Primary Side Regulation in Flyback Converters Delivers Low Cost, High Reliability and Energy Efficiency

Ramanan Natarajan, Bing Lu

March 2016
Outline

• Background
• Primary side regulation Flyback basics
• Improve PSR performance in CCM Flyback
• PSR with minimum standby power without sacrificing transient
• Summary
Standby/Vampire/Idle Power Impact

Source NRDC, Home Idle Load Report, May 2015
Traditional Opto-Coupler Feedback Flyback

- Traditionally isolated flyback power supplies use opto-couplers to feed regulation information across the isolation barrier
- Higher component count and higher cost
- Lower reliability
Eliminating Opto-Coupler

• Higher Reliability
 - No Opto-coupler
 - The aging characteristic of the opto coupler in particular reduces the reliability of the design.
 - The opto-coupler CTR reduces over time which reduces the gain of the feedback loop.
 - The loop has to be overdesigned to account for this affect
 - Fewer components increases the MTBF of the design.

• Better Isolation
 - For applications with high surge or isolation voltage requirements, reducing the number of components crossing the isolation barrier reduces the number of areas of potential breakdown.
PSR Flyback Background

- Most flybacks derive their own bias supply from a bias winding which is in phase with the secondary winding.
- Bias winding voltage is a scaled replica of the secondary winding voltage and can be sensed via a resistive divider to regulate Vout.
Output Voltage Sampling in DCM Flyback

- The bias winding voltage is proportional to the output voltage, with some errors.
- In DCM condition, the output voltage can be sensed at the knee point and minimize the introduced error.
- This sensing method can only be implemented in Boundary Mode or DCM Flybacks.
- For high power designs it is often desirable to operate in CCM.

\[V_{\text{sense}} = \left(\frac{R_b}{R_t + R_b} \right) \cdot \left(\frac{N_b}{N_s} \right) \cdot [V_{\text{out}} + V_{\text{rect}} + V_{\text{Rsec}} - V_{\text{Leak}} + V_{\text{Rcesr}}] \]
Output Voltage Sampling in CCM Flyback

The resistors are the major source of sensing error

\[V_{\text{sense}} = \left(\frac{R_b}{R_t + R_b} \right) \cdot \left[\frac{N_p}{N_s} \right] \cdot \left[V_{\text{out}} + I_{\text{sec}} \cdot (R_{\text{sec}} + R_{\text{cesr}}) \right] \]

With fixed sampling delay

\[I_{\text{tmp}} = \left(\frac{V_{\text{cspk}}}{R_{\text{cs}}} \cdot \left[\frac{N_p}{N_s} \right] - \left[\frac{(V_o + V_{\text{rect}}) \cdot t_{\text{tmp}}}{L_{\text{sec}}} \right] \right) \]

- For CCM operation the voltage must be sampled during the Off-time, typically a fixed time after turn off (of the Primary FET)
- The error is dominated by the resistive drop
- the current sense demand voltage allows the controller to predict the error in \(V_{\text{sense}} \) and used to improve the regulation accuracy
Output Voltage Regulation for CCM PSR

The voltage regulation accuracy can be significantly improved by using the error compensation.

Measured regulation performance of a 19V, 65 W nominal power stage, operating up to 120 W load, with input bulk capacitor voltage of 120 Vdc and 310 Vdc. Load current was varied from 0 A to 6 A.

<table>
<thead>
<tr>
<th>Lpri</th>
<th>260 µH</th>
<th>MOSFET</th>
<th>STF13NM60ND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Res</td>
<td>200 mΩ</td>
<td>Diode</td>
<td>NTST30100CTG</td>
</tr>
<tr>
<td>Np</td>
<td>34</td>
<td>Cbulk</td>
<td>127 µF</td>
</tr>
<tr>
<td>Ns</td>
<td>6</td>
<td>Cout</td>
<td>1,360 µF</td>
</tr>
<tr>
<td>Nb</td>
<td>4</td>
<td>Cbias</td>
<td>22 µF</td>
</tr>
<tr>
<td>Transformer</td>
<td>RM10/1</td>
<td>Rsec</td>
<td>60 mΩ</td>
</tr>
</tbody>
</table>
Standby Power Consumption in Flyback

- Opto coupler consumes most of power during standby mode
- PSR eliminates the feedback components loss but there are plenty of other losses to be considered
- Pre-load is required for PSR Flyback and needs to be minimized

<table>
<thead>
<tr>
<th></th>
<th>X-cap</th>
<th>IC bias power</th>
<th>Start-up resistor loss</th>
<th>Bulk-cap leakage</th>
<th>Pre-load loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>~5 mW / 330 nF</td>
<td>10~20 mW</td>
<td>10~20 mW</td>
<td>~0.5 mW</td>
<td>1~10 mW</td>
</tr>
</tbody>
</table>
Typical Control Law for DCM Flyback Controller

- **Frequency modulation**
 - Fixed peak current
 - Power is adjusted by switching frequency

- **Amplitude modulation**
 - Fixed switching frequency
 - Power is adjusted by peak current

- The switching frequency can’t be zero since PSR needs the switching to sense the output voltage
- At light load, it is desired to minimize the switching frequency for minimum loss associated with the switching frequency
Switching Frequency Considerations

• DCM-flyback f_{SW} follows device Control Law, so P_{MAX} should predict P_{STBY}

• First-order approximation using $P_{IN} \approx \frac{1}{2} L_p I_{PP}^2 f_{SW}$ in a ratio:

$$\frac{P_{STBY}}{P_{IN(max)}} = \left(\frac{I_{PP(min)}}{I_{PP(max)}}\right)^2 \frac{f_{STBY}}{f_{SW(max)}}$$

• Assume DCM flyback controller with
 • 3:1 peak current ratio
 • 80 kHz max switching frequency
 • 1 kHz min switching frequency

• There are other losses associated with the switching frequency such as the switch node capacitor discharge

• To further reduce the standby power, lower minimum switching frequency is required
PSR Slow Transient Response

- PSR is a sample-and-hold control system
- Output voltage is sampled only during output rectifier conduction
- Long idle time between pulses at light-load conditions
- When V_{OUT} changes between samples
 - Feedback won’t respond until next sample
 - Results in excessive droop/under-shoot

![Diagram showing PSR Slow Transient Response](image)

![Graph showing Output cap vs. minimum f_{SW}](image)

Output cap vs. minimum f_{SW}

- $0.5V$ drop
- $1V$ drop
- $1.5V$ drop

Minimum Switching frequency (Hz)
Fast Transient Response using Output Voltage Monitoring

- Output voltage can be monitored all the time
- Once the output voltage drop is detected, the diode is shorted to send the wakeup signal
 - Speeds up Transient Response during light-load/no-load conditions
 - Even for 100% load steps
- Allows smaller C_{OUT}
- Low bias current for zero standby
Improved Transient Response

- V_{OUT} is monitored each cycle
 - If $V_{OUT} < 97\%$ of previous V_{OUT}
 - Wake-up Pulse is generated

- PSR IC responds to Wake-up Pulse
 - Generates a few fast pulses to
 - Sample V_{OUT}
 - Adjust f_{SW} and D
 - Faster recovery to heavy step
 - Avoids overreaction to light step
Compare No-Wake to Wake-Up

Response to 2-A load step on 5 V, 540 µF
- Wake-up function disabled
- Vout drops >1 V before detection
 ✓ Control Loop Can’t Respond

Response to 2-A load step on 5 V, 540 µF
- Wake-up function enabled
- Vout droops only 200 mV
 ✓ Regulation within 2 ms

Standby power is kept below 4mW for 85V~265VAC input
Improve Cross Regulation for Multiple Outputs

- PSR can’t assign a dedicated output voltage as regulation target
- Through the DC stacking technique, the output voltage cross regulation can be significantly improved
Summary

• Standby power savings can be a significant improvement for the electrical efficiency
• Primary side regulation Flyback eliminates the opto coupler and feedback components
 – Improves the reliability
 – Reduces the system cost
 – Reduces the standby power
• The PSR technology can be implemented in CCM Flyback but needs extra compensation
• The PSR technology can achieve minimum standby power without sacrificing the transient performance by using the wakeup concept
 IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>www.amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>www.dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>www dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>www.interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>www.logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>www.power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>www.microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated