

SN74LVC1G86-Q1

SCES873 - MARCH 2017

SN74LVC1G86-Q1 Single 2-Input Exclusive-OR Gate

Features

- **Qualified for Automotive Applications**
- AEC-Q100 Qualified With the Following Results:
 - ±4000-V Human-Body Model (HBM) ESD Classification Level 3A
 - ±1000-V Charged-Device Model (CDM) ESD Classification Level C5
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Supports Down Translation to V_{CC}
- Low Power Consumption, 15-µA Maximum I_{CC}
- Maximum t_{pd} of 6 ns at 3.3 V and 50-pF load
- ±24-mA Output Drive at 3.3 V
- Ioff Supports Partial-Power-Down Mode, and Back-**Drive Protection**
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

Applications

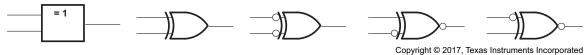
- Automotive HEV/EV and Powertrain
- Automotive Infotainment and Cluster
- Automotive Advanced Driver Assistance Systems
- **Automotive Body Electronics**

3 Description

The SN74LVC1G86-Q1 is an automotive qualified device that performs the Boolean function $Y = \overline{AB} +$ AB in positive logic. This single 2-input exclusive-OR gate is designed for 1.65-V to 5.5-V V_{CC} operation.

If the input is low, the other input is reproduced in true form at the output. If the input is high, the signal on the other input is reproduced inverted at the output. This device has low power consumption with maximum t_{pd} of 6 ns at 3.3 V and 50-pF capacitive load. The max output drive is ±32-mA at 4.5 V and ±24-mA at 3.3 V.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current back flow through the device when it is powered down.


Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)	
SN74LVC1G86QDCKRQ1	SC70 (5)	2.00 mm × 1.25 mm	

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Functional Block Diagram

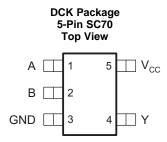
EXCLUSIVE OR

An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.

These are five equivalent exclusive-OR symbols valid for an SN74LVC1G86-Q1 gate in positive logic; negation may be shown at any two ports.

SCES873 – MARCH 2017 www.ti.com

Table of Contents


1	Features 1		8.2 Functional Block Diagram	
2	Applications 1		8.3 Feature Description	
3	Description 1		8.4 Function Table	9
4	Revision History2	9	Application and Implementation	10
5	Pin Configuration and Functions 3		9.1 Application Information	. 10
6	Specifications4		9.2 Typical Application	. 10
Ü	6.1 Absolute Maximum Ratings	10	Power Supply Recommendations	1
	6.2 ESD Ratings	11	Layout	12
	6.3 Recommended Operating Conditions 4		11.1 Layout Guidelines	. 12
	6.4 Thermal Information		11.2 Layout Example	. 12
	6.5 Electrical Characteristics	12	Device and Documentation Support	13
	6.6 Switching Characteristics, C ₁ = 30 pF or 50 pF 6		12.1 Receiving Notification of Documentation Updates	: 1:
	6.7 Operating Characteristics		12.2 Community Resources	. 13
	6.8 Typical Characteristics		12.3 Trademarks	. 13
7	Parameter Measurement Information		12.4 Electrostatic Discharge Caution	. 13
8	Detailed Description 8		12.5 Glossary	. 13
•	8.1 Overview	13	Mechanical, Packaging, and Orderable Information	1:

4 Revision History

DATE	REVISION	NOTES
March 2017	*	Initial release.

5 Pin Configuration and Functions

Pin Functions⁽¹⁾

PIN		DESCRIPTION						
NAME	1/0	DESCRIPTION						
Α	I	Input A						
В	1	Input B						
GND	_	Ground						
Y	0	Output Y						
V _{cc}	_	Positive Supply						
	A B GND	NAME						

⁽¹⁾ See mechanical drawings for dimensions.

TEXAS INSTRUMENTS

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V_{CC}	Supply voltage		-0.5	6.5	V
VI	Input voltage ⁽²⁾		-0.5	6.5	V
Vo	/ _O Voltage applied to any output in the high-impedance or power-off state ⁽²⁾			6.5	V
Vo	Voltage applied to any output in the high or low state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		- 50	mA
Io	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA
T_{J}	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)		Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±4000	V
	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011	±1000	V

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT	
.,	Complement	Operating	1.65	5.5	\ /	
V_{CC}	Supply voltage	Operating	V			
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}			
.,		V _{CC} = 2.3 V to 2.7 V	1.7		\ /	
V_{IH}	High-level input voltage	V _{CC} = 3 V to 3.6 V	2		V	
		V _{CC} = 4.5 V to 5.5 V	0.7 × V _{CC}			
	Low-level input voltage	V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}		
V _{IL}		V _{CC} = 2.3 V to 2.7 V		0.7	V	
		V _{CC} = 3 V to 3.6 V		0.8	V	
		V _{CC} = 4.5 V to 5.5 V		0.3 × V _{CC}		
VI	Input voltage	•	0	5.5	V	
Vo	Output voltage		0	V_{CC}	V	
		V _{CC} = 1.65 V		-4		
		V _{CC} = 2.3 V		-8		
I_{OH}	High-level output current	V 2V		-16	mA	
		V _{CC} = 3 V		-24		
		V _{CC} = 4.5 V		-32		

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See Implications of Slow or Floating CMOS Inputs, SCBA004.

Product Folder Links: SN74LVC1G86-Q1

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽³⁾ The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

www.ti.com

Recommended Operating Conditions (continued)

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
		V _{CC} = 1.65 V		4	
	$V_{CC} = 2.3 \text{ V}$		8		
I_{OL}	Low-level output current	vel output current		16	mA
		$V_{CC} = 3 V$		24	
		V _{CC} = 4.5 V		32	
	Input transition rise or fall rate	$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$		20	
Δt/Δν		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V
		$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$		5	
T _A	Operating free-air temperature	DCK package	-40	125	°C

6.4 Thermal Information

		SN74LVC1G86-Q1	
	THERMAL METRIC ⁽¹⁾	DCK (SC70)	UNIT
		5 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	277.6	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	179.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	75.9	°C/W
ΨЈТ	Junction-to-top characterization parameter	49.7	°C/W
ΨЈВ	Junction-to-board characterization parameter	75.1	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP ⁽¹⁾	MAX	UNIT
	$I_{OH} = -100 \ \mu A$	1.65 V to 5.5 V	$V_{CC} - 0.1$			
	$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			
\/	$I_{OH} = -8 \text{ mA}$	2.3 V	1.9			V
V _{OH}	I _{OH} = -16 mA	3 V	2.4			V
	$I_{OH} = -24 \text{ mA}$	3 V	2.3			
	$I_{OH} = -32 \text{ mA}$	4.5 V	3.8			
	I _{OL} = 100 μA	1.65 V to 5.5 V			0.1	
	I _{OL} = 4 mA	1.65 V			0.45	
	I _{OL} = 8 mA	2.3 V			0.3 V	\ /
V _{OL}	I _{OL} = 16 mA	2.1/			0.4	V
	I _{OL} = 24 mA	3 V			0.55	
	I _{OL} = 32 mA	4.5 V			0.55	
I _I A or B input	V _I = 5.5 V or GND	0 to 5.5 V			±5	μΑ
I _{off}	V_I or $V_O = 5.5 \text{ V}$	0			±10	μΑ
I _{CC}	$V_I = V_{CC}$ or GND, $I_O = 0$	1.65 V to 5.5 V			15	μΑ
ΔI _{CC}	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 5.5 V			500	μA
C _i	$V_I = V_{CC}$ or GND	3.3 V		6		pF

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

TEXAS INSTRUMENTS

6.6 Switching Characteristics, $C_L = 30 pF or 50 pF$

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)			TO (OUTPUT)	TEST CONDITIONS	V _{CC} = 1 ± 0.15		V _{CC} = ± 0.:		V _{CC} = 3 ± 0.3		V _{CC} = ± 0.5		UNIT
		(001701)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
t _{pd}	A or B	Υ	-40°C to 125°C temperature range, see Figure 2	3.5	12	1.8	7	1.3	6	1	5	ns		

6.7 Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER TEST CONDITIONS		V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	V _{CC} = 5 V	UNIT
	PARAMETER	1E31 CONDITIONS	TYP	TYP	TYP	TYP	UNII
C_{pd}	Power dissipation capacitance	f = 10 MHz	22	22	22	24	pF

6.8 Typical Characteristics

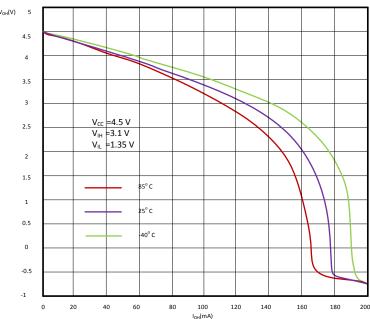
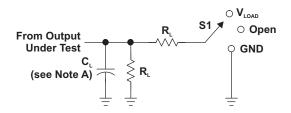



Figure 1. V_{oh} vs I_{oh} at 4.5 V

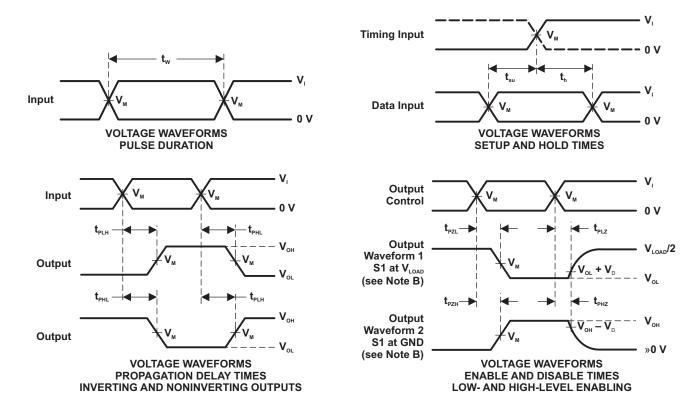
www.ti.com

7 Parameter Measurement Information

LOAD CIRCUIT

5 V ± 0.5 V

TEST	S1
$t_{_{\mathrm{PLH}}}/t_{_{\mathrm{PHL}}}$	Open
$t_{_{\mathrm{PLZ}}}/t_{_{\mathrm{PZL}}}$	V _{LOAD}
t_{PHZ}/t_{PZH}	GND


V.	INPUTS		V	V	_		V	
V _{cc}	V,	t,/t,	V _M	V _{LOAD}	C _L	R _L	V _D	
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 Μ Ω	0.15 V	
2.5 V ± 0.2 V	V_{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	15 pF	1 Μ Ω	0.15 V	
3.3 V ± 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	15 pF	1 Μ Ω	0.3 V	

15 pF

1 $M\Omega$

0.3 V

≤2.5 ns

NOTES: A. C_L includes probe and jig capacitance.

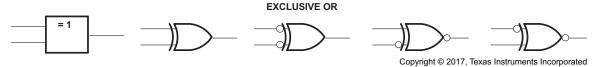
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z₀ = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. $t_{\mbox{\tiny PLZ}}$ and $\dot{t}_{\mbox{\tiny PHZ}}$ are the same as $t_{\mbox{\tiny dis}}.$
- F. $t_{\mbox{\tiny PZL}}$ and $t_{\mbox{\tiny PZH}}$ are the same as $t_{\mbox{\tiny en}}.$
- G. $t_{\mbox{\tiny PLH}}$ and $t_{\mbox{\tiny PHL}}$ are the same as $t_{\mbox{\tiny od}}$
- H. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

Product Folder Links: SN74LVC1G86-Q1

TEXAS INSTRUMENTS

B Detailed Description


8.1 Overview

The SN74LVC1G86-Q1 is an automotive qualified device that performs the Boolean function $Y = \overline{A}B + A\overline{B}$ in positive logic. This single 2-input exclusive-OR gate is designed for 1.65-V to 5.5-V V_{CC} operation.

A common application is as a true and complement element. If the input is low, the other input is reproduced in true form at the output. If the input is high, the signal on the other input is reproduced inverted at the output.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

8.2 Functional Block Diagram

These are five equivalent exclusive-OR symbols valid for an SN74LVC1G86-Q1 gate in positive logic; negation may be shown at any two ports.

8.3 Feature Description

8.3.1 Balanced High-Drive CMOS Push-Pull Outputs

A balanced output allows the device to sink and source similar currents. The high drive capability of this device creates fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the power output of the device to be limited to avoid thermal runaway and damage due to over-current. The electrical and thermal limits defined the in the *Absolute Maximum Ratings* must be followed at all times.

8.3.2 Standard CMOS Inputs

Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the *Electrical Characteristics*. The worst case resistance is calculated with the maximum input voltage, given in the *Recommended Operating Conditions*, and the maximum input leakage current, given in the *Electrical Characteristics*, using ohm's law ($R = V \div I$).

Signals applied to the inputs need to have fast edge rates, as defined by $\Delta t/\Delta v$ in *Recommended Operating Conditions* to avoid excessive currents and oscillations. If tolerance to a slow or noisy input signal is required, a device with a Schmitt-trigger input should be utilized to condition the input signal prior to the standard CMOS input.

Feature Description (continued)

8.3.3 Clamp Diodes

The inputs and outputs to this device have negative clamping diodes.

CAUTION

Avoid any voltage below or above the input or output voltage specified in the *Absolute Maximum Ratings*. In this event, the current must be limited to the maximum input or output clamp current value indicated in the *Absolute Maximum Ratings* to avoid damage to the device.

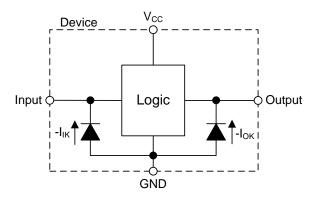


Figure 3. Electrical Placement of Clamping Diodes for Each Input and Output

8.3.4 Partial Power Down (I_{off})

The inputs and outputs for this device enter a high impedance state when the supply voltage is 0 V. The maximum leakage into or out of any input or output pin on the device is specified by I_{off} in the *Electrical Characteristics*.

8.3.5 Over-voltage Tolerant Inputs

Input signals to this device can be driven above the supply voltage so long as they remain below the maximum input voltage value specified in the *Recommended Operating Conditions* .

8.4 Function Table

Table 1 lists the functional modes of the SN74LVC1G86-Q1.

Table 1. Function Table

INP	UTS	OUTPUT
Α	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

Copyright © 2017, Texas Instruments Incorporated

Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74LVC1G86-Q1 device can accept input voltages up to 5.5 V at any valid V_{CC} which makes the device suitable for down translation. This feature of the SN74LVC1G86-Q1 makes it ideal for various bus interface applications.

9.2 Typical Application

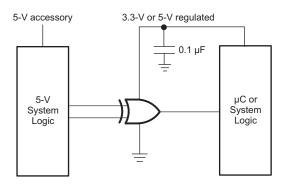


Figure 4. Typical Application Schematic

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.

9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - For rise time and fall time specifications, see $\Delta t/\Delta V$ in the *Recommended Operating Conditions* table.
 - For specified High and low levels, see V_{IH} and V_{II} in the Recommended Operating Conditions table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- 2. Recommended Output Conditions
 - Load currents should not exceed 32 mA per output and 50 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

www.ti.com SCES873 – MARCH 2017

Typical Application (continued)

9.2.3 Application Curve

INSTRUMENTS

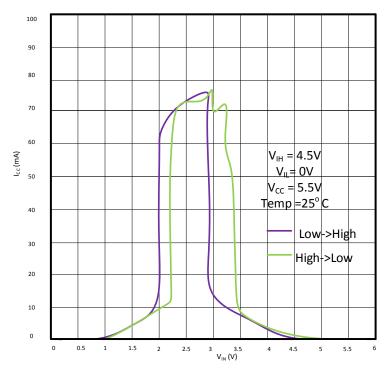


Figure 5. I_{CC} vs. V_{IN}

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μF is recommended. If there are multiple V_{CC} pins, 0.01 μF or 0.022 μF is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1- μF and 1- μF are commonly used in parallel. The bypass capacitor must be installed as close to the power pin as possible for best results.

SCES873 – MARCH 2017 www.ti.com

TEXAS INSTRUMENTS

11 Layout

11.1 Layout Guidelines

Even low data rate digital signals can have high frequency signal components due to fast edge rates. When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners. Figure 6 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

11.2 Layout Example

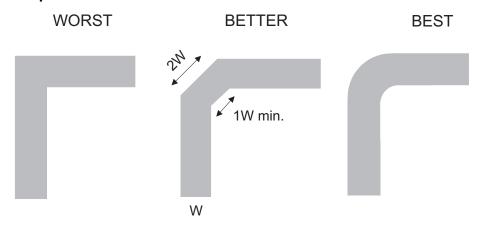


Figure 6. Trace Example

www.ti.com

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2017, Texas Instruments Incorporated

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/			Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74LVC1G86QDCKRQ1	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	16T
SN74LVC1G86QDCKRQ1.A	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	16T
SN74LVC1G86QDCKRQ1.B	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	16T
SN74LVC1G86QDCKTQ1	Active	Production	SC70 (DCK) 5	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	16T
SN74LVC1G86QDCKTQ1.B	Active	Production	SC70 (DCK) 5	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	16T

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

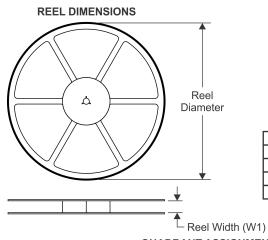
www.ti.com 10-Nov-2025

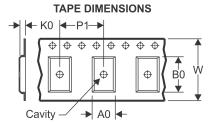
OTHER QUALIFIED VERSIONS OF SN74LVC1G86-Q1:

● Catalog : SN74LVC1G86

● Enhanced Product : SN74LVC1G86-EP

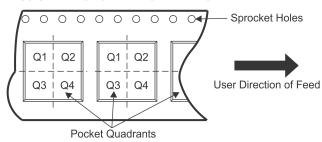
NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

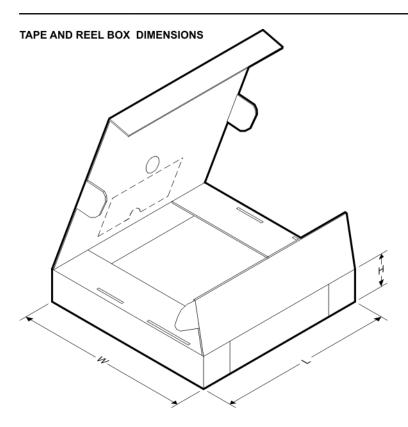

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Apr-2020


TAPE AND REEL INFORMATION

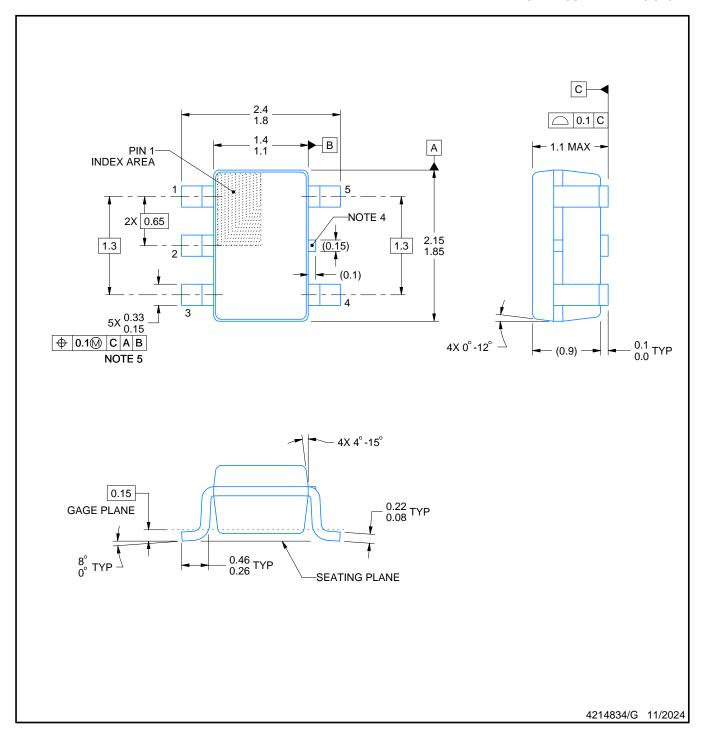
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC1G86QDCKRQ1	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74LVC1G86QDCKTQ1	SC70	DCK	5	250	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3

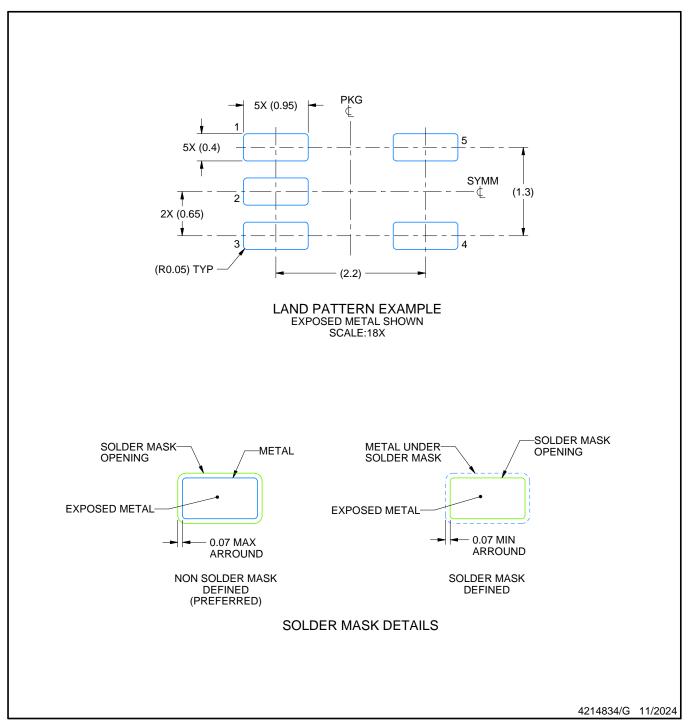
www.ti.com 24-Apr-2020



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC1G86QDCKRQ1	SC70	DCK	5	3000	180.0	180.0	18.0
SN74LVC1G86QDCKTQ1	SC70	DCK	5	250	180.0	180.0	18.0

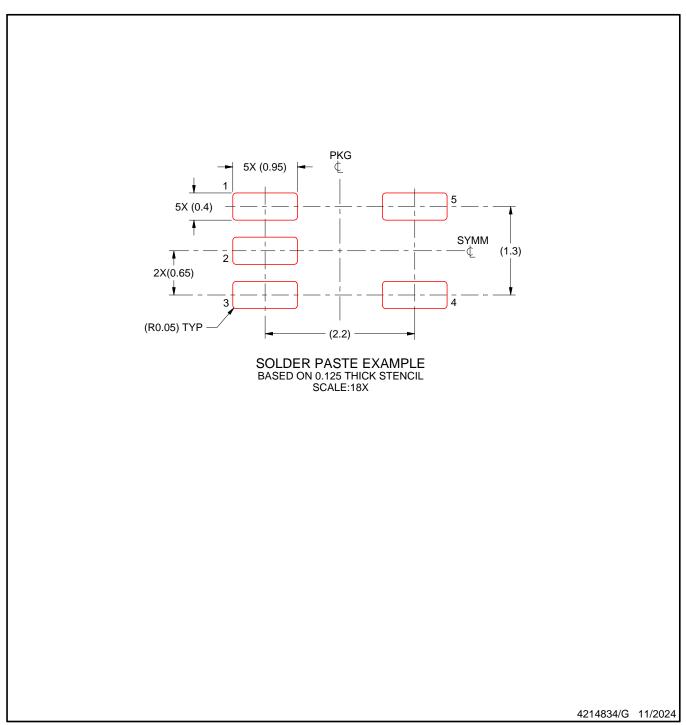
SMALL OUTLINE TRANSISTOR


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-203.

- 4. Support pin may differ or may not be present.5. Lead width does not comply with JEDEC.
- 6. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side

SMALL OUTLINE TRANSISTOR



NOTES: (continued)

7. Publication IPC-7351 may have alternate designs.8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 10. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025