

SN75176A

SLLS100C - JUNE 1984 - REVISED OCTOBER 2022

SN75176A Differential Bus Transceiver

1 Features

- Bidirectional Transceiver
- Meets or Exceeds the Requirements of ANSI Standards EIA/TIA-422-B and ITU Recommendations V.11
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Driver and Receiver Outputs
- Individual Driver and Receiver Enables
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capability ±60 mA Max
- Thermal-Shutdown Protection
- Driver Positive-Current Limiting and Negative-**Current Limiting**
- Receiver Input Impedance 12 kΩ Min
- Receiver Input Sensitivity ±200 mV
- Receiver Input Hysteresis 50 mV Typ
- Operates From Single 5-V Supply
- Lower Power Requirements

2 Applications

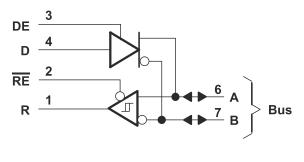
- Low Speed RS485 communication (5 Mbps or
- For 10 Mbps, use SN75176B

3 Description

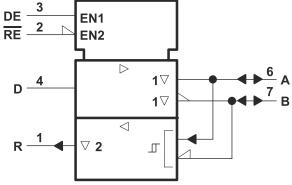
The SN75176A differential bus transceiver is a monolithic integrated circuit designed for bidirectional data communication on multipoint bus-transmission lines. It is designed for balanced transmission lines and meets ANSI Standard EIA/TIA-422-B and ITU Recommendation V.11.

The SN75176A combines a 3-state differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and activelow enables, respectively, that can be externally connected together to function as a direction control. The driver differential outputs and the receiver differential inputs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or VCC = 0. These ports feature wide positive and negative commonmode voltage ranges making the device suitable for party-line applications.

The driver is designed to handle loads up to 60 mA of sink or source current. The driver features positive- and negative-current limiting and thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150°C. The receiver features a minimum input impedance of 12 k Ω , an input sensitivity of ±200 mV, and a typical input hysteresis of 50 mV.


The SN75176A can be used in transmission-line applications employing the SN75172 and SN75174 quadruple differential line drivers and SN75173 and SN75175 quadruple differential line receivers.

The SN75176A is characterized for operation from 0°C to 70°C.


Device Information⁽¹⁾

PART NUMBER	PACKAGE (PIN)	BODY SIZE (NOM)
SN75176A	SOIC (8)	4.90 mm × 3.91 mm
SNISTIOA	PDIP (8)	9.81 mm × 6.35 mm

For all available packages, see the orderable addendum at the end of the datasheet.

Table of Contents

1 Features	1 8 Detailed Description	12
2 Applications		
3 Description		12
4 Revision History		
5 Pin Configuration and Functions	3 8.4 Device Functional Modes	
6 Specifications		
6.1 Absolute Maximum Ratings		
6.2 Recommended Operating Conditions		
6.3 Thermal Information		15
6.4 Dissipation Rating Table		
6.5 Electrical Characteristics – Driver		
6.6 Electrical Characteristics – Receiver		
6.7 Switching Characteristics – Driver		17
6.8 Switching Characteristics – Receiver		
6.9 Typical Characteristics		
7 Parameter Measurement Information		
4 Revision History Changes from Revision B (January 2015) to Revi	rision C (October 2022)	Page
Bolotou the 202 / tath/go table		
Changed the <i>Thermal Information</i> table		4
Changes from Revision A (May 1995) to Revision	n B (January 2015)	Page
 Added Applications, Device Information table, Pir table, Typical Characteristics, Feature Description Implementation section, Power Supply Recomme Documentation Support section, and Mechanical, 	on section, Device Functional Modes, Application rendations section, Layout section, Device and	n and

Deleted Ordering Information table......1

5 Pin Configuration and Functions

D OR P PACKAGE (TOP VIEW)

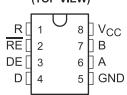


Table 5-1. Pin Functions

Р	IN	TYPE	DESCRIPTION
NAME	NO.	IIPE	DESCRIPTION
R	1	0	Logic Data Output from RS-485 Receiver
RE	2	I	Receive Enable (active low)
DE	3	I	Driver Enable (active high)
D	4	I	Logic Data Input to RS-485 Driver
GND	5	_	Device Ground Pin
A	6	I/O	RS-422 or RS-485 Data Line
В	7	I/O	RS-422 or RS-485 Data Line
V _{CC}	8	_	Power Input. Connect to 5-V Power Source.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{CC}	Supply Voltage ⁽²⁾		7	V
	Voltage range at any bus terminal	-10	15	V
VI	Enable input voltage		5.5	V
	Continuous Total power Dissipation	See D	issipation Ratin	g Table
T _A	Operating free-air temperature range	0	70	°C
T _{stg}	Storage temperature range	65	150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Section 6.2*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	TYP	MAX	UNIT
V _{CC}	Supply Voltage		4.75	5	5.25	V
V _I or V _{IC}	Voltage at any buss terminal (sep	arately or common mode)	-7		12	V
V _{IH}	High-level input voltage	D, DE, and RE	2			V
V _{IL}	Low-level input voltage	D, DE, and RE			0.8	V
V _{ID}	Differential input voltage ⁽¹⁾				±12	V
	I Both Lovel and a death and a second	Driver			-60	mA
I _{OH}	High-level output current	Receiver			-400	μA
	Low level output ourrent	Driver			60	 ∧
I _{OL}	Low-level output current Receiver				8	mA
T _A	Operating free-air temperature		0		70	°C

⁽¹⁾ Differential-input/output bus voltage is measured at the non-inverting terminal A with respect to the inverting terminal B.

6.3 Thermal Information

	TUEDMAL METDIO(1)	D	Р	
THERMAL METRIC ⁽¹⁾		8 PINS	8 PINS	UNIT
R _{0JA}	Junction-to-ambient thermal resistance	116.7	66.5	
R _{θJC(top)}	Junction-to-case (top) thermal resistance	56.3	55.6	
R _{θJB}	Junction-to-board thermal resistance	63.4	42.9	°C/W
ΨЈТ	Junction-to-top characterization parameter	8.8	23.9	C/vv
ΨЈВ	Junction-to-board characterization parameter	62.6	42.5	
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.4 Dissipation Rating Table

PACKAGE	T _A ≤ 25°C	DERATING FACTOR	T _A = 70°C
PACKAGE	POWER RATING	ABOVE T _A = 25°C	POWER RATING
D	725 mW	5.8 mW/°C	464 mW
Р	1100 mW	8.8 mW/°C	704 mW

Product Folder Links: SN75176A

⁽²⁾ All voltage values, except differential input/output bus voltage, are with respect to network ground terminal.

6.5 Electrical Characteristics - Driver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	ONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}	Input clamp voltage	I _I = -18 mA				-1.5	V
V _{OH}	High-level output voltage	V _{IH} = 2 V, V _{IL} = 0.8 V	, I _{OH} = –33 mA		3.7		V
V _{OL}	Low-level output voltage	V _{IH} = 2 V, V _{IL} = 0.8 V	, I _{OH} = 33 mA		1.1		V
V _{OD1}	Differential output voltage	I _O = 0				2V _{OD2}	V
11.7	Differential output voltage	RL = 100 Ω, see Figu	ire 7-1	2	2.7		V
V _{OD2}	Differential output voltage	RL = 54Ω , see Figure	e 7-1	1.5	2.4		V
$\Delta V_{OD} $	Change in magnitude of differential output voltage ⁽²⁾					±0.2	٧
V _{OC}	Common-mode output voltage ⁽³⁾	RL = 54 Ω or 100 Ω , see Figure 7-1				3	V
Δ V _{OC}	Change in magnitude of common-mode output voltage ⁽²⁾					±0.2	٧
	Outsidessmoot	0.4	V _O = 12 V			1	^
Io	Output current	Output disabled ⁽⁴⁾	V _O = -7 V			-0.8	mA
I _{IH}	High-level input current	V _I = 2.4 V				20	μA
I _{IL}	Low-level input current	V _I = 0.4 V				-400	μA
		V _O = -7 V				-250	
Ios	Short-circuit output current	V _O = V _{CC}				250	mA
		V _O = 12 V				500	
	Cumply suggest (total paskage)	No load	Outputs enabled		35	50	A
I _{CC}	Supply current (total package)	No load	Outputs disabled		26	40	mA

- (1) All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.
- (2) Δ|V_{OD}| and D|V_{OC}| are the changes in magnitude of V_{OD} and V_{OC} respectively, that occur when the input is changed from a high level to a low level.
- (3) In ANSI Standard EIA/TIA-422-B, V_{OC}, which is the average of the two output voltages with respect to GND, is called output offset voltage, V_{OS}.
- (4) This applies for both power on and off; refer to ANSI Standard EIA/TIA-422-B for exact conditions.

6.6 Electrical Characteristics - Receiver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	$V_O = 2.7 \text{ V, } I_O = -0.4 \text{ mA}$				0.2	V
V _{IT} _	Negative-going input threshold voltage	V _O = 0.5 V, I _O = 8 mA		-0.2			V
V _{hys}	Input hysteresis voltage (V _{IT} + – V _{IT-})				50		mV
V _{IK}	Enable clamp voltage	I _I = -18 mA				-1.5	V
V _{OH}	High-level output voltage	V _{ID} = 200 mV, I _{OH} = –400 μA See Figure 7-2		2.7			V
V _{OL}	Low-level output voltage	V _{ID} = 200 mV, I _{OH} = 8 mA See Figure 7-2				0.45	V
I _{OZ}	High-impedance-state output current	V _O = 0.4 V to 2.4 V				±20	μA
	Line input current	Other input = 0 V ⁽²⁾	V _I = 12 V			1	m Λ
l I	Line input current	Other input = 0 V(=)	V _I = -7 V			-0.8	mA
I _{IH}	High-level enable input current	V _{IH} = 2.7 V				20	μA
I _{IL}	Low-level enable input current	V _{IL} = 0.4 V				-100	μΑ
ri	Input resistance	-		12			kΩ
Ios	Short-circuit output current			-15		-85	mA

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

6.6 Electrical Characteristics - Receiver (continued)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP ⁽¹⁾	MAX	UNIT
	Supply current (total package)	No load	Outputs enabled		35	50	mΛ
ICC	Supply current (total package)	No load	Outputs disabled		26	40	mA

- All typical values are at V_{CC} = 5 V, TA = 25°C. This applies for both power on and power off. Refer to ANSI Standard EIA/TIA-422-B for exact conditions.

6.7 Switching Characteristics – Driver

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{d(OD)}	Differential-output delay time	$R_1 = 60 \Omega$, See Figure 7-3		40	60	ns
t _{t(OD)}	Differential-output transition time	- N _L = 00 Ω, See Figure 7-3		65	95	ns
t _{PZH}	Output enable time to high level	R_L = 110 Ω, See Figure 7-4		55	90	ns
t _{PZL}	Output enable time to low level	R_L = 110 Ω, See Figure 7-5		30	50	ns
t _{PHZ}	Output disable time form high level	R_L = 110 Ω, See Figure 7-4		85	130	ns
t _{PLZ}	Output disable time from low level	R _L = 110 Ω, See Figure 7-5		20	40	ns

6.8 Switching Characteristics - Receiver

 $V_{CC} = 5 \text{ V}, C_L = 15 \text{ pF}, T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high- level output	V _{ID} = -1.5 V to 1.5 V, See Figure 7-6		21	35	ns
t _{PHL}	Propagation delay time, high-to-low-level output			23	35	ns
t _{PZH}	Output enable time to high level	Con Figure 7.7		10	30	ns
t _{PZL}	Output enable time to low level	See Figure 7-7		12	30	ns
t _{PHZ}	Output disable time from high level	Con Figure 7.7		20	35	ns
t _{PLZ}	Output disable time from low level	See Figure 7-7		17	25	ns

Product Folder Links: SN75176A

6.9 Typical Characteristics

Conditions listed in each chart

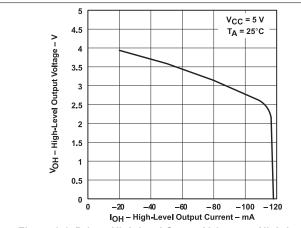


Figure 6-1. Driver, High-level Output Voltage vs High-Level Output Current

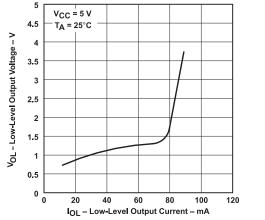


Figure 6-2. Driver, Low-Level Output Voltage vs Low-Level Output Current

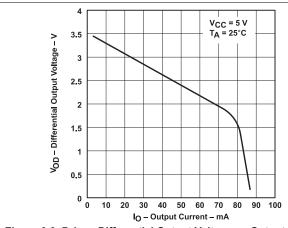


Figure 6-3. Driver, Differential Output Voltage vs Output Current

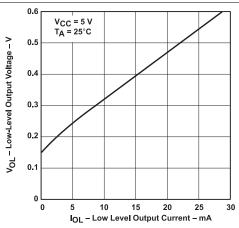


Figure 6-4. Receiver, Low-Level Output Voltage vs Low-Level Output Current

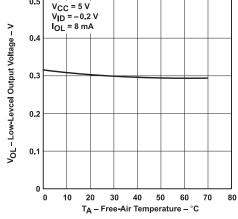


Figure 6-5. Receiver, Low-Level Output Voltage vs Low-Level Output Current

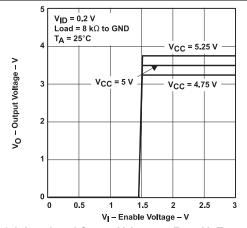
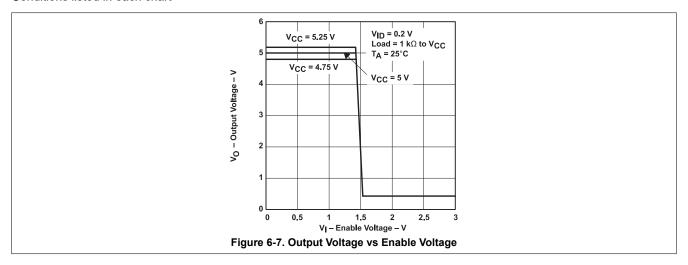



Figure 6-6. Low-Level Output Voltage vs Free-Air Temperature

6.9 Typical Characteristics (continued)

Conditions listed in each chart

7 Parameter Measurement Information

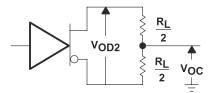


Figure 7-1. Driver V_{OD} and V_{OC}

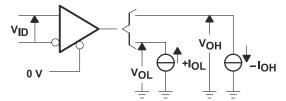
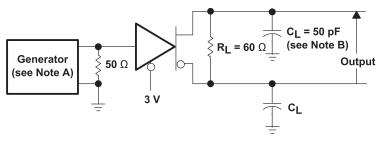
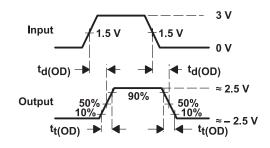
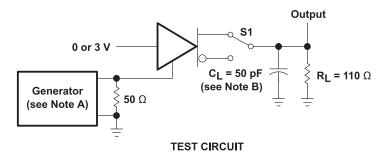
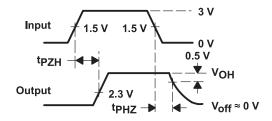




Figure 7-2. Receiver V_{OH} and V_{OL}

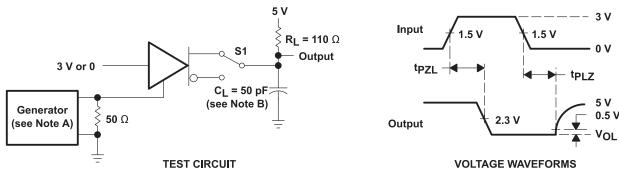



TEST CIRCUIT

VOLTAGE WAVEFORMS

- A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, 50% duty cycle, $t_r \le 6$ ns, $t_f \le 6$ ns, $Z_O = 50$ W.
- B. C_L includes probe and jig capacitance.

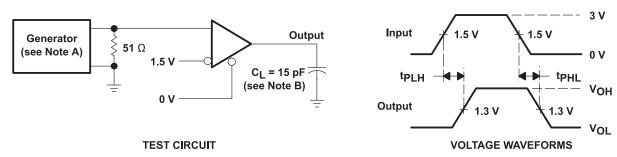
Figure 7-3. Driver Test Circuit and Voltage Waveforms



VOLTAGE WAVEFORMS

- A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, 50% duty cycle, t_r ≤ 6 ns, t_f ≤ 6 ns, Z_O = 50 W.
- B. C_L includes probe and jig capacitance.

Figure 7-4. Driver Test Circuit and Voltage Waveforms



A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, 50% duty cycle, $t_r \le 6$ ns, $t_f \le 6$ ns, $Z_O = 50$ W.

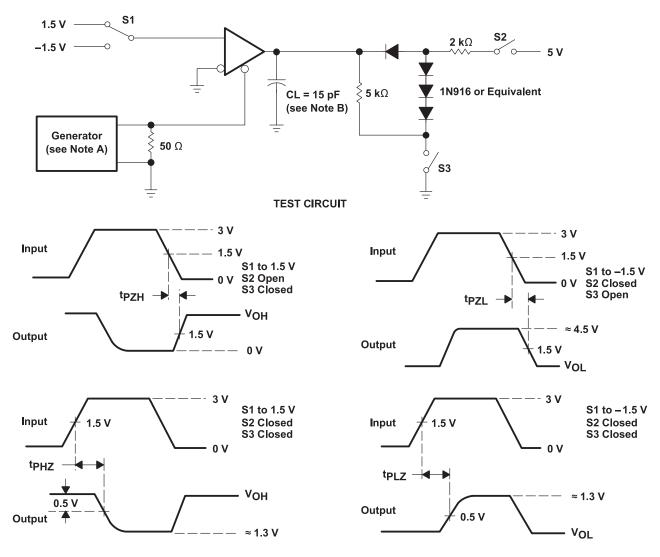

B. C_L includes probe and jig capacitance.

Figure 7-5. Driver Test Circuit and Voltage Waveforms

- A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, 50% duty cycle, t_f ≤ 6 ns, t_f ≤ 6 ns, Z_O = 50 W.
- B. C_L includes probe and jig capacitance.

Figure 7-6. Receiver Test Circuit and Voltage Waveforms

VOLTAGE WAVEFORMS

A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, 50% duty cycle, $t_r \le 6$ ns, $t_f \le 6$ ns,

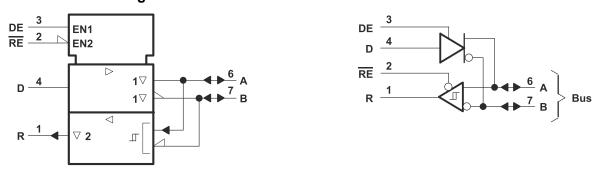
B. C_L includes probe and jig capacitance.

Figure 7-7. Receiver Test Circuit and voltage Waveforms

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

8 Detailed Description


8.1 Overview

The SN75176A differential bus transceiver is a monolithic integrated circuit designed for bidirectional data communication on multipoint bus-transmission lines. It is designed for balanced transmission lines and meets ANSI Standard EIA/TIA-422-B and ITU Recommendation V.11.

The SN75176A combines a 3-state differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, that can be externally connected together to function as a direction control. The driver differential outputs and the receiver differential inputs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or $V_{CC} = 0$. These ports feature wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

The driver is designed to handle loads up to 60 mA of sink or source current. The driver features positiveand negative-current limiting and thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150° C. The receiver features a minimum input impedance of $12 \text{ k}\Omega$, an input sensitivity of $\pm 200 \text{ mV}$, and a typical input hysteresis of 50 mV.

8.2 Functional Block Diagrams

This symbol is in accordance with ANSI/IEEE Std 91-1984and IEC Publication 617-12

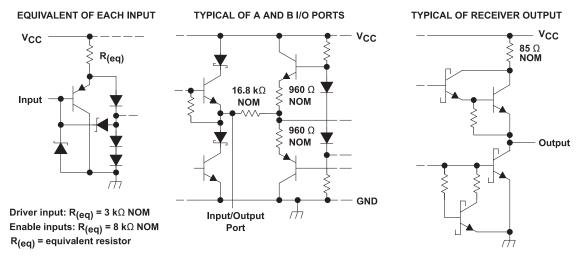


Figure 8-1. Schematics of Inputs and Outputs

8.3 Feature Description

8.3.1 Driver

The driver converts a TTL logic signal level to RS-422 and RS-485 compliant differential output. The TTL logic input, DE pin, can be used to turn the driver on and off.

Submit Document Feedback

Table 8-1. Driver Function Table (1	Table 8-	1. Driver	Function	Table
-------------------------------------	----------	-----------	-----------------	-------

INPUT	ENABLE	DIFFERENTIAL OUTPUTS				
D	DE	Α	В			
Н	Н	Н	L			
L	Н	L	Н			
X	L	Z	Z			

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off)

8.3.2 Receiver

The receiver converts a RS-422 or RS-485 differential input voltage to a TTL logic level output. The TTL logic input, RE pin, can be used to turn the receiver logic output on and off.

Table 8-2. Receiver Function Table (1)

DIFFERENTIAL INPUTS A-B	ENABLE RE	OUTPUT R
V _{ID} ≥ 0.2 V	L	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	U
V _{ID} ≤ -0.2 V	L	L
X	н	Z
Open	L	U

(1) H = high level,

L = low level,

U = unkown,

Z = high impedance (off)

8.4 Device Functional Modes

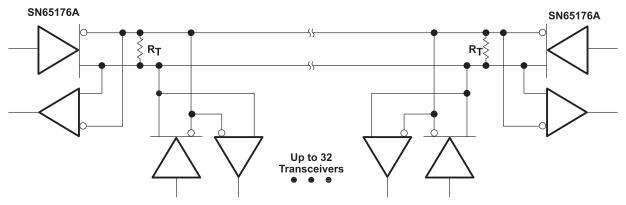
8.4.1 Device Powered

Both the driver and receiver can be individually enabled or disabled in any combination. DE and \overline{RE} can be connected together for a single port direction control bit.

8.4.2 Device Unpowered

The driver differential outputs and the receiver differential inputs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus when the driver is disabled or $V_{CC} = 0$.

9 Application and Implementation


Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

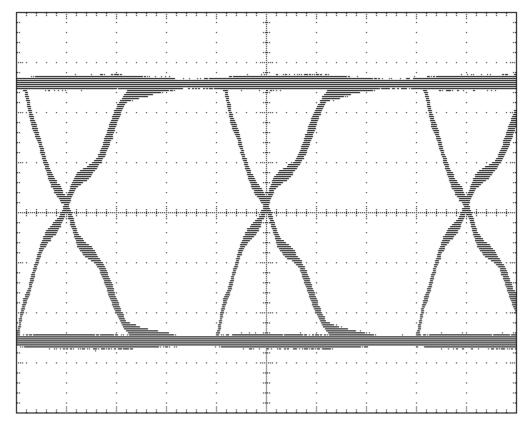
The device can be used in RS-485 and RS-422 physical layer communications.

9.2 Typical Application

The line should be terminated at both ends in its characteristic impedance ($R_T = Z_O$). Stub lengths off the main line should be kept as short as possible.

Figure 9-1. Typical Application Circuit

9.2.1 Design Requirements


- 5-V power source
- RS-485 bus operating at 5 Mbps or less
- · Connector that ensures the correct polarity for port pins
- External fail safe implementation

9.2.2 Detailed Design Procedure

- Place the device close to bus connector to keep traces (stub) short to prevent adding reflections to the bus line
- If desired, add external fail-safe biasing to ensure +200 mV on the A-B port.

9.2.3 Application Curves

A. Scale is 1V per division and 50nS per division

Figure 9-2. Eye Diagram for 5-Mbps Over 100 feet of Standard CAT-5E cable 120- Ω Termination at Both Ends.

9.3 Power Supply Recommendations

Power supply should be 5 V with a tolerance less than 10%

9.4 Layout

9.4.1 Layout Guidelines

Traces from device pins A and B to connector must be short and capable of 250 mA maximum current.

9.4.2 Layout Example

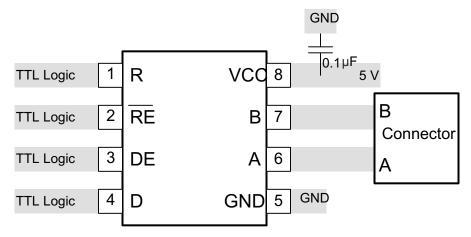


Figure 9-3. Layout Example

10 Device and Documentation Support

10.1 Trademarks

All trademarks are the property of their respective owners.

10.2 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.3 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2022 Texas Instruments Incorporated

Submit Document Feedback

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN75176AD	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	0 to 70	75176A
SN75176ADR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75176A
SN75176ADR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75176A
SN75176ADRE4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75176A
SN75176ADRG4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75176A
SN75176AP	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN75176AP
SN75176AP.A	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN75176AP
SN75176APE4	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN75176AP

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

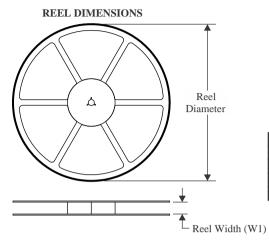
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

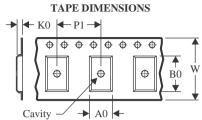
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

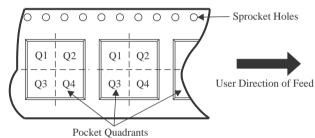
PACKAGE OPTION ADDENDUM


www.ti.com 9-Nov-2025


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

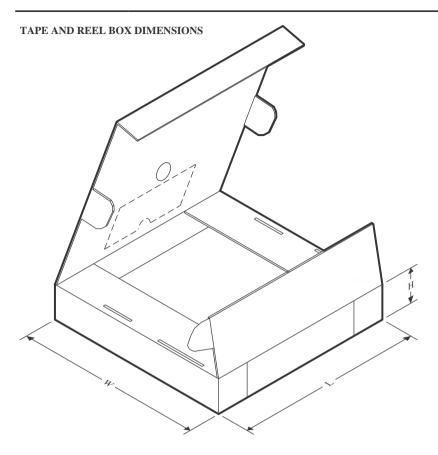
PACKAGE MATERIALS INFORMATION

www.ti.com 17-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

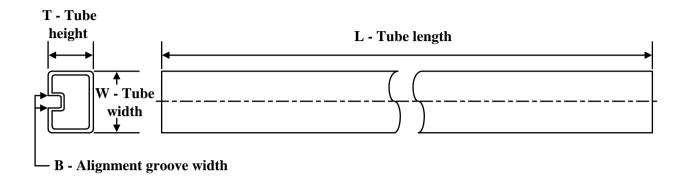


*All dimensions are nominal

	Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	` '	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ı	SN75176ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Jul-2025

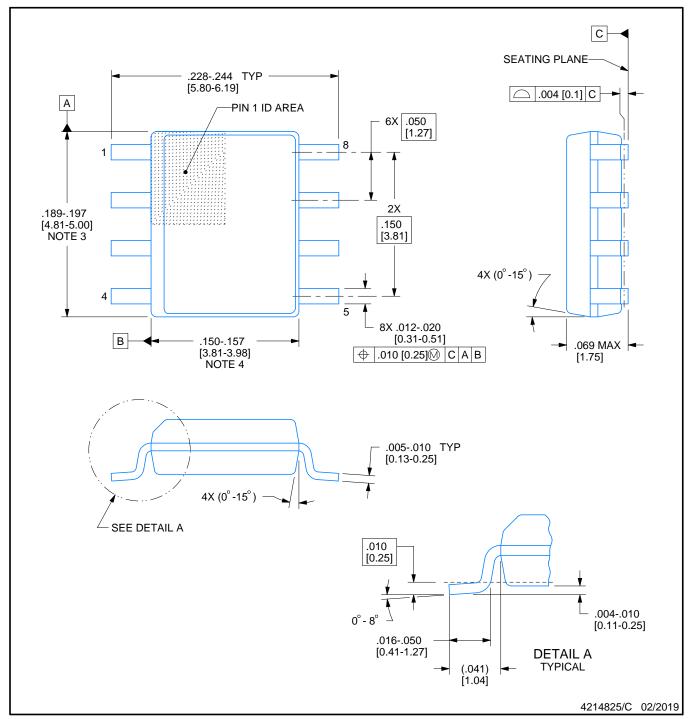

*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
I	SN75176ADR	SOIC	D	8	2500	340.5	336.1	25.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Jul-2025

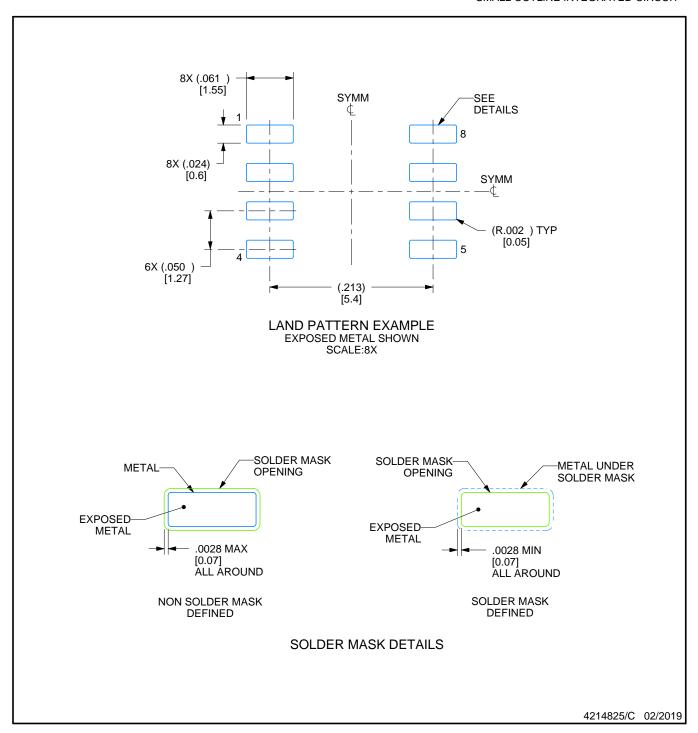
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN75176AP	Р	PDIP	8	50	506	13.97	11230	4.32
SN75176AP.A	Р	PDIP	8	50	506	13.97	11230	4.32
SN75176APE4	Р	PDIP	8	50	506	13.97	11230	4.32

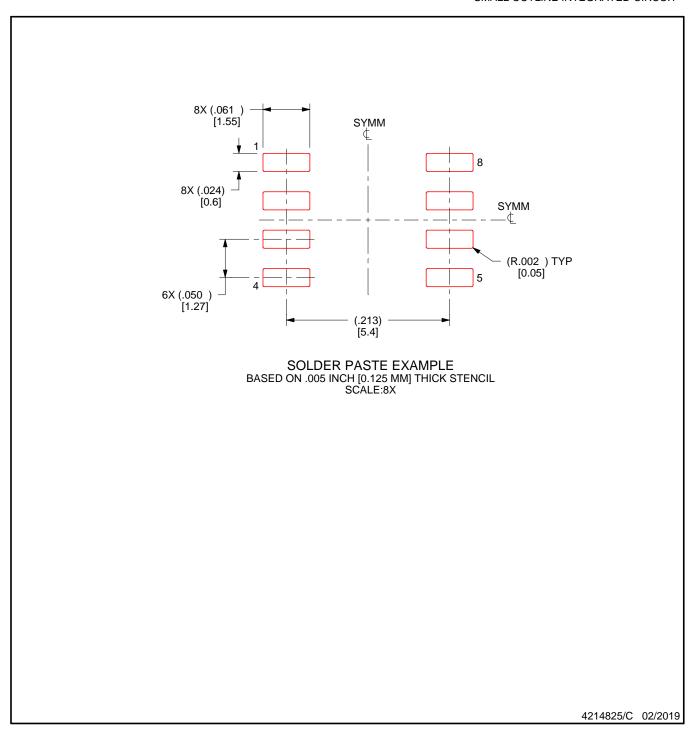
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

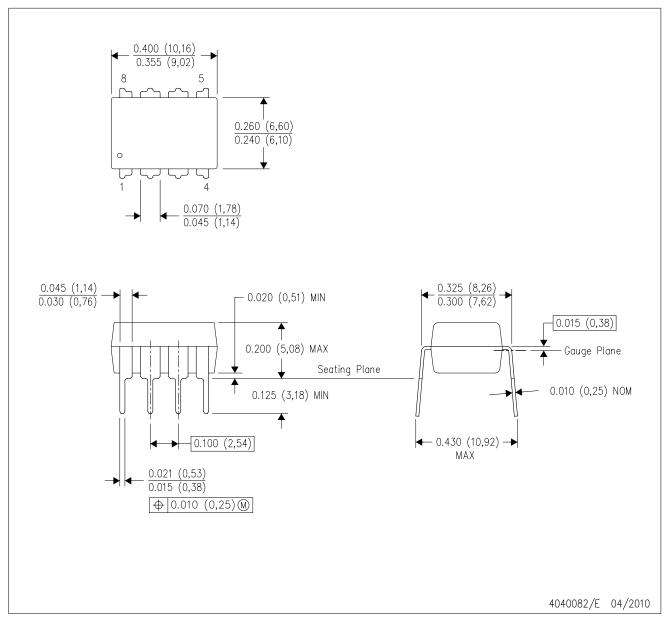
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025