SCHS297D - AUGUST 1998 - REVISED JUNE 2002

- Speed of Bipolar FCT, AS, and S, With Significantly Reduced Power Consumption
- Digital Design Avoids Analog Compensation Errors
- Easily Cascadable for Higher-Order Loops
- Useful Frequency Range
 - DC to 110 MHz Typical (K CLK)
 - DC to 70 MHz Typical (I/D CLK)
- Dynamically Variable Bandwidth
- Very Narrow Bandwidth Attainable
- Power-On Reset
- Output Capability
 - Standard: XORPD OUT, ECPD OUT
 - Bus Driver: I/D OUT
- SCR Latch-Up-Resistant CMOS Process and Circuit Design
- Balanced Propagation Delays
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015

M PACKAGE (TOP VIEW) 16 N_{CC} АΓ 15 **∏** C ENCTR [ΠD 3 14 K CLK ¶ 4 13 **∏** ♦A2 I/D CLK 15 12 | ECPD OUT D/U [11 NORPD OUT I/D OUT 17 10**∏** φΒ GND [

description/ordering information

The CD74ACT297 provides a simple, cost-effective solution to high-accuracy, digital, phase-locked-loop applications. This device contains all the necessary circuits, with the exception of the divide-by-N counter, to build first-order phase-locked loops as shown in Figure 1.

Both exclusive-OR phase detectors (XORPDs) and edge-controlled (ECPD) phase detectors are provided for maximum flexibility.

Proper partitioning of the loop function, with many of the building blocks external to the package, makes it easy for the designer to incorporate ripple cancellation or to cascade to higher-order phase-locked loops.

The length of the up/down K counter is digitally programmable according to the K-counter function table. With A, B, C, and D all low, the K counter is disabled. With A high and B, C, and D low, the K counter is only three stages long, which widens the bandwidth, or capture range, and shortens the lock time of the loop. When A, B, C, and D are programmed high, the K counter becomes 17 stages long, which narrows the bandwidth, or capture range, and lengthens the lock time. Real-time control of loop bandwidth by manipulating the A-through-D inputs can maximize the overall performance of the digital phase-locked loop.

ORDERING INFORMATION

TA	PAC	(AGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–55°C to 125°C	C to 125°C SOIC – M		CD74ACT297M	ACT297M
-55 C to 125 C	30IC - W	Tape and reel	CD74ACT297M96	AC1297W

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

description/ordering information (continued)

This device performs the classic first-order phase-locked-loop function without using analog components. The accuracy of the digital phase-locked loop (DPLL) is not affected by V_{CC} and temperature variations, but depends solely on accuracies of the K clock (K CLK), increment/decrement clock (I/D CLK), and loop propagation delays. The I/D clock frequency and the divide-by-N modulos determine the center frequency of the DPLL. The center frequency is defined by the relationship $f_{C} = I/D$ clock/2N (Hz).

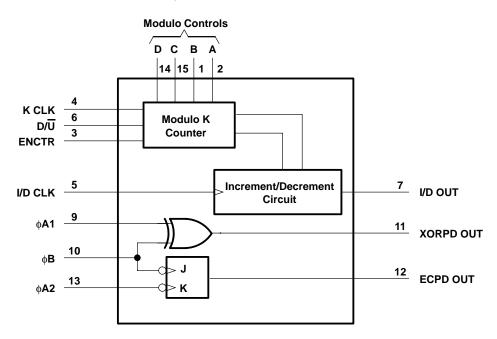


Figure 1. Simplified Block Diagram

Function Tables

K COUNTER (digital control)

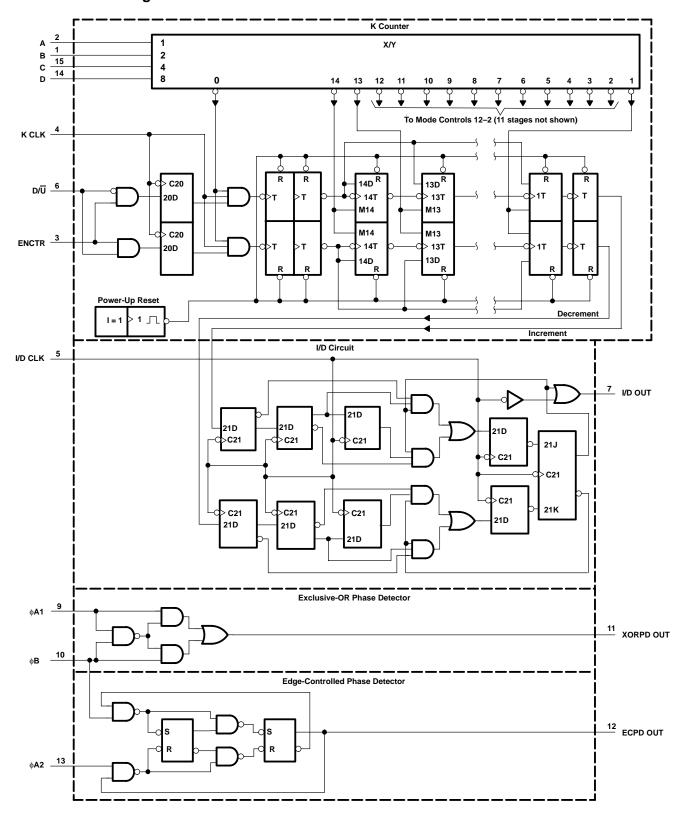
D	С	В	Α	MODULO (K)
L	L	L	L	Inhibited
L	L	L	Н	23
L	L	Н	L	24
L	L	Н	Н	25
L	Η	L	L	26
L	Н	L	Н	27
L	Н	Н	L	28
L	Н	Н	Н	29
Н	L	L	L	₂ 10
Н	L	L	Н	211
Н	L	Н	L	₂ 12
Н	L	Н	Н	213
Н	Н	L	L	2 ¹⁴
Н	Н	L	Н	₂ 15
Н	Н	Н	L	₂ 16
Н	Н	Н	Н	₂ 17

EXCLUSIVE-OR PHASE DETECTOR

ф А1	φВ	XORPD OUT
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

EDGE-CONTROLLED PHASE DETECTOR

ф А2	φВ	ECPD OUT
H or L	\rightarrow	Н
\downarrow	H or L	L
H or L	1	No change
1	H or L	No change


H = steady-state high level

L = steady-state low level

 \downarrow = transition from high to low

 \uparrow = transition from low to high

functional block diagram

detailed description

The phase detector generates an error-signal waveform that, at zero phase error, is a 50% duty-cycle square wave. At the limits of linear operation, the phase-detector output is either high or low all of the time, depending on the direction of the phase error ($\phi_{in} - \phi_{out}$). Within these limits, the phase-detector output varies linearly with the input phase error according to the gain k_d , which is expressed in terms of phase-detector output per cycle of phase error. The phase-detector output can be varied between ± 1 according to the relation:

Phase-detector output
$$=$$
 $\frac{\% \text{ high } - \% \text{ low}}{100}$ (1)

The output of the phase detector is $k_d \phi_e$, where the phase error $\phi_e = \phi_{in} - \phi_{out}$.

XORPD and ECPD are commonly used digital types. The ECPD is more complex than the XORPD, but can be described generally as a circuit that changes states on one of the transitions of its inputs. For an XORPD, $k_d = 4$, because its output remains high (PD output = 1) for a phase error of one-fourth cycle. Similarly, for the ECPD, $k_d = 2$, because its output remains high for a phase error of one-half cycle. The type of phase detector determines the zero-phase-error point, i.e., the phase separation of the phase-detector inputs for ϕ_e is defined to be zero. For the basic DPLL system of Figure 2, $\phi_e = 0$ when the phase-detector output is a square wave. The XORPD inputs are one-fourth cycle out of phase for zero phase error. For the ECPD, $\phi_e = 0$ when the inputs are one-half cycle out of phase.

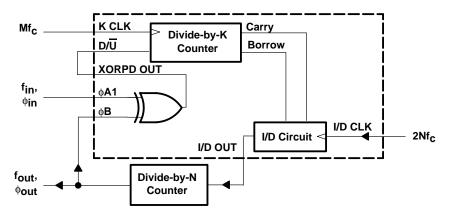


Figure 2. DPLL Using Exclusive-OR Phase Detection

The phase-detector output controls the up/down input to the K counter. The counter is clocked by input frequency Mf_c , which is a multiple M of the loop center frequency f_c . When the K counter recycles up, it generates a carry pulse. Recycling while counting down generates a borrow pulse. If the carry and borrow outputs are conceptually combined into one output that is positive for a carry and negative for a borrow, and if the K counter is considered as a frequency divider with the ratio Mf_c/K , the output of the K counter equals the input frequency multiplied by the division ratio. Thus, the output from the K counter is $k_d \phi_e Mf_c/K$.

The carry and borrow pulses go to the increment/decrement (I/D) circuit, which, in the absence of any carry or borrow pulse, has an output that is one-half of the input clock (I/D CLK). The input clock is just a multiple (2N) of the loop center frequency. In response to a carry or borrow pulse, the I/D circuit either adds or deletes a pulse at I/D OUT. Thus, the output of the I/D circuit is Nf_C + $(k_d \phi_e M f_c)/2K$.

The output of the N counter (or the output of the phase-locked loop) is:

$$f_{O} = f_{C} + (k_{d} \phi_{e} M f_{c}) / 2KN$$
(2)

When this result is compared to the equation for a first-order analog phase-locked loop, the digital equivalent of the gain of the VCO is $Mf_c/2KN$, or f_c/K for M = 2N.

SCHS297D - AUGUST 1998 - REVISED JUNE 2002

detailed description (continued)

Thus, the simple first-order phase-locked loop with an adjustable K counter is the equivalent of an analog phase-locked loop with a programmable VCO gain.

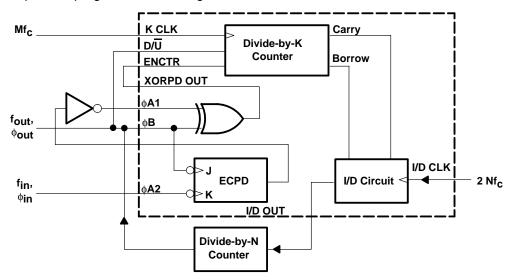


Figure 3. DPLL Using Both Phase Detectors in a Ripple-Cancellation Scheme

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 6 V
DC input diode current, I_{IK} ($V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$)	±20 mA
DC input diode current, I_{OK} ($V_O < -0.5 \text{ V}$ or $V_O > V_{CC} + 0.5 \text{ V}$)	±50 mA
DC output source or sink current per output pin, I_O ($V_O > -0.5 \text{ V}$ or $V_O < V_{CC} + 0.5 \text{ V}$)	±50 mA
Continuous current through V _{CC} or GND (see Note 1)	±100 mA
Package thermal impedance, θ_{JA} (see Note 2)	73°C/W
Storage temperature range, T _{Sto}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		MIN	MAX	UNIT
VCC	Supply voltage	4.5	5.5	V
VIH	High-level input voltage	2		V
V _{IL}	Low-level input voltage		0.8	V
٧ _I	Input voltage	0	VCC	V
٧o	Output voltage	0	VCC	V
Δt/Δν	Input rise and fall slew rate		10	ns
TA	Operating free-air temperature range	-55	125	°C

NOTES: 1. For up to four outputs per device, add ± 25 mA for each additional output.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		Voc	$T_A = 2$	25°C	MIN	MAX	UNIT
FARAWIETER	1231 00	MOITIONS	VCC	MIN	MAX	IVIIIV	IVIAA	ONIT
		$I_{O} = -50 \mu\text{A}$	4.5 V	4.4		4.4		
Voн	VI = VIH or VIL	$I_O = -24 \text{ mA}$	4.5 V	3.4		3.1		V
		$I_{O} = -75 \text{ mA}$	5.5 V			3.3		
	VI =VIH or VIL	ΙΟ = 50 μΑ			0.1		0.1	
VoL		I _O = 24 mA	4.5 V		0.9		1.1	V
		$I_0 = 75 \text{ mA}^{\dagger}$	5.5 V				2.9	
lį	$V_I = V_{CC}$ or GND		5.5 V		±0.1		±1	μΑ
I _{CC} (MSI)	$V_I = V_{CC}$ or GND		5.5 V		8		80	μΑ
I _{CC} (SSI/FF)	$V_I = V_{CC}$ or GND		5.5 V		4		40	μΑ
Δl _{CC}	$V_{I} = V_{CC} - 2.1 \text{ V}$		4.5 V to 5.5 V		2.4		2.8	mA

[†] Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. Test verifies a minimum 50-Ω transmission-line drive capability at 85°C.

ACT INPUT LOAD

INPUT	UNIT LOAD†
ENCTR, D/U	0.1
A, B, C, D, K CLK, φA2	0.2
I/D CLK, φA1, φB	0.5

[†] Unit Load is Δ ICC limit specified in electrical characteristics table (e.g., 2.4 mA at 25°C).

timing requirements over recommended supply-voltage range and recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER					MAX	LINUT
	PARAMETER	PARAMETER			MIN	WAX	UNIT
.	Clock frequency	K CLK		55		45	MHz
fclock	Clock frequency	I/D CLK		40		35	IVITIZ
	Pulse duration	K CLK	6		8		20
t _W	Pulse duration	I/D CLK			9		ns
_	Octors the chartes KOLKA	D/ U	13		17		
t _{su}	Setup time before K CLK↑	ENCTR	12		16		ns
	Hold time after K CLK↑	D/U	3		7		
th	Hold time after K CLK I	ENCTR	2		6		ns

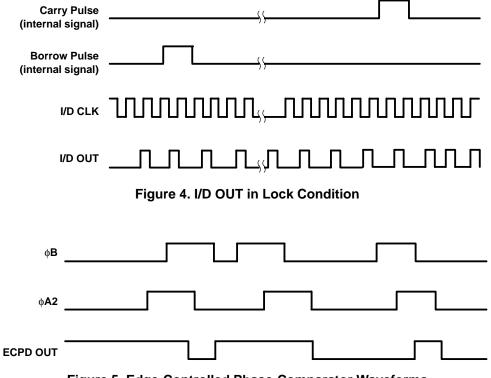


Figure 5. Edge-Controlled Phase-Comparator Waveforms

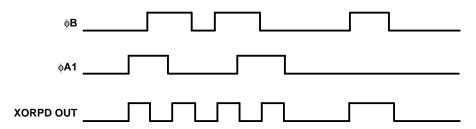


Figure 6. Exclusive-OR Phase-Detector Waveforms



Figure 7. Clock (ID CLK) to Output (ID OUT) Propagation Delays, Clock Pulse Duration, and Maximum Clock-Pulse Frequency

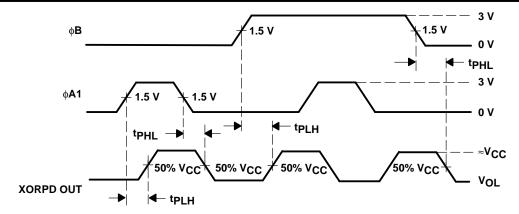


Figure 8. Phase Input (φB, φA2) to Output (XORPD OUT) Propagation Delays

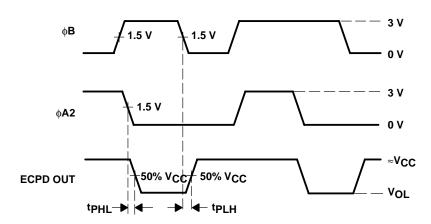
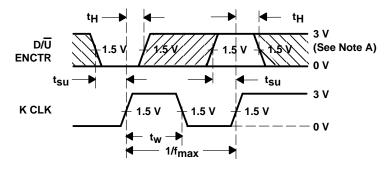



Figure 9. Phase Input (φB, φA2) to Output (ECPD OUT) Propagation Delays

NOTE A: Shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 10. Clock (K CLK) Pulse Duration and Maximum Clock-Pulse Frequency, and Inputs (D/U, ENCTR) to Clock (K CLK) Setup and Hold Times

CD74ACT297 DIGITAL PHASE-LOCKED LOOP

SCHS297D - AUGUST 1998 - REVISED JUNE 2002

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted)


PARAMETER	FROM	то	TA	= 25°C		MIN	MAX	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIV	IVIAA	UNIT
•	K CLK	I/D OUT	55			45		MHz
[†] max	I/D CLK	1/0 001	40			35		IVITIZ
^t PLH	I/D CLIV	L/D OUT			19		24	ns
^t PHL	I/D CLK	I/D OUT			19		24	115
^t PHL	фА2	ECPD OUT			24		30	ns
^t PLH	104	VODDD OUT			17		22	ne
^t PHL	фА1	XORPD OUT			17		22	ns
^t PLH	φВ	XORPD OUT			17		22	ns
^t PHL	ΨΟ	AONED OUT		•	17		22	115
^t PLH	φВ	ECPD OUT			24		30	ns

50% V_{CC}

VOLTAGE WAVEFORMS

ENABLE AND DISABLE TIMES

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

50% V_{CC}

VOLTAGE WAVEFORMS

PROPAGATION DELAY TIMES

Out-of-Phase

Output

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

S1 at GND

(see Note B)

- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f = 3 \text{ ns}$, $t_f = 3 \text{ ns}$.
- D. The outputs are measured one at a time with one input transition per measurement.

50% V_CC

VOL

Figure 11. Load Circuit and Voltage Waveforms

≈0 V

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
CD74ACT297M	Active	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT297M
CD74ACT297M.A	Active	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT297M

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

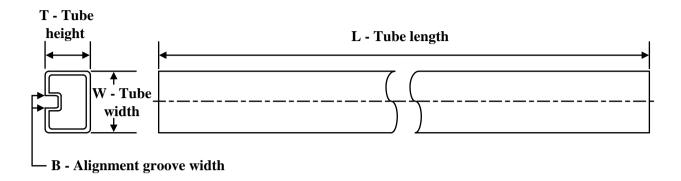
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

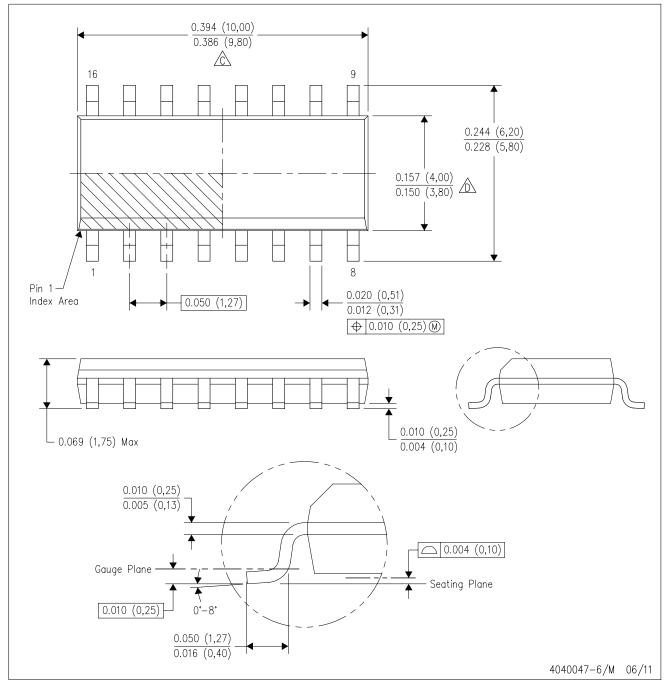

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CD74ACT297M	D	SOIC	16	40	507	8	3940	4.32
CD74ACT297M.A	D	SOIC	16	40	507	8	3940	4.32

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025