET enters its desaturation region. At the same time, it triggers the short-circuit detection threshold.
After the programmed delay time, the gate-to-source voltage drops to its second turnoff level, which is
around 12 V. Because of the two-level turnoff process, the drain-to-source overshoot at both turnoff
transients has been significantly decreased. At first-level turnoff, the overshoot is suppressed to 150 V,
and at the second-level turnoff it is suppressed to 170 V. The duration of the first-level, turnoff process is
around 0.6 µs, and the duration of the second-level, turnoff process is 1 µs.

Figure 24. Two-Level Turnoff Waveforms Measured Under 100-V DC Bus Voltage

NOTE: From top to bottom:
• CH3: Gate-to-source voltage
• CH1: Input PWM signal
• CH2: Drain-to-source voltage of the SiC MOSFET
• CH4: Load current scale in 100 A/div
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Figure 25 shows the waveforms under 600-V input DC bus voltage. For load current, the measurement is
done from the voltage across a 0.1-Ω shunt resistor, which results in a 100 A/div scale on the oscilloscope
screen, by translating it into current.

The short-circuit current reaches 180 A, and the SiC MOSFET drain-to-source overshoot at first-level
turnoff is 660 V, and at the second level the turnoff is 682 V.

Figure 25. Two-Level Turnoff Waveforms Measured Under 600-V DC Bus Voltage

NOTE: From top to bottom:
• CH3: Gate-to-source voltage
• CH1: Input PWM signal
• CH2: Drain-to-source voltage of the SiC MOSFET
• CH4: Load current
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3.2.4 Reset
Figure 26 shows the test circuit for measuring the propagation delay of the Reset signal. The test circuit
includes the main functional block diagrams in this reference design. The delay time is measured from the
Reset signal sent from MCU, to the signal sent to the INB pin of the ISO7721-Q1 device, to the signal
received at the Enable pin of the UCC21530-Q1 device.

Figure 26. Test Circuit for Measuring Propagation Delay of Reset Signal
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Figure 27 shows the measured waveform. A 1.26-µs delay time is generated.

Figure 27. Propagation Delay of Reset Signal From MCU to Enable Pin of UCC21530-Q1

NOTE: From top to bottom:
• CH1: Reset signal sent from MCU
• CH4: Reset signal received at the enable pin of the UCC21530-Q1 device
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3.2.5 Thermal Images
The thermal image of the design board is measured under different PWM switching frequencies. The
circuit runs at room temperature for 30 minutes.

3.2.5.1 200-kHz Switching Frequency
The gate driver is loaded with a 1-nF capacitor and switched at 200 kHz. Figure 28 shows the thermal
image of the top side of the board. The temperature of the overall board is maintained at less than 42.3°C.

Figure 28. Thermal Image of Board (Top Side) at 200-kHz Switching Frequency

Figure 29 shows the thermal image of the bottom side of the board. The temperature of the overall board
is maintained at less than 42.3°C.

Figure 29. Thermal Image of Board (Bottom Side) at 200-kHz Switching Frequency
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3.2.5.2 500-kHz Switching Frequency
Next, the thermal image is measured when PWM switching frequency is increased to 500 kHz. The gate
driver remains loaded with 1 nF. Figure 30 shows the thermal image of the top side of the board. The
temperature of the overall board is maintained at less than 47°C.

Figure 30. Thermal Image of Board (Top Side) at 500-kHz Switching Frequency

Figure 31 shows the thermal image of the bottom side of the board. The temperature of the overall board
is maintained at less than 57.9°C.

Figure 31. Thermal Image of Board (Bottom Side) at 500-kHz Switching Frequency
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4 Design Files

4.1 Schematics
To download the schematics, see the design files at TIDA-01605.

4.2 Bill of Materials
To download the bill of materials (BOM), see the design files at TIDA-01605.

4.3 PCB Layout Recommendations

4.3.1 Layout Prints
To download the layer plots, see the design files at TIDA-01605.

4.3.2 Layout Guidelines
The TIDA-01605 implements a 2-layer PCB. Figure 32 shows the board material, copper thickness, and
the dielectric distance in between.

Figure 32. TIDA-01605 Layer Stack

Figure 33 shows the component placement of the push-pull bias power supply. The input capacitor,
SN6501-Q1 IC, and output capacitors are placed as close as possible to the Transformer T1, to minimize
the input and output current loops. The secondary output of the push-pull power supply must be buffered
to the isolated ground with low-ESR bypass capacitors. The recommended capacitor values can range
from 1 to 10 µF, with X5R or X7R dielectric. The PCB clearance is kept as 8 mm for sufficient voltage
isolation.

Figure 33. Component Placement of Push-Pull Power Supply
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Figure 34 shows the component placement of the gate-drive loop, which includes the input capacitors for
the bias supply rails, gate resistors, and gate capacitors. Low-ESR and low-ESL capacitors are selected
and placed close to the UCC21530-Q1 device, between the VCCI and GND pins and between the VDD
and VSS pins, to minimize the ripple and support high-peak currents when external SiC MOSFETs are
being switched. The PCB traces for gate signals are kept small and compact, to minimize the noise
crosstalk from the fast switching of the SiC MOSFETs.

Figure 34. Component Placement of Gate-Drive Loop

Figure 35 shows the component placement for short-circuit detection. The signal-conditioning components
are placed close to the SiC MOSFET drain, where pulsed, high dv/dt generates. The PCB areas are kept
at a sufficient distance for voltage isolation.

Figure 35. Component Placement for Short-Circuit Detection
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4.3.3 General Recommendations
Apart from previous descriptions, some general layout design recommendations are listed as follows:
• Because the design contains high voltages, a PCB cutout is recommended to enhance the isolation

rating between the primary and secondary. Any PCB traces or copper below the isolation devices must
be avoided.

• Appropriate Creepage distances must be kept between high- and low-side PCB traces for sufficient
voltage isolation.

4.4 Altium Project
To download the Altium Designer® project files, see the design files at TIDA-01605.

4.5 Gerber Files
To download the Gerber files, see the design files at TIDA-01605.

4.6 Assembly Drawings
To download the assembly drawings, see the design files at TIDA-01605.

5 Related Documentation
1. Texas Instruments, High-Voltage Reinforced Isolation: Definitions and Test Methodologies, white paper
2. Texas Instruments, Small Form-Factor Reinforced Isolated IGBT Gate Drive Reference Design for 3-

Phase Inverter, reference design (TIDA-00446)
3. Texas Instruments, Compact, Half-Bridge, Reinforced Isolated Gate Drive Reference Design, reference

design (TIDA-01159)

5.1 Trademarks
E2E is a trademark of Texas Instruments.
Altium Designer is a registered trademark of Altium LLC.
All other trademarks are the property of their respective owners.
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6 Terminology
AFE— Analog Front End

AEC— Automotive Electronics Council

ESR— Equivalent Series Resistance

EMI— Electromagnetic Interference

EMC— Electromagnetic Compatibility

DM— Differential Mode

CM— Common Mode

CMTI— Common Mode Transient Immunity

DCM— Discontinuous Conduction Mode

CCM— Continuous Conduction Mode

UVLO— Under Voltage Lockout

MOSFET— Metal Oxide Semiconductor Field Effect Transistor

CISPR— International Special Committee on Radio Interference

PE— Protective Earth

PSR— Primary Side Regulation

RMS— Root Mean Square

BOM— Bill of Material

OEM— Original Equipment Manufacturer

SiC— Silicon Carbide

PCB— Printed Circuit Board

HEV— Hybrid Electric Vehicle

EV— Electric Vehicle
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