Extending TI’s Hercules™ MCUs with the integrated flexible HET

Dave Maples
Hercules Applications Manager
Texas Instruments
Many embedded systems have an array of timing needs. These needs range from simple input captures to complex pulse trains. Simple hardware timers are acceptable for input captures, output compares, and PWM generation. More complex timing functions are typically generated with external ASICs or FPGAs. These external devices increase cost, power, complexity, and board space.

There are often times as you design your system that it is not clearly known how many serial communication interfaces will finally be needed in the embedded application. Sometimes this can lead to selecting a controller that maybe over-kill for what you need – just to be on the safe side. Having some flexibility to easily extend the serial communication resources on a controller can help with avoiding an over design situation.

The High-End Timer (HET) is a programmable timer co-processor available on TI’s high-performance ARM® Cortex®-R based Hercules Microcontrollers (MCU). The HET operates concurrent to the CPU leaving the CPU performance for other tasks. The HET enables sophisticated timing functions for real-time control applications. It can implement classic time functions such as input capture or multiple PWMs, and also higher level timing functions. The programmable nature of the HET allows it to be used to implement several flavors of serial communication protocols such as SPI, I2C, UART as well as more advanced serial communication interfaces such as EnDAT 2.2, SENT and more. Specific end equipment timing needs can also be implemented such as High Speed Capture/Pulse Train Output for Factory Automation PLC.

Table 1 lists key features of the HET.

<table>
<thead>
<tr>
<th>Programmable timer for input and output timing functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced instruction set (29 instructions) for dedicated time and angle functions</td>
</tr>
<tr>
<td>Up to maximum of 256 96-bit words of instruction RAM protected by parity</td>
</tr>
<tr>
<td>User defined configuration of 25-bit virtual counters for timer, event counters and angle counters</td>
</tr>
<tr>
<td>7-bit hardware counters for each pin allow up to 32-bit resolution in conjunction with the 25-bit virtual counters</td>
</tr>
<tr>
<td>Up to 32 pins per HET instance usable for input signal measurements or output signal generation</td>
</tr>
<tr>
<td>Programmable suppression filter for each input pin with adjustable suppression window</td>
</tr>
<tr>
<td>Low CPU overhead and interrupt load</td>
</tr>
<tr>
<td>Efficient data transfer to or from the CPU memory with dedicated High-End-Timer Transfer Unit (HTU)</td>
</tr>
<tr>
<td>Diagnostic capabilities with different loopback mechanisms and pin status read back functionality</td>
</tr>
</tbody>
</table>

Table 1: TI programmable HET key features
Moving data between the RAM and HET

Many timer applications that run on the HET can require a lot of data to be exchanged between the HET and the host CPU. This data exchange is managed by a dedicated transfer unit called the High-End Timer Transfer Unit (HTU). The HTU has a dedicated access port on the HET memory and can access this memory without contention with any other bus masters (CPU, DMA, etc). The HTU works in synchronization with the HET to manage transfers between the HET RAM and any other memory, usually the CPU RAM.

Easy HET software development

The HET IDE makes it easy to develop your own timer programs. You can begin by using the new project wizard to select the Hercules MCU that you wish to target. The Algorithm Library wizard lets you select from a library stocked with commonly used timing functions that you can insert into your own application. If you decide to create your own completely new algorithms, the Insert Instruction wizard is available to speed you along the learning curve of HET assembly syntax. Once you have your HET Program written, the HET IDE allows you to assemble the code and load it into the HET simulator with a click of a button. In the simulator environment, you have full visibility to all internal memory and registers, and you can single step through each instruction to understand exactly how your program works and waveform viewer allows you to quickly trace and visualize the execution of your program.

To test your program, a Memory Trigger editor allows you to simulate CPU reads & writes to the HET memory. A Stimulus editor allows you to quickly simulate external events on any of the HET input pins. If you need even more capability, the HET IDE works with Synapticad Waveformer Pro which allows you to draw, model, or capture stimulus from a logic analyzer and feed the stimulus to your HET program during a simulation. A 90 day Evaluation license for Waveformer Pro is available through Synapticad for all registered HET IDE users.

Kickstart your Creativity

TI experts have created six new HET applications notes. The application notes include an explanation of how to implement any function(s) using the HET and the code examples making it easy to get started.

Table 2: HET application notes for ease of implementation

- PWM Generation and Input Capture Using HALCoGen
- Monitor PWM outputs using N2HET
- Triggering ADC Using Internal Timer Events on Hercules MCUs
- Sine Wave Generation Using PWM With Hercules N2HET and HTU
- Triangle/Trapezoid Wave Generation Using PWM With Hercules N2HET
- Interfacing Quadrature Encoders Using the High-End Timer on Hercules MCUs
Get Started Now – For Free

There is no need to wait – you can download the HET IDE for free and start creating your own custom timer programs right now. If you need a bit more help getting started, do HET IDE projects to quickly get you up and running, so that you can become a HET expert in no time at all. Want to get started quickly with hardware as well? The HET IDE can export your custom HET program directly into HALCoGen, the free code generator for Hercules MCUs. All you need to purchase is a Hercules Launchpad and you’ll be able to test your HET Program in simulation and on actual hardware.

Download the HET IDE at www.ti.com/tool/het_ide
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

- Audio: www.ti.com/audio
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DLP® Products: www.dlp.com
- DSP: dsp.ti.com
- Clocks and Timers: www.ti.com/clocks
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com
- RFID: www.ti-rfid.com
- OMAP Applications Processors: www.ti.com/omap
- Wireless Connectivity: www.ti.com/wirelessconnectivity

Applications

- Automotive and Transportation: www.ti.com/automotive
- Communications and Telecom: www.ti.com/communications
- Energy and Lighting: www.ti.com/energy
- Industrial: www.ti.com/industrial
- Medical: www.ti.com/medical
- Video and Imaging: www.ti.com/video

www.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2015, Texas Instruments Incorporated