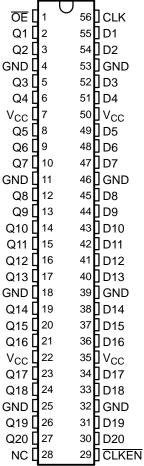


www.ti.com

FEATURES

- Member of the Texas Instruments Widebus™
 Family
- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- Output Ports Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

NOTE: For tape-and-reel order entry, the DGGR package is abbreviated to GR.


DESCRIPTION

This 20-bit flip-flop is designed for low-voltage 1.65-V to 3.6-V $V_{\rm CC}$ operation.

The 20 flip-flops of the SN74ALVCH162721 are edge-triggered D-type flip-flops with qualified clock storage. On the positive transition of the clock (CLK) input, the device provides true data at the Q outputs if the clock-enable (CLKEN) input is low. If CLKEN is high, no data is stored.

A buffered output-enable (\overline{OE}) input places the 20 outputs in either a normal logic state (high or low level) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance

DGG OR DL PACKAGE (TOP VIEW)

NC - No internal connection

state and increased drive provide the capability to drive bus lines without interface or pullup components. $\overline{\text{OE}}$ does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

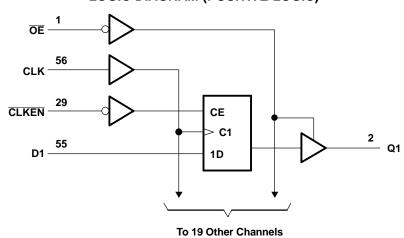
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

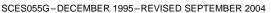
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The outputs, which are designed to sink up to 12 mA, include equivalent 26- Ω resistors to reduce overshoot and undershoot.

The SN74ALVCH162721 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


Widebus, EPIC are trademarks of Texas Instruments.



FUNCTION TABLE (each flip-flop)

	INP	UTS		OUTPUT
ŌĒ	CLKEN	CLK	Q	
L	Н	X	Χ	Q_0
L	L	1	Н	Н
L	L	\uparrow	L	L
L	L	L or H	Χ	Q_0
Н	X	X	Χ	Z

LOGIC DIAGRAM (POSITIVE LOGIC)

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾	-0.5	4.6	V	
Vo	Output voltage range ⁽²⁾⁽³⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			-50 ±50	
	Continuous current through each V _{CC} or GND			±100	mA
0	Declare the weed in a decree (4)	DGG package		81	°C/W
θ_{JA}	Package thermal impedance (4)	DL package		74	°C/W
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			MIN	MAX	UNIT	
V _{CC}	High-level input voltage Low-level input voltage Input voltage Output voltage		1.65	3.6	V	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}			
V_{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V	
		V _{CC} = 2.7 V to 3.6 V	2			
		V _{CC} = 1.65 V to 1.95 V	0.	$35 \times V_{CC}$		
V_{IL}	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V	
		V _{CC} = 2.7 V to 3.6 V		0.8		
VI	Input voltage	·	0	V _{CC}	V	
Vo	Output voltage		0	V _{CC}	V	
		V _{CC} = 1.65 V		-2		
	High level output ourrent	V _{CC} = 2.3 V		-6	A	
I _{OH}	nign-ievei output current	V _{CC} = 2.7 V		-8	mA	
		V _{CC} = 3 V		-12		
		V _{CC} = 1.65 V		2		
	Low lovel output ourrent	V _{CC} = 2.3 V		6	A	
I _{OL}	Low-level output current	V _{CC} = 2.7 V		8	mA	
		V _{CC} = 3 V		12		
Δt/Δν	Input transition rise or fall rate			10	ns/V	
T _A	Operating free-air temperature		-40	85	°C	

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ This value is limited to 4.6 V, maximum.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TES	T CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT	
	$I_{OH} = -100 \mu A$		1.65 V to 3.6 V	V _{CC} - 0.2				
	$I_{OH} = -2 \text{ mA}$		1.65 V	1.2				
	$I_{OH} = -4 \text{ mA}$		2.3 V	1.9				
V _{OH}	I 6 m A		2.3 V	1.7			V	
	$I_{OH} = -6 \text{ mA}$		3 V	2.4				
	I _{OH} = -8 mA		2.7 V	2				
	I _{OH} = -12 mA		3 V	2				
	$I_{OL} = 100 \mu A$		1.65 V to 3.6 V			0.2		
	I _{OL} = 2 mA		1.65 V			0.45		
	I _{OL} = 4 mA		2.3 V			0.4		
V _{OL}	I 6 m A		2.3 V			0.55	V	
	$I_{OL} = 6 \text{ mA}$		3 V			0.55		
	I _{OL} = 8 mA		2.7 V			0.6		
	I _{OL} = 12 mA		3 V			8.0		
I _I	$V_I = V_{CC}$ or GND		3.6 V			±5	μΑ	
	V _I = 0.58 V		1.65 V	25				
	V _I = 1.07 V		1.65 V	-25				
	V _I = 0.7 V		2.3 V	45				
I _{I(hold)}	V _I = 1.7 V		2.3 V	-45			μΑ	
	V _I = 0.8 V		3 V	75				
	V _I = 2 V		3 V	-75				
	$V_I = 0$ to 3.6 $V^{(2)}$		3.6 V			±500		
I _{OZ}	$V_O = V_{CC}$ or GND		3.6 V			±10	μΑ	
I _{CC}	$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V			40	μΑ	
ΔI_{CC}	One input at V _{CC} - 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μΑ	
C _i	$V_I = V_{CC}$ or GND		3.3 V		3.5		pF	
C _o	$V_O = V_{CC}$ or GND		3.3 V		7		pF	

TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 through Figure 3)

			V _{CC} = 1.8 V		V_{CC} = 2.5 V \pm 0.2 V		V _{CC} = 2.7 \		V_{CC} = 3.3 V \pm 0.3 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
f _{clock}	Clock frequency			(1)		150		150		150	MHz	
t _w	Pulse duration, CLK high or low		(1)		3.3		3.3		3.3		ns	
+	Sotup time	Data before CLK↑	(1)		4		3.6		3.1		no	
t _{su}	Setup time	CLKEN before CLK↑	(1)		3.4		3.1		2.7		ns	
	I lold time	Data after CLK↑	(1)		0		0		0			
t _h	Hold time	CLKEN after CLK↑	(1)		0		0		0		ns	

⁽¹⁾ This information was not available at the time of publication.

All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

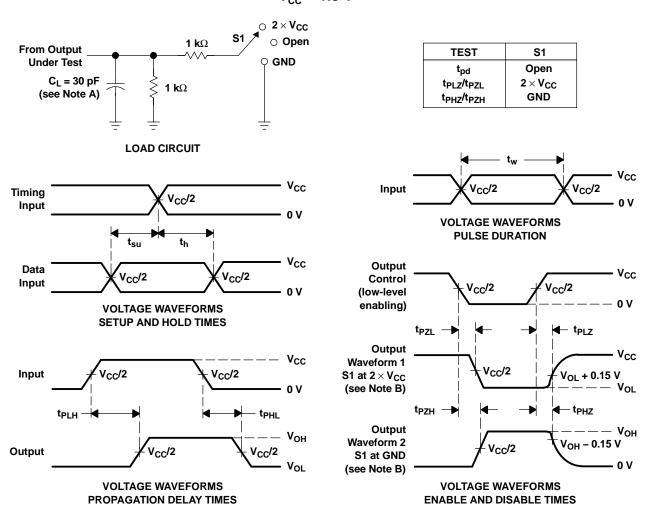
SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 through Figure 3)

PARAMETER FROM (INPUT	FROM	TO (OUTPUT)	V _{CC} = 1	1.8 V	V _{CC} = 2 ± 0.2	2.5 V ? V	V _{CC} = 2	2.7 V	V _{CC} = 3 ± 0.3	3.3 V V	UNIT
	(INPOT)	(001P01)	MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			(1)		150		150		150		MHz
t _{pd}	CLK	Q		(1)	1	6.7		6.2	1	5.3	ns
t _{en}	ŌĒ	Q		(1)	1	7.2		7	1	5.8	ns
t _{dis}	ŌĒ	Q		(1)	1	6.3		5.4	1	5	ns

⁽¹⁾ This information was not available at the time of publication.

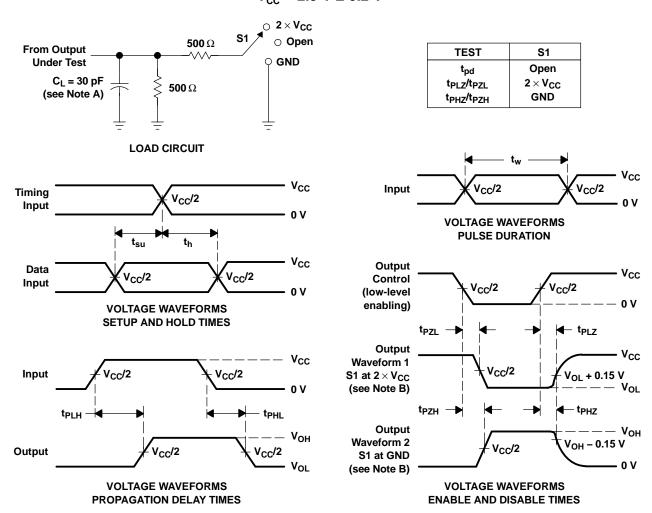
OPERATING CHARACTERISTICS


 $T_A = 25^{\circ}C$

	PARAMETER	!	TEST C	ONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT
C	Power dissipation	Outputs enabled	$C_1 = 50 \text{ pF}.$	f = 10 MHz	(1)	55	59	pF
C _{pd} capacitance		Outputs disabled	$C_L = 50 \text{ pr},$	I = IU WINZ	(1)	46	49	ρr

⁽¹⁾ This information was not available at the time of publication.

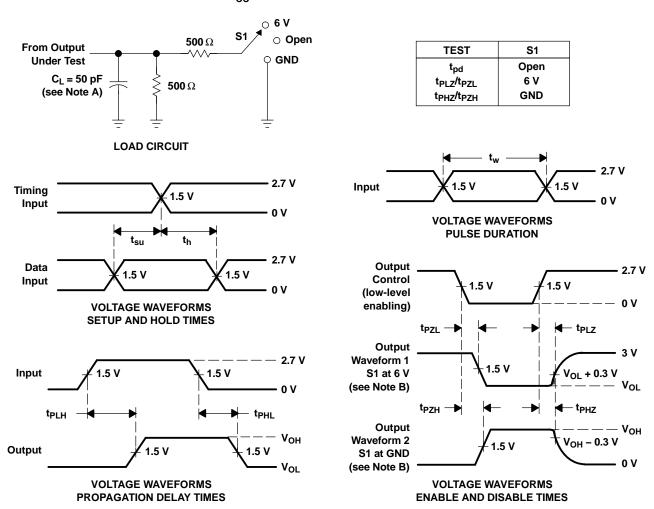
PARAMETER MEASUREMENT INFORMATION $V_{cc} = 1.8 \text{ V}$


NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z $_{O}$ = 50 Ω , t_{f} \leq 2 ns, t_{f} \leq 2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PL7} and t_{PH7} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{\rm CC}$ = 2.5 V \pm 0.2 V


NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PL7} and t_{PH7} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 3. Load Circuit and Voltage Waveforms

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

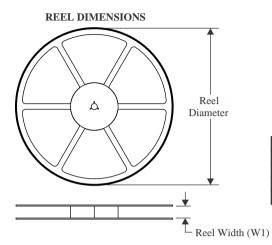
Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
SN74ALVCH162721DLR	Active	Production	SSOP (DL) 56	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH162721
SN74ALVCH162721DLR.B	Active	Production	SSOP (DL) 56	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH162721
SN74ALVCH162721GR	Active	Production	TSSOP (DGG) 56	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH162721
SN74ALVCH162721GR.B	Active	Production	TSSOP (DGG) 56	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH162721

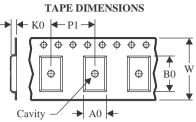
⁽¹⁾ Status: For more details on status, see our product life cycle.

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

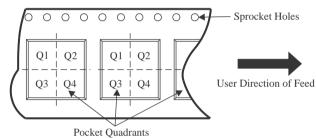
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

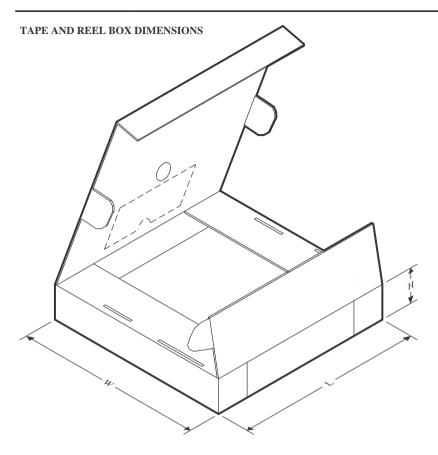
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

	•
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

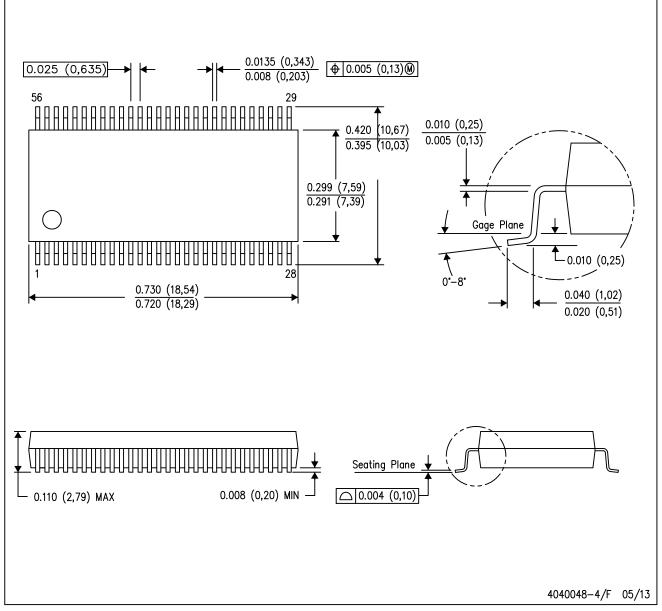


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALVCH162721DLR	SSOP	DL	56	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1
SN74ALVCH162721GR	TSSOP	DGG	56	2000	330.0	24.4	8.9	14.7	1.4	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025



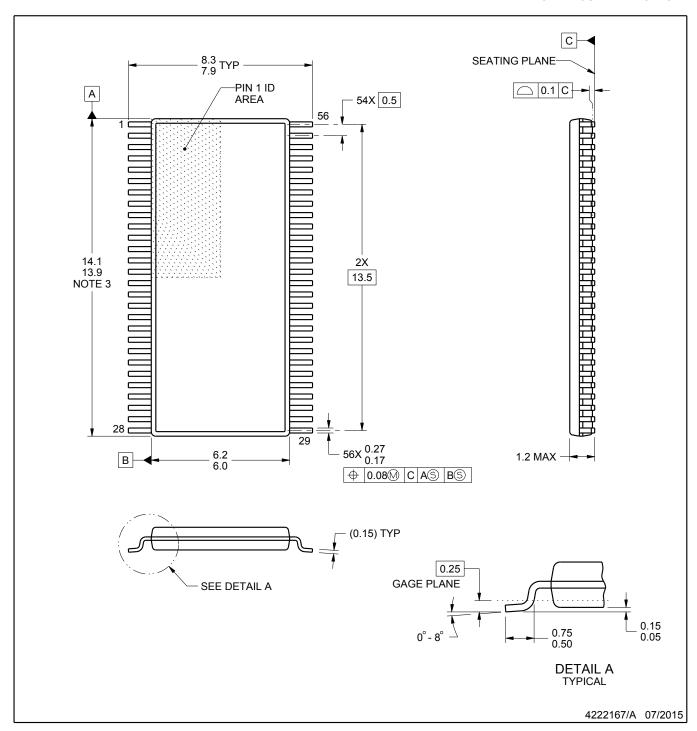
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALVCH162721DLR	SSOP	DL	56	1000	356.0	356.0	53.0
SN74ALVCH162721GR	TSSOP	DGG	56	2000	356.0	356.0	45.0

DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE

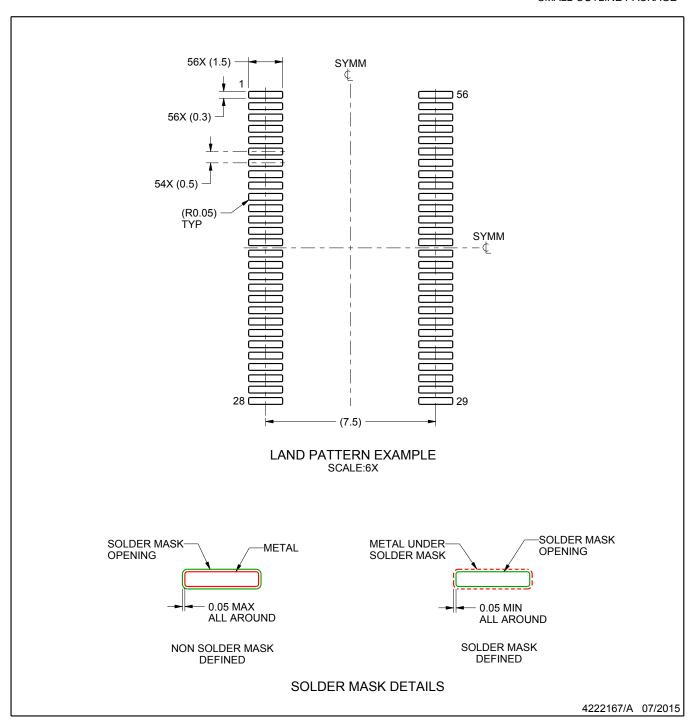
NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

SMALL OUTLINE PACKAGE

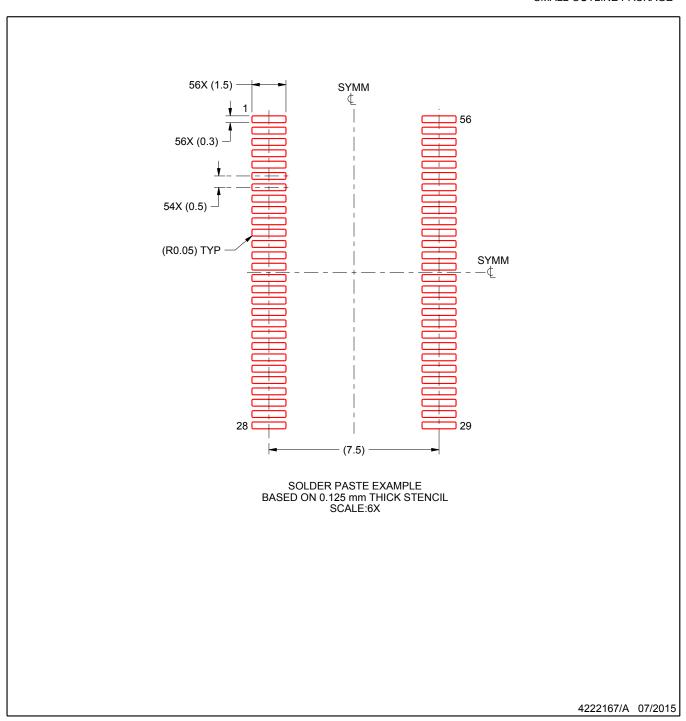
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025