










**TMUXHS4446** SLASF51 - FEBRUARY 2024

# TMUXHS4446 USB-C 10Gbps Alt Mode Crossbar Mux

#### 1 Features

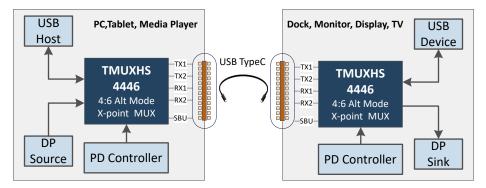
- Passive bidirectional USB-C Alternate Mode Mux to switch between USB and DisplayPort signals
- Supports USB 3.2 up to 10Gbps (Gen 2.0) and DisplayPort 2.1 up to 10Gbps per lane (UHBR10)
- Compatible for Source/Host and Sink/Device applications
- -3dB differential BW: 9.5GHz
- Dynamic characteristics:
  - Insertion loss = -1.6dB at 5GHz
  - Return loss = -18dB at 5GHz
- Supports common mode voltage (CMV) from 0V to
- Adaptive CMV tracking
- 6V tolerant SBU pins to survive short-to-VBUS events
- Can be configured through GPIO pins or I<sup>2</sup>C
- Supports both 1.8V and 3.3V I<sup>2</sup>C
- Single supply voltage V<sub>CC</sub>: 3.3V
- Active power consumption: 340µA
- Low standby power consumption: 0.5µA (pin
- Extended industrial temperature: -40°C to 105°C
- Available in 3mm × 6mm QFN package

# 2 Applications

- PCs and notebooks
- TVs
- Gaming
- **Docking Stations**
- Home theater and entertainment
- Factory automation and control
- Electronic point of sale (EPOS)
- **Smartphones**
- **Tablets**

## 3 Description

The TMUXHS4446 is a high-speed bidirectional passive crosspoint switch or cossbar (Xbar). This device is used to switch between USB 3.2 Gen2 SuperSpeed and DisplayPort 1.4/2.1 (up to 10Gbps UHBR10) signals over a USB Type-C also known as USB-C interface. The device also provides switching for the low-speed SBU signals that are used for DisplayPort auxiliary channels. The TMUXHS4446 supports differential signaling with a common mode voltage (CMV) range of 0V to 1.8V and a differential amplitude from 0V to 1800mVpp. Adaptive CMV tracking enables the channel through the device to remain unchanged for the entire common-mode voltage range.


The dynamic characteristics of the TMUXHS4446 allows high-speed switching with minimum attenuation to the signal eye diagrams, and very little added jitter. The silicon design of the device is optimized for excellent frequency response at a higher frequency spectrum of the signals. The silicon signal traces and switch network of the TMUXHS4446 are matched for best intra-pair skew performance.

The TMUXHS4446 has an extended industrial temperature range (-40°C to 105°C) designed for many rugged applications, including industrial and high reliability use cases.

### **Package Information**

| PART NUMBER PACKAGE <sup>(1)</sup> |                | PACKAGE SIZE <sup>(2)</sup> |
|------------------------------------|----------------|-----------------------------|
| TMUXHS4446                         | RET (WQFN, 40) | 6mm × 3mm                   |

- For all available packages, see Section 10.
- The package size (length × width) is a nominal value and includes pins, where applicable.



**Application Use Cases** 



# **Table of Contents**

| 1 Features1                                  | 6.4 Device Functional Modes                         | 10 |
|----------------------------------------------|-----------------------------------------------------|----|
| 2 Applications 1                             | 7 Application and Implementation                    | 14 |
| 3 Description1                               | 7.1 Application Information                         |    |
| 4 Pin Configuration and Functions3           | 7.2 Typical Application: USB-C with DP Alternate    |    |
| 5 Specifications5                            | Mode - Source                                       | 14 |
| 5.1 Absolute Maximum Ratings5                | 7.3 Power Supply Recommendations                    | 18 |
| 5.2 ESD Ratings5                             | 7.4 Layout                                          | 18 |
| 5.3 Recommended Operating Conditions5        | 8 Device and Documentation Support                  | 19 |
| 5.4 Thermal Information5                     | 8.1 Device Support                                  | 19 |
| 5.5 Electrical Characteristics6              | 8.2 Documentation Support                           | 19 |
| 5.6 High-Speed Performance Parameters6       | 8.3 Receiving Notification of Documentation Updates | 19 |
| 5.7 Switching Characteristics7               | 8.4 Support Resources                               | 19 |
| 5.8 I <sup>2</sup> C Timing Characteristics7 | 8.5 Trademarks                                      | 19 |
| 5.9 Typical Characteristics8                 | 8.6 Electrostatic Discharge Caution                 | 19 |
| 6 Detailed Description9                      | 8.7 Glossary                                        | 19 |
| 6.1 Overview9                                | 9 Revision History                                  | 19 |
| 6.2 Functional Block Diagram9                | 10 Mechanical, Packaging, and Orderable             |    |
| 6.3 Feature Description10                    | Information                                         | 19 |
| •                                            |                                                     |    |



# **4 Pin Configuration and Functions**

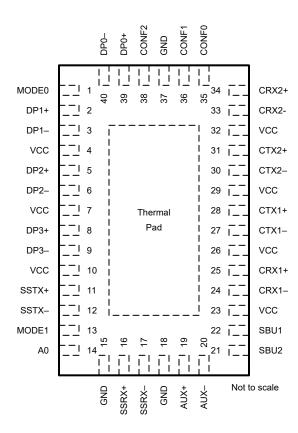



Figure 4-1. RET Package With Thermal Pad (40 Pin QFN - Top View)

**Table 4-1. Pin Functions** 

| PIN   |     | TYPE(1) | DESCRIPTION                                                               |  |
|-------|-----|---------|---------------------------------------------------------------------------|--|
| NAME  | NO. | ITPE    | DESCRIPTION                                                               |  |
| DP0+  | 39  | HS I/O  | System-side, high-speed differential positive signal for DisplayPort DP0  |  |
| DP0-  | 40  | HS I/O  | System-side, high-speed differential negative signal for DisplayPort DP0  |  |
| DP1+  | 2   | HS I/O  | System-side, high-speed differential positive signal for DisplayPort DP1  |  |
| DP1-  | 3   | HS I/O  | System-side, high-speed differential negative signal for DisplayPort DP1  |  |
| DP2+  | 5   | HS I/O  | System-side, high-speed differential positive signal for DisplayPort DP2  |  |
| DP2-  | 6   | HS I/O  | System-side, high-speed differential negative signal for DisplayPort DP2  |  |
| DP3+  | 8   | HS I/O  | System-side, high-speed differential positive signal for DisplayPort DP3  |  |
| DP3-  | 9   | HS I/O  | System-side, high-speed differential negative signal for DisplayPort DP3  |  |
| SSTX+ | 11  | HS I/O  | System-side, high-speed differential positive signal for USB TX pins      |  |
| SSTX- | 12  | HS I/O  | System-side, high-speed differential negative signal for USB TX pins      |  |
| SSRX+ | 16  | HS I/O  | System-side, high-speed differential positive signal for USB RX pins      |  |
| SSRX- | 17  | HS I/O  | System-side, high-speed differential negative signal for USB RX pins      |  |
| CRX1- | 24  | HS I/O  | Connector-side, high-speed differential negative signal for USB-C RX pins |  |
| CRX1+ | 25  | HS I/O  | Connector-side, high-speed differential positive signal for USB-C RX pins |  |
| CTX1- | 27  | HS I/O  | Connector-side, high-speed differential negative signal for USB-C TX pins |  |
| CTX1+ | 28  | HS I/O  | Connector-side, high-speed differential positive signal for USB-C TX pins |  |
| CTX2- | 30  | HS I/O  | Connector-side, high-speed differential negative signal for USB-C TX pins |  |



## **Table 4-1. Pin Functions (continued)**

| PIN   |                               | Table 4-1.1 III I unctions (continued) |                                                                                                                                                           |
|-------|-------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME  | NO.                           | TYPE <sup>(1)</sup>                    | DESCRIPTION                                                                                                                                               |
| CTX2+ | 31                            | HS I/O                                 | Connector-side, high-speed differential positive signal for USB-C TX pins                                                                                 |
| CRX2- | 33                            | HS I/O                                 | Connector-side, high-speed differential negative signal for USB-C RX pins                                                                                 |
| CRX2+ | 34                            | HS I/O                                 | Connector-side, high-speed differential positive signal for USB-C RX pins                                                                                 |
| AUX+  | 19                            | LS I/O                                 | System-side, low-speed SBU signal for USB-C SBU pin                                                                                                       |
| AUX-  | 20                            | LS I/O                                 | System-side, low-speed SBU signal for USB-C SBU pin                                                                                                       |
| SBU1  | 22                            | LS I/O                                 | Connector-side, low-speed SBU signal for USB-C SBU1 pin                                                                                                   |
| SBU2  | 21                            | LS I/O                                 | Connector-side, low-speed SBU signal for USB-C SBU2 pin                                                                                                   |
| MODE0 | 1                             | CTRL                                   | Control mode selection  MODE0 = 1, I <sup>2</sup> C control  MODE0 = 0, GPIO or pin control through CONF[2:0]                                             |
| MODE1 | 13                            | CTRL                                   | I <sup>2</sup> C logic level control (MODE0 = 1)<br>MODE1 = 0, 1.8V I <sup>2</sup> C logic level<br>MODE1 = 1, 3.3V I <sup>2</sup> C logic level          |
| CONF0 | 35                            | CTRL                                   | GPIO control (MODE0 = 0) Switch configuration control for high-speed and low-speed pins. Refer to the <i>Device</i> Functional Modes section for details. |
| A1    |                               | CTRL                                   | I <sup>2</sup> C control (MODE0 = 1)<br>Configurable I <sup>2</sup> C target address bit                                                                  |
| CONF1 | 36                            | CTRL                                   | GPIO control (MODE0 = 0) Switch configuration control for high-speed and low-speed pins. Refer to the <i>Device</i> Functional Modes section for details. |
| SCL   |                               | CTRL                                   | I <sup>2</sup> C control (MODE0 = 1)<br>I <sup>2</sup> C clock input                                                                                      |
| CONF2 | 38                            | CTRL                                   | GPIO control (MODE0 = 0) Switch configuration control for high-speed and low-speed pins. Refer to the <i>Device</i> Functional Modes section for details. |
| SDA   |                               | CTRL                                   | I <sup>2</sup> C control (MODE0 = 1)<br>I <sup>2</sup> C data input                                                                                       |
| A0    | 14                            | CTRL                                   | I <sup>2</sup> C control (MODE0 = 1)<br>Configurable I <sup>2</sup> C target address bit                                                                  |
| VCC   | 4, 7, 10, 23,<br>26, 29, 32   | Р                                      | Power                                                                                                                                                     |
| GND   | 15, 18, 37,<br>Thermal<br>Pad | G                                      | Ground                                                                                                                                                    |

<sup>(1)</sup> HS I/O = High-Speed Input/Output, LS I/O = Low-Speed Input/Output, CTRL = Control Inputs, P = Power, G = Ground

# **5 Specifications**

# 5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

|                         |                                                                                    | MIN  | MAX                  | UNIT |
|-------------------------|------------------------------------------------------------------------------------|------|----------------------|------|
| V <sub>CC-ABSMAX</sub>  | Supply voltage                                                                     | -0.5 | 4                    | V    |
| V <sub>HS-ABSMAX</sub>  | High Speed Differential I/O pin voltage ([SS/C]TXx[+/-], [SS/C]RXx[+/-], DPx[+/-]) | -0.5 | 2.4                  | V    |
| V <sub>L S-ABSMAX</sub> | Low Speed I/O pin voltage (AUX[+/-], SBUx)                                         | -0.5 | 6.0                  | V    |
| V <sub>CTR-ABSMAX</sub> | Control pin voltage (MODE[1:0], CONF[2:0], A[1:0], SDA, SCL)                       | -0.5 | V <sub>CC</sub> +0.4 | V    |
| T <sub>J-ABSMAX</sub>   | Junction temperature                                                               | -65  | 125                  | °C   |
| T <sub>STG</sub>        | Storage temperature                                                                | -65  | 150                  | °C   |

<sup>(1)</sup> Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

# 5.2 ESD Ratings

|     |                                            |                                                                       |       | VALUE | UNIT |
|-----|--------------------------------------------|-----------------------------------------------------------------------|-------|-------|------|
| V-  | V <sub>ESD</sub>   Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup>     | ±2000 | V     |      |
| VES |                                            | Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 <sup>(2)</sup> | ±1000 | v     |      |

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

# **5.3 Recommended Operating Conditions**

over operating free-air temperature range (unless otherwise noted)

|                                 |                                                 |                                           | MIN                    | TYP | MAX                    | UNIT     |
|---------------------------------|-------------------------------------------------|-------------------------------------------|------------------------|-----|------------------------|----------|
| V <sub>CC</sub>                 | Supply voltage                                  |                                           | 3.0                    | 3.3 | 3.6                    | V        |
| V <sub>CC-RAMP</sub>            | Supply voltage ramp time                        |                                           | 0.1                    |     | 100                    | ms       |
| <sup>(1)</sup> DR <sub>HS</sub> | Data rate, high speed datapaths (Cx to DPx/SSx) | Differential AC coupled interfaces        |                        |     | 10                     | Gbps     |
| (1)DR <sub>SBU</sub>            | Data rate, SBU/AUX paths                        | Differential or single ended signals      |                        |     | 1                      | Gbps     |
| V <sub>IH-GPIO</sub>            | Input high voltage on GPIO pins                 | A[1:0], MODE[1:0], CONF[2:0] pins         | 0.75 * V <sub>CC</sub> |     |                        | V        |
| V <sub>IL-GPIO</sub>            | Input low voltage on GPIO pins                  | A[1:0], MODE[1:0], CONF[2:0] pins         |                        |     | 0.4                    | V        |
| V                               | lanut high valtage on 120 nine                  | SDA, SCL pins; 3.3V I <sup>2</sup> C mode | 0.75 * V <sub>CC</sub> |     |                        | V        |
| V <sub>IH-I2C</sub>             | Input high voltage on I <sup>2</sup> C pins     | SDA, SCL pins; 1.8V I <sup>2</sup> C mode | 1.3                    |     |                        | V        |
| V                               | Input law valtage on 120 nine                   | SDA, SCL pins; 3.3V I <sup>2</sup> C mode |                        |     | 0.25 * V <sub>CC</sub> | V        |
| V <sub>IL-I2C</sub>             | Input low voltage on I <sup>2</sup> C pins      | SDA, SCL pins; 1.8V I <sup>2</sup> C mode |                        |     | 0.5                    | V        |
| V <sub>IO -LS</sub>             | I/O voltage on low speed pins                   | SBUx and AUX[+/-] pins                    | -0.45                  |     | Vcc                    | V        |
| I <sub>HS-SW</sub>              | Current through high speed switch               | Cx[p or n] to DPx/SSx[p or n]             |                        |     | 12                     | mA       |
| V <sub>DIFF-HS</sub>            | High-speed signal pins differential voltage     |                                           | 0                      |     | 1.8                    | $V_{pp}$ |
| VCM                             | High speed signal pins common mode voltage      |                                           | 0                      |     | 1.8                    | V        |
| T <sub>A</sub>                  | Operating free-air/ambient temperature          |                                           | -40                    |     | 105                    | °C       |

<sup>(1)</sup> Actual data rates can be more or less depending on link budget, margin and performance of other link elements

#### 5.4 Thermal Information

|                       |                                                 | TMUXHS4446 |      |
|-----------------------|-------------------------------------------------|------------|------|
|                       | THERMAL METRIC <sup>(1)</sup>                   | RET (WQFN) | UNIT |
|                       |                                                 | 40 PINS    |      |
| R <sub>θJA</sub>      | Junction-to-ambient thermal resistance - High K | 33.6       | °C/W |
| R <sub>θJC(top)</sub> | Junction-to-case (top) thermal resistance       | 26.4       | °C/W |
| R <sub>0JB</sub>      | Junction-to-board thermal resistance            | 13.2       | °C/W |
| Ψлт                   | Junction-to-top characterization parameter      | 0.6        | °C/W |



|                       | THERMAL METRIC <sup>(1)</sup>                | TMUXHS4446  RET (WQFN)  40 PINS | UNIT |
|-----------------------|----------------------------------------------|---------------------------------|------|
| ΨЈВ                   | Junction-to-board characterization parameter | 13.2                            | °C/W |
| R <sub>θJC(bot)</sub> | Junction-to-case (bottom) thermal resistance | 3.4                             | °C/W |

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

# **5.5 Electrical Characteristics**

over operating free-air temperature and supply voltage range (unless otherwise noted)

|                         | PARAMETER                                          | TEST CONDITIONS                                           | MIN TYP | MAX      | UNIT |
|-------------------------|----------------------------------------------------|-----------------------------------------------------------|---------|----------|------|
| Supply Pin              | (VCC)                                              |                                                           |         |          |      |
| I <sub>CC</sub>         | Device active current                              | 0V ≤ V <sub>CM</sub> ≤ 1.8V                               | 380     | 530      | μA   |
|                         | Davies shutdown surrent                            | All switches open; CONF[2:0] = 000, I <sup>2</sup> C mode | 5       | 10       | μΑ   |
| ISTDN                   | Device shutdown current                            | All switches open; CONF[2:0] = 000,<br>GPIO Mode          | 0.5     | 2.5      | μΑ   |
| High Speed              | Pins ([SS/C]TXx[+/-], [SS/C]RXx[+/-], DPx[+/-])    |                                                           |         | <u>.</u> |      |
| C <sub>ON</sub>         | Output ON capacitance to GND                       | f = 5GHz                                                  | 0.3     |          | pF   |
| C <sub>OFF</sub>        | Output OFF capacitance to GND                      | CONF[2:1] = 00                                            | 0.3     |          | pF   |
| I <sub>IH,HS,SEL</sub>  | Input high current, selected high-speed pins       | V <sub>IN</sub> = 1.8V for selected port p and n pins     |         | 6        | μΑ   |
| I <sub>IH,HS,NSEL</sub> | Input high current, non-selected high-speed pins   | V <sub>IN</sub> = 1.8V for non-selected port              |         | 110      | μΑ   |
| I <sub>IL,HS</sub>      | Input low current, high-speed pins                 | V <sub>IN</sub> = 0V                                      |         | 1        | μΑ   |
| I <sub>FS,HS</sub>      | Failsafe leakage current for HS data pins          | Data pins = 1.8V V <sub>CC</sub> = 0V                     |         | 10       | μΑ   |
| R <sub>A,p2n</sub>      | DC Impedance between C[Tx/Rx]x+ and C[Tx/Rx]x-pins |                                                           | 20      |          | ΚΩ   |
| SBU Pins (              | SBUx, AUX[+/-])                                    |                                                           |         |          |      |
| I <sub>IH,SBU</sub>     | Input high current, SBU, AUX pins                  | V <sub>IN</sub> = V <sub>CC</sub> for selected port       |         | 0.16     | μA   |
| I <sub>IL,SBU</sub>     | Input low current, SBU, AUX pins                   | V <sub>IN</sub> = 0V                                      |         | 0.1      | μA   |
| I <sub>FS,SBU</sub>     | Failsafe leakage current for SBU pins              | SBU pins = 3.6V, VCC = 0V                                 |         | 10       | μA   |
| C <sub>ON,SBU</sub>     | Output ON capacitance to GND                       | f = 1MHz                                                  | 6       | 8        | pF   |
| C <sub>OFF,SBU</sub>    | Output OFF capacitance to GND                      | f = 1MHz                                                  | 6       | 8        | pF   |
| R <sub>ON,SBU</sub>     | Output ON resistance                               | $0 \le V_{IN} \le 3.3V$ ; $I_{O} = -8mA$                  | 7       |          | Ω    |
| Control Pin             | s (MODE[1:0], CONF[2:0], A[1:0], SDA, SCL)         | -                                                         |         | <u> </u> |      |
| I <sub>IH,CTRL</sub>    | Input high current, control pins                   | V <sub>IN</sub> = V <sub>CC</sub>                         |         | 1        | μA   |
| I <sub>IL,CTRL</sub>    | Input low current, control pins                    | V <sub>IN</sub> = 0V                                      |         | 1        | μA   |
| C <sub>IN</sub>         | Input capacitance                                  |                                                           | 20      |          | pF   |

# **5.6 High-Speed Performance Parameters**

|                  | PARAMETER                                                             | TEST CONDITION                                    | MIN | TYP  | MAX | UNIT |
|------------------|-----------------------------------------------------------------------|---------------------------------------------------|-----|------|-----|------|
| BW <sub>HS</sub> | -3dB bandwidth for high-speed paths - DP and USB                      | -3dB loss compared to DC frequency point at 10Mhz |     | 9.5  |     | GHz  |
|                  | I <sub>L</sub> Differential insertion loss, V <sub>CM-HS</sub> = 0.6V | f = 10MHz                                         |     | -0.9 |     |      |
|                  |                                                                       | f = 2.7GHz                                        |     | -1.2 |     | dB   |
| 'L               |                                                                       | f = 4GHz                                          |     | -1.4 |     | ив   |
|                  |                                                                       | f = 5GHz                                          |     | -1.6 |     |      |
|                  |                                                                       | f = 10MHz                                         |     | -22  |     | dB   |
| RL               | Differential return loss V <sub>CM-HS</sub> =                         | f = 2.7GHz                                        |     | -20  |     | dB   |
| INL              | 0.6V                                                                  | f = 4GHz                                          |     | -16  |     | dB   |
|                  |                                                                       | f = 5GHz                                          |     | -18  |     | dB   |

Product Folder Links: TMUXHS4446



|                   | PARAMETER                   | TEST CONDITION                                    | MIN | TYP  | MAX | UNIT |
|-------------------|-----------------------------|---------------------------------------------------|-----|------|-----|------|
| O <sub>IRR</sub>  |                             | f = 10MHz                                         |     | -60  |     |      |
|                   | Differential OFF isolation  | f = 2.7GHz                                        |     | -26  |     | dB   |
|                   | Dillerential OFF Isolation  | f = 4GHz                                          |     | -22  |     | αв   |
|                   |                             | f = 5GHz                                          | -21 |      |     |      |
|                   |                             | f = 10MHz                                         |     | -50  |     | dB   |
|                   |                             | f = 2.7GHz for DP2-DP1 or CTX1-CTX2               |     | -28  |     | dB   |
| X <sub>TALK</sub> | Differential crosstalk      | f = 2.7GHz for all other channel combinations     |     | -40  |     | dB   |
|                   |                             | f = 5.0GHz for DP2-DP1 or<br>CTX1-CTX2            |     | -22  |     | dB   |
|                   |                             | f = 5.0GHz for all other channel combinations     |     | -38  |     | dB   |
| BW <sub>SBU</sub> | –3dB bandwidth for SBU pins | -3dB loss compared to DC frequency point at 10Mhz |     | 1000 |     | MHz  |

# 5.7 Switching Characteristics

|                           | PARAMETER                                                    |                                                              | MIN | TYP | MAX | UNIT |  |  |  |  |  |
|---------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----|-----|-----|------|--|--|--|--|--|
| Device Switching Time     |                                                              |                                                              |     |     |     |      |  |  |  |  |  |
| t <sub>SW_POWER_ON</sub>  | Device power ON time                                         |                                                              |     | 80  |     | μs   |  |  |  |  |  |
| t <sub>SW_POWER_OFF</sub> | Device power OFF time                                        |                                                              |     | 160 |     | ns   |  |  |  |  |  |
| High Speed Pir            | ns                                                           |                                                              |     |     | '   |      |  |  |  |  |  |
| t <sub>PD</sub>           | Switch propagation delay                                     | f = 1GHz                                                     |     | 70  |     | ps   |  |  |  |  |  |
| tsw_cm_shift              | Switching time to change from one switching mode to another  | Biased from CTXx/<br>CRXx side with CMV<br>difference <1.8V  |     | 1.2 |     | us   |  |  |  |  |  |
| t <sub>SW</sub>           | Switching time to change from one switching mode to another  | Biased from CTXx/<br>CRXx side with CMV<br>difference <100mV |     | 120 |     | ns   |  |  |  |  |  |
| t <sub>SK_INTRA</sub>     | Intra-pair output skew between + and - pins for same channel | f = 1GHz                                                     |     | 2.5 |     | ps   |  |  |  |  |  |
| t <sub>SK_INTER</sub>     | Inter-pair output skew between channels                      | f = 1GHz                                                     |     | 16  |     | ps   |  |  |  |  |  |
| SBU Pins                  |                                                              |                                                              |     |     |     |      |  |  |  |  |  |
| t <sub>PD-SBU</sub>       | Switch propagation delay                                     |                                                              |     | 220 |     | ps   |  |  |  |  |  |
| t <sub>SW-SBU</sub>       | Switching time to change from one switching mode to another  | Biased from SBUx side with VIN = 3.3V                        |     | 450 |     | ns   |  |  |  |  |  |
| t <sub>SK-SBU</sub>       | Output skew between SBU1 and SBU2 pins                       | f = 1MHz                                                     |     | 2.5 |     | ps   |  |  |  |  |  |

**5.8 I<sup>2</sup>C Timing Characteristics**For pins SDA, SCL and A[1:0] when the device is in I<sup>2</sup>C control mode (MODE0 = H)

|                     | PARAMETER                                                          | MIN | TYP MAX                                | UNIT |     |
|---------------------|--------------------------------------------------------------------|-----|----------------------------------------|------|-----|
| f <sub>SCL</sub>    | Clock frequency on SCL pin                                         |     |                                        | 400  | kHz |
| t <sub>CH</sub>     | Clock HIGH time on SCL pin                                         |     | 0.6                                    |      | μs  |
| t <sub>CL</sub>     | Clock LOW time on SCL pin                                          |     | 1.3                                    |      | μs  |
| t <sub>SETSTA</sub> | Start or repeated start condition setup time                       |     | 0.6                                    |      | μs  |
| t <sub>HSTA</sub>   | Start or repeated start condition hold time                        |     | 0.6                                    |      | μs  |
| t <sub>SETDAT</sub> | Data setup time                                                    |     | 100                                    |      | ns  |
| t <sub>HDAT</sub>   | Data hold time                                                     |     | 0                                      | 0.9  | μs  |
| t <sub>r</sub>      | Input rise time                                                    |     | 20 + 0.1 C <sub>b</sub> <sup>(1)</sup> | 300  | ns  |
| t <sub>f</sub>      | Input fall time                                                    |     | 20 + 0.1 C <sub>b</sub> <sup>(1)</sup> | 300  | ns  |
| t <sub>SETSTO</sub> | Stop condition setup time                                          |     | 0.6                                    |      | us  |
| t <sub>SP</sub>     | Pulse width of spikes which must be suppressed by the input filter |     |                                        | 50   | ns  |
| t <sub>VD-DAT</sub> | Data valid time                                                    |     |                                        | 0.9  | μs  |



For pins SDA, SCL and A[1:0] when the device is in I<sup>2</sup>C control mode (MODE0 = H)

| PARAMETER           |                             |  | MIN | TYP | MAX | UNIT |
|---------------------|-----------------------------|--|-----|-----|-----|------|
| t <sub>VD-ACK</sub> | Data valid acknowledge time |  |     |     | 0.9 | μs   |

(1)  $C_b = total bus capacitance of one bus line in pF$ 

# **5.9 Typical Characteristics**

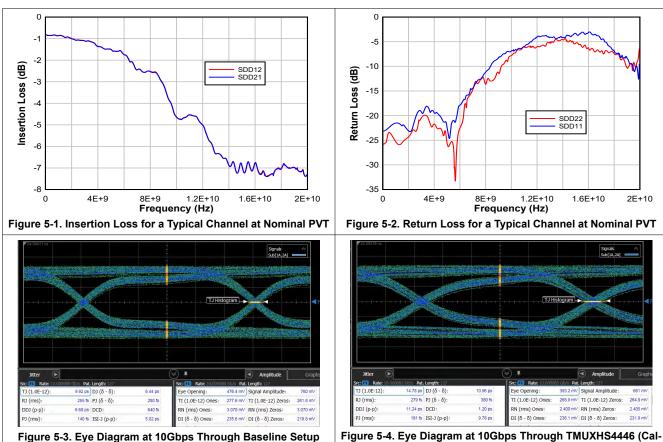



Figure 5-4. Eye Diagram at 10Gbps Through TMUXHS4446 (Cal-Trace + DUT)

(Cal-Trace, no DUT)



# **6 Detailed Description**

#### 6.1 Overview

The TMUXHS4446 is a high-speed bidirectional passive crosspoint (Xbar) switch in mux or demux configurations. This device is used to switch between USB 3.2 Gen2 SuperSpeed and DisplayPort 1.4/2.1 (up to 10Gbps UHBR10) signals over a USB Type-C interface. The device also provides switching for the low-speed SBU signals typically used for DisplayPort auxiliary channels. The SBU pins are 6V tolerant to survive a short-to-VBUS event. The TMUXHS4446 supports differential signaling with common mode voltage range (CMV) from 0V to 1.8V and with differential amplitude from 0V to 1800mVpp. Adaptive CMV tracking enables the channel through the device to remain unchanged for the entire common-mode voltage range.

The dynamic characteristics of the TMUXHS4446 allows high-speed switching, minimum attenuation to the signal eye diagram, and with very little added jitter. The silicon design is optimized for excellent frequency response at higher frequency spectrum of the signals, and the silicon signal traces and switch network are matched for best intra-pair skew performance.

The TMUXHS4446 provides two forms of control modes: GPIO and I<sup>2</sup>C. In the GPIO mode the control pins are set high or low. In the I<sup>2</sup>C mode, an external I<sup>2</sup>C controller (such as USB PD controller) sets the mux configurations and device control. The control configuration flexibility allows compatibility with a wide variety of USB PD controllers.

## 6.2 Functional Block Diagram

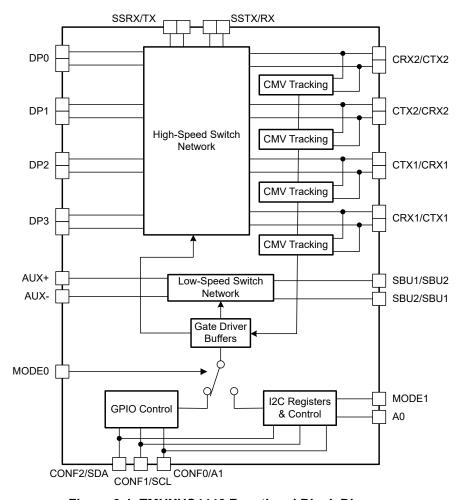



Figure 6-1. TMUXHS4446 Functional Block Diagram

## **6.3 Feature Description**

## 6.3.1 High-Speed Differential Signal Switching

Based on the data sent to the control pins, TMUXHS4446 provides the following muxing options:

- USB SS only: connects only one group of TX & RX signals on the USB-C connector to a USB source/sink.
- USB SS only (flipped): enables the USB SS only mode when the USB-C connector is flipped around.
- 4 Ln DP: connects both groups of TX/RX signals on the USB-C connector to a DisplayPort source/sink.
- 4 Ln DP (flipped): enables the 4 Ln DP mode when the USB-C connector is flipped around.
- 2 Ln DP + USB SS: connects one group of TX/RX signals to a DisplayPort source/sink and connects the other group to a USB source/sink.
- 2 Ln DP + USB SS (flipped): enables the 2 Ln DP + USB SS mode when the USB-C connector is flipped around.
- Open (powered down): opens all switch and cuts of power to the device.
- Open (powered on): opens all switches but keeps power to the device.

# 6.3.2 Low-Speed SBU Signal Switching

The TMUXHS4446 provides switching for the low-speed sideband signals for DisplayPort that are transmitted over the SBU lines on the USB-C connector. These signals are connected to the AUX+ and AUX- pins. The switch is required to route the signals to the right locations if the USB-C connector is flipped. The SBU pins are 6V tolerant.

### 6.3.3 GPIO and I<sup>2</sup>C Control Modes

The TMUXHS4446 can toggle between GPIO and I<sup>2</sup>C control modes through the MODE0 pin being driven high or low. When set to GPIO mode (MODE0 = low), the CONF[2:0] pins are driven either high or low to set the switch configurations. When set to I<sup>2</sup>C mode (MODE0 = high), an external I<sup>2</sup>C controller (for example, a PD controller) writes into the TMUXHS4446 register bits through the SDA and SCL pins to set mux configurations and device control.

The MODE1 pin is used to control the logic level of the I<sup>2</sup>C data. If MODE1 is high, then the logic level is 3.3V and 1.8V if MODE1 is low.

#### 6.4 Device Functional Modes

This section describes how to configure the TMUXHS4446 control pins to configure device modes and mux configurations.

Table 6-1 shows how MODE0 and MODE1 pins are used to set device control configuration modes.

**Table 6-1. Control Mode Configuration** 

| Control Mode                  | MODE0 | MODE1 |
|-------------------------------|-------|-------|
| GPIO/Pin Control Mode         | 0     | X     |
| I <sup>2</sup> C (1.8V logic) | 1     | 0     |
| I <sup>2</sup> C (3.3V logic) | 1     | 1     |

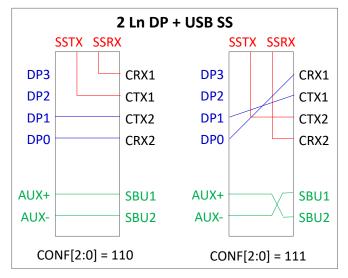
Table 6-2 shows I2C Register sets. A1 and A0 (Byte 1, bits 2 and 1) are set by pins 35 and 14. CONF[2-0] (Byte 3, bits 2-0) sets the device configurations in I<sup>2</sup>C mode.

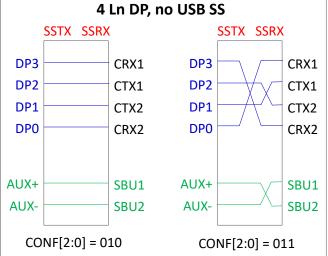
Table 6-2. I<sup>2</sup>C Control

| Byte # & Description                              | Register Bits |      |      |      |      |         |         |           |  |  |  |
|---------------------------------------------------|---------------|------|------|------|------|---------|---------|-----------|--|--|--|
|                                                   | Bit7          | Bit6 | Bit5 | Bit4 | Bit3 | Bit2    | Bit1    | Bit0      |  |  |  |
| Byte 1, I <sup>2</sup> C Secondary Target address | 1             | 0    | 1    | 0    | 1    | A1      | A0      | 0/1 (W/R) |  |  |  |
| Byte 2, Device ID (read only)                     | 0             | 0    | 0    | 0    | 0    | 0       | 0       | 0         |  |  |  |
| Byte 3, Selection control (read/write)            | 0             | 0    | 0    | 0    | 0    | CONF[2] | CONF[1] | CONF[0]   |  |  |  |

Product Folder Links: TMUXHS4446




Table 6-3 shows how CONF[2:0] pins in GPIO mode and registers Byte 3, bits 2-0 (CONF[2-0]) as shown in Table 6-2 sets mux configurations in source applications.


Table 6-3. High-Speed and Low-Speed Channel Mapping for Source Applications

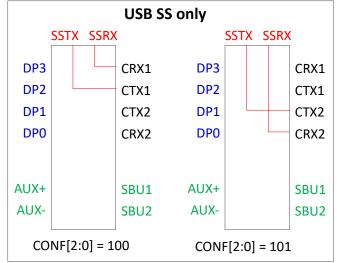

| System-Side | Connector-Sig     | de Channel Co   | nnected To Sys     | stem-Side Char      | nnel            |                      |                       |                            |
|-------------|-------------------|-----------------|--------------------|---------------------|-----------------|----------------------|-----------------------|----------------------------|
| Channel     | Open              | Open            | USB-C USB 3        | .x                  | DP Alt Mode F   | Receptacle DFF       | Pin Assignme          | ent (Source)               |
|             | (powered<br>down) | (powered on)    | USB SS only        | USB SS only<br>Flip | C, E 4 Ln DP    | C, E Flip 4 Ln<br>DP | D 2 Ln DP +<br>USB SS | D Flip 2 Ln<br>DP + USB SS |
|             | CONF[2:0] = 000   | CONF[2:0] = 001 | CONF[2:0] =<br>100 | CONF[2:0] =<br>101  | CONF[2:0] = 010 | CONF[2:0] =<br>011   | CONF[2:0] =<br>110    | CONF[2:0] =<br>111         |
| SSTX        | Х                 | Х               | CTX1               | CTX2                | Х               | X                    | CTX1                  | CTX2                       |
| SSRX        | X                 | X               | CRX1               | CRX2                | Х               | X                    | CRX1                  | CRX2                       |
| DP0         | Х                 | Х               | Х                  | Х                   | CRX2            | CRX1                 | CRX2                  | CRX1                       |
| DP1         | Х                 | X               | X                  | Х                   | CTX2            | CTX1                 | CTX2                  | CTX1                       |
| DP2         | X                 | Х               | Х                  | Х                   | CTX1            | CTX2                 | Х                     | X                          |
| DP3         | X                 | Х               | X                  | X                   | CRX1            | CRX2                 | Х                     | X                          |
| AUX+        | X                 | X               | X                  | X                   | SBU1            | SBU2                 | SBU1                  | SBU2                       |
| AUX-        | X                 | X               | X                  | Х                   | SBU2            | SBU1                 | SBU2                  | SBU1                       |

Figure 6-2 illustrates pictorial view of the TMUXHS4446 mux configurations for a source application based on Table 6-3. In this illustration all signals are differential with both positive and negative pins, but shown as single for brevity.









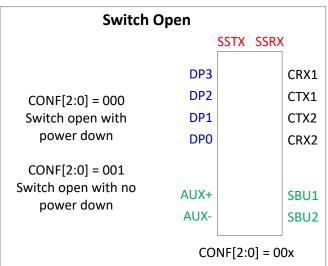



Figure 6-2. TMUXHS4446 Signal Flow Diagrams in Different Configurations for Source Applications

The sink side signal flow can also be constructed based on Table 6-4.

Table 6-4. High-Speed and Low-Speed Channel Mapping for Sink Applications

| System-Side | Connector-Sig     | de Channel Co   | nnected To Sys     | stem-Side Char                                                 | nnel            |                   | -                     |                            |
|-------------|-------------------|-----------------|--------------------|----------------------------------------------------------------|-----------------|-------------------|-----------------------|----------------------------|
| Channel     | Open              | Open            |                    | JSB-C USB 3.x DP Alt Mode Receptacle UFP Pin Assignment (Sink) |                 |                   |                       |                            |
|             | (powered<br>down) | (powered on)    | USB SS only        | USB SS only<br>Flip                                            | C 4 Ln DP       | C Flip 4 Ln<br>DP | D 2 Ln DP +<br>USB SS | D Flip 2 Ln<br>DP + USB SS |
|             | CONF[2:0] = 000   | CONF[2:0] = 001 | CONF[2:0] =<br>100 | CONF[2:0] =<br>101                                             | CONF[2:0] = 010 | CONF[2:0] = 011   | CONF[2:0] =<br>110    | CONF[2:0] =<br>111         |
| SSTX        | X                 | Х               | CTX1               | CTX2                                                           | X               | Х                 | CTX1                  | CTX2                       |
| SSRX        | X                 | X               | CRX1               | CRX2                                                           | X               | Х                 | CRX1                  | CRX2                       |
| DP0         | Х                 | Х               | Х                  | Х                                                              | CTX2            | CTX1              | CTX2                  | CTX1                       |
| DP1         | Х                 | X               | Х                  | Х                                                              | CRX2            | CRX1              | CRX2                  | CRX1                       |
| DP2         | Х                 | X               | Х                  | Х                                                              | CRX1            | CRX2              | X                     | Х                          |
| DP3         | Х                 | Х               | Х                  | Х                                                              | CTX1            | CTX2              | Х                     | Х                          |
| AUX+        | Х                 | Х               | Х                  | Х                                                              | SBU2            | SBU1              | SBU2                  | SBU1                       |

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated



# Table 6-4. High-Speed and Low-Speed Channel Mapping for Sink Applications (continued)

| _                         | Connector-Sig   | Connector-Side Channel Connected To System-Side Channel |                     |                    |                   |                    |                            |                    |  |  |  |
|---------------------------|-----------------|---------------------------------------------------------|---------------------|--------------------|-------------------|--------------------|----------------------------|--------------------|--|--|--|
| Open<br>(powered<br>down) |                 | - p                                                     | USB-C USB 3.        |                    |                   | Receptacle UFF     | Pin Assignme               | ment (Sink)        |  |  |  |
|                           | , ,             |                                                         | USB SS only<br>Flip | C 4 Ln DP          | C Flip 4 Ln<br>DP |                    | D Flip 2 Ln<br>DP + USB SS |                    |  |  |  |
|                           | CONF[2:0] = 000 | CONF[2:0] = 001                                         | CONF[2:0] =<br>100  | CONF[2:0] =<br>101 | CONF[2:0] = 010   | CONF[2:0] =<br>011 | CONF[2:0] =<br>110         | CONF[2:0] =<br>111 |  |  |  |
| AUX-                      | Х               | Х                                                       | X                   | Х                  | SBU1              | SBU2               | SBU1                       | SBU2               |  |  |  |

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback



# 7 Application and Implementation

#### Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

## 7.1 Application Information

The TMUXHS4446 is an analog crosspoint or crossbar mux/demux or switch specially designed for USB Type-C or USB-C alternate mode applications. The device supports USB SS signaling up to 10Gbps and alternate mode signaling such as DisplayPort up to 10Gbps.

The crosspoint selection of the device is typically configured by a USB power delivery (PD) controller by an I<sup>2</sup>C interface. The TMUXHS4446 is an analog mux which can be used in USB Type-C ecosystem with DP as alternate mode in two distinct application configurations: one is for DP Source/USB Host, the other one for the DP Sink/USB Device/Dock. Figure 7-1 shows a typical application block diagrams for these two cases: left source and right sink.

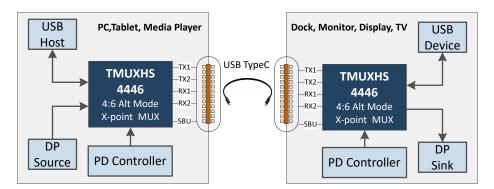



Figure 7-1. TMUXHS4446 in USB Type-C Source and Sink Applications

### 7.2 Typical Application: USB-C with DP Alternate Mode - Source

Figure 7-2 shows a simplified schematic diagram for a typical USB Type-C source application. Implementation for a sink use case is similar.

Product Folder Links: TMUXHS4446

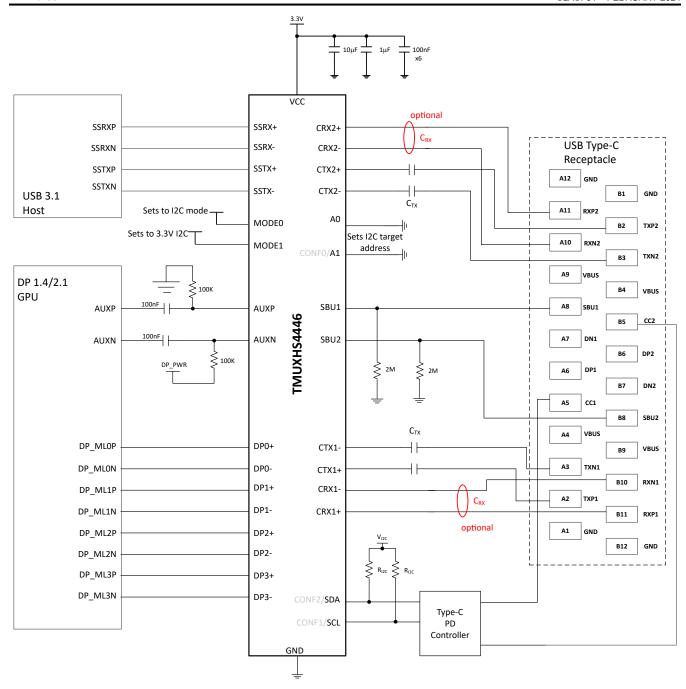



Figure 7-2. Application Schematic for TMUXHS446 in a Typical USB Type-C Source Use Case

## 7.2.1 Design Requirements

For this design example, use the parameters shown in Table 7-1.

Table 7-1. Design Parameters

| PARAMETER                                                                   | VALUE |
|-----------------------------------------------------------------------------|-------|
| Supply voltage, V <sub>CC</sub>                                             | 3.3V  |
| AC coupling capacitors for TX pins on USB-C connector side, C <sub>TX</sub> | 220nF |
| I <sup>2</sup> C pullup resistor, R <sub>I2C</sub>                          | 2kΩ   |
| I <sup>2</sup> C pullup voltage, V <sub>I2C</sub>                           | 3.3V  |
| DP Auxiliary channel pullup voltage, DP_PWR                                 | 3.3V  |



Table 7-1. Design Parameters (continued)

| PARAMETER                                                 | VALUE |
|-----------------------------------------------------------|-------|
| DP Auxiliary channel coupling capacitor, C <sub>AUX</sub> | 100nF |

# 7.2.2 Detailed Design Procedure

During implementation of a USB Type-C with DP alternate mode, the AC coupling capacitors must be placed carefully. Figure 7-3 depicts the AC coupling capacitor placement for typical applications. Note TMUXHS4446 supports a Vcm range, not exceeding the typical range of 0 - 1.8V. Note the AC caps are used only on TX pins on both source and sink ends. However, if there is an application where such Vcm range is not assured, TI recommends to make changes on AC coupling capacitor placements. Figure 7-4 illustrates such implementation. Additional optional AC coupling capacitors are used for RX pins. In detailed source schematic shown in Figure 7-2 such capacitors are marked as C<sub>RX</sub> and TI recommends them to be 0.5µF.

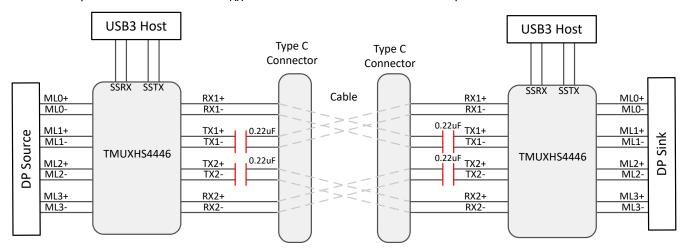



Figure 7-3. Typical Placement of AC Coupling Capacitors with Vcm ≤ 1.8V

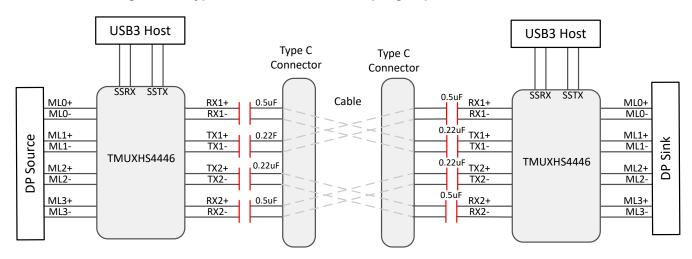



Figure 7-4. Placement of AC coupling Capacitors with Vcm > 1.8V

#### 7.2.3 Application Curves

Figure 7-5 through Figure 7-8 illustrate DisplayPort 1.4 Tx compliance results at HBR3 8.1Gbps. Eye diagrams (in scope, no cable model) are compared from the baseline setup and from the same setup plus TMUXHS4446 board. The diagrams are for lane 0. Other lanes also result in to similar eye diagrams. Jitter degradation through TMUXHS4446 is minimal.

Product Folder Links: TMUXHS4446



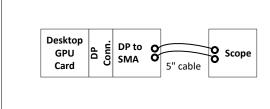



Figure 7-5. 8.1Gbps DP Compliance Setup -Baseline (no DUT)

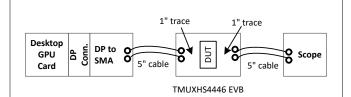



Figure 7-6. 8.1Gbps DP Compliance Setup - with TMUXHS4446

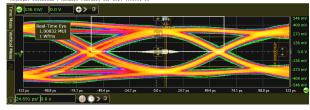



Figure 7-7. 8.1Gbps DP Compliance Eye Diagram -**Baseline Setup (no DUT)** 

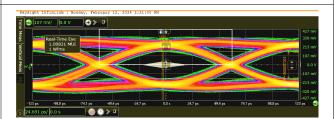



Figure 7-8. 8.1Gbps DP Compliance Eye Diagram with TMUXHS4446

Figure 7-9 through Figure 7-12 illustrate USB 3.x Gen2 Tx compliance results at 10Gbps. Eye diagrams (in scope, near end) are compared from the baseline setup and from the same setup plus TMUXHS4446 board. The diagrams are for lane 0. Other lanes also result in to similar eye diagrams. Jitter degradation through TMUXHS4446 is minimal.

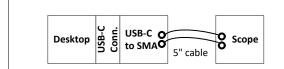



Figure 7-9. 10Gbps USB Compliance Setup -Baseline (no DUT)

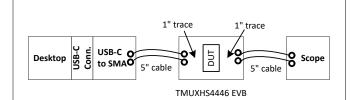
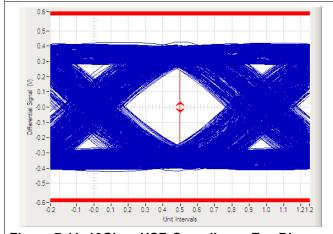




Figure 7-10. 10Gbps USB Compliance Setup - with TMUXHS4446



- Baseline Setup (no DUT)

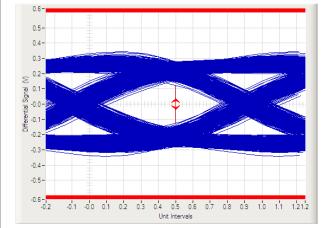



Figure 7-11. 10Gbps USB Compliance Eye Diagram | Figure 7-12. 10Gbps USB Compliance Eye Diagram - with TMUXHS4446



## 7.3 Power Supply Recommendations

The TMUXHS4446 does not require a power supply sequence. However, TI recommends that the device is powered on after device supply  $V_{CC}$  is stable and in specification. TI also recommends to place ample decoupling capacitors at the device VCC near the pins.

#### 7.4 Layout

#### 7.4.1 Layout Guidelines

On a high-K board, TI always recommends to solder the PowerPAD™ integrated circuit package onto the thermal land. A thermal land is the area of solder-tinned-copper underneath the Power-pad package. On a high-K board, the TMUXHS4446 can operate over the full temperature range by soldering the Power-pad onto the thermal land without vias.

For high speed layout guidelines refer to the *High-Speed Layout Guidelines for Signal Conditioners and USB Hubs* application note.

On a low-K board, use a 1-oz Cu trace to connect the GND pins to the thermal land for the device to operate across the temperature range. A general PCB design guide for Power-pad packages is provided in the *Power-pad Thermally-Enhanced Package* application note.

### 7.4.2 Layout Example

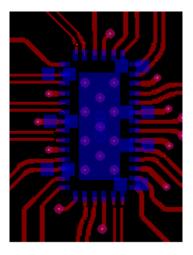



Figure 7-13. TMUXHS4446 Layout Example

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

# 8 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

## 8.1 Device Support

#### 8.2 Documentation Support

#### 8.2.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, High-Speed Layout Guidelines for Signal Conditioners and USB Hubs application note
- Texas Instruments, PowerPAD™ Thermally Enhanced Package application note

## 8.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

## 8.4 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

#### 8.5 Trademarks

PowerPAD™ and TI E2E™ are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

# 8.6 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

#### 8.7 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

# 9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| DATE          | REVISION | NOTES           |
|---------------|----------|-----------------|
| February 2024 | *        | Initial Release |

# 10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 9-Nov-2025

#### PACKAGING INFORMATION

| Orderable part number | Status | Material type | Package   Pins  | Package qty   Carrier | RoHS | Lead finish/  | MSL rating/         | Op temp (°C) | Part marking |
|-----------------------|--------|---------------|-----------------|-----------------------|------|---------------|---------------------|--------------|--------------|
|                       | (1)    | (2)           |                 |                       | (3)  | Ball material | Peak reflow         |              | (6)          |
|                       |        |               |                 |                       |      | (4)           | (5)                 |              |              |
| TMUXHS4446IRETR       | Active | Production    | WQFN (RET)   40 | 3000   LARGE T&R      | Yes  | NIPDAU        | Level-2-260C-1 YEAR | -40 to 105   | TMX4446      |
| TMUXHS4446IRETR.A     | Active | Production    | WQFN (RET)   40 | 3000   LARGE T&R      | Yes  | NIPDAU        | Level-2-260C-1 YEAR | -40 to 105   | TMX4446      |
| TMUXHS4446IRETT       | Active | Production    | WQFN (RET)   40 | 250   SMALL T&R       | Yes  | NIPDAU        | Level-2-260C-1 YEAR | -40 to 105   | TMX4446      |
| TMUXHS4446IRETT.A     | Active | Production    | WQFN (RET)   40 | 250   SMALL T&R       | Yes  | NIPDAU        | Level-2-260C-1 YEAR | -40 to 105   | TMX4446      |
| TMUXHS4446RETR        | Active | Production    | WQFN (RET)   40 | 3000   LARGE T&R      | Yes  | NIPDAU        | Level-2-260C-1 YEAR | -40 to 85    | TMX4446      |
| TMUXHS4446RETR.A      | Active | Production    | WQFN (RET)   40 | 3000   LARGE T&R      | Yes  | NIPDAU        | Level-2-260C-1 YEAR | -40 to 85    | TMX4446      |
| TMUXHS4446RETT        | Active | Production    | WQFN (RET)   40 | 250   SMALL T&R       | Yes  | NIPDAU        | Level-2-260C-1 YEAR | -40 to 85    | TMX4446      |
| TMUXHS4446RETT.A      | Active | Production    | WQFN (RET)   40 | 250   SMALL T&R       | Yes  | NIPDAU        | Level-2-260C-1 YEAR | -40 to 85    | TMX4446      |

<sup>(1)</sup> Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

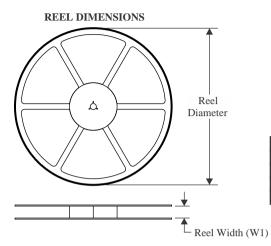
<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

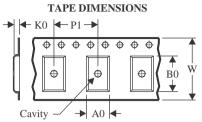
<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

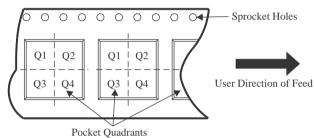
# **PACKAGE OPTION ADDENDUM**


www.ti.com 9-Nov-2025


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

# **PACKAGE MATERIALS INFORMATION**

www.ti.com 23-Apr-2025

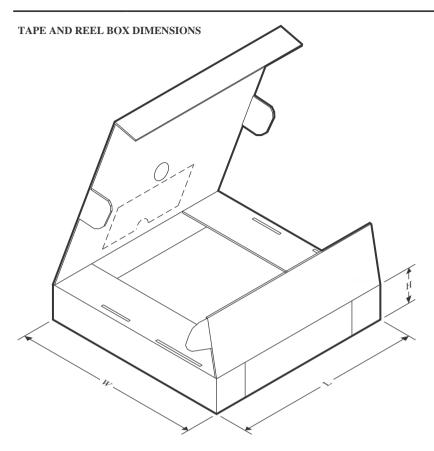

## TAPE AND REEL INFORMATION





| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

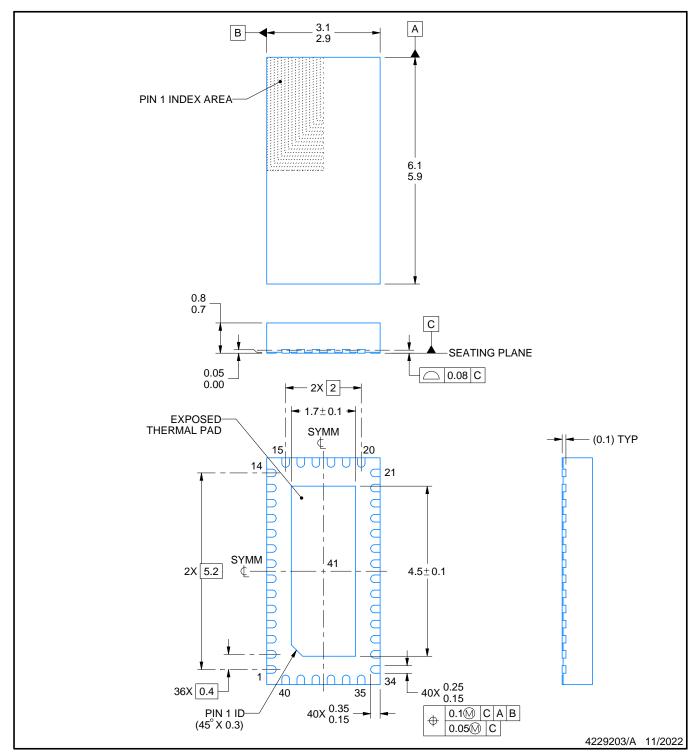



#### \*All dimensions are nominal

| Device          | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TMUXHS4446IRETR | WQFN            | RET                | 40 | 3000 | 330.0                    | 16.4                     | 3.3        | 6.3        | 1.0        | 8.0        | 16.0      | Q1               |
| TMUXHS4446IRETT | WQFN            | RET                | 40 | 250  | 180.0                    | 16.4                     | 3.3        | 6.3        | 1.0        | 8.0        | 16.0      | Q1               |
| TMUXHS4446RETR  | WQFN            | RET                | 40 | 3000 | 330.0                    | 16.4                     | 3.3        | 6.3        | 1.0        | 8.0        | 16.0      | Q1               |
| TMUXHS4446RETT  | WQFN            | RET                | 40 | 250  | 180.0                    | 16.4                     | 3.3        | 6.3        | 1.0        | 8.0        | 16.0      | Q1               |



www.ti.com 23-Apr-2025

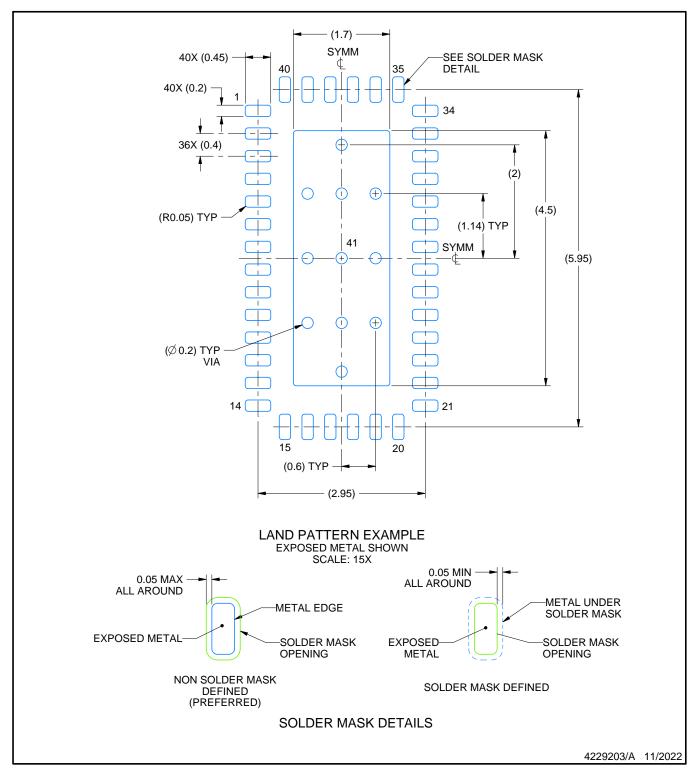



#### \*All dimensions are nominal

| 7 till dillitoriororio di o riorriiridi |              |                 |      |      |             |            |             |
|-----------------------------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| Device                                  | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
| TMUXHS4446IRETR                         | WQFN         | RET             | 40   | 3000 | 367.0       | 367.0      | 38.0        |
| TMUXHS4446IRETT                         | WQFN         | RET             | 40   | 250  | 213.0       | 191.0      | 35.0        |
| TMUXHS4446RETR                          | WQFN         | RET             | 40   | 3000 | 367.0       | 367.0      | 38.0        |
| TMUXHS4446RETT                          | WQFN         | RET             | 40   | 250  | 213.0       | 191.0      | 35.0        |



PLASTIC QUAD FLATPACK - NO LEAD

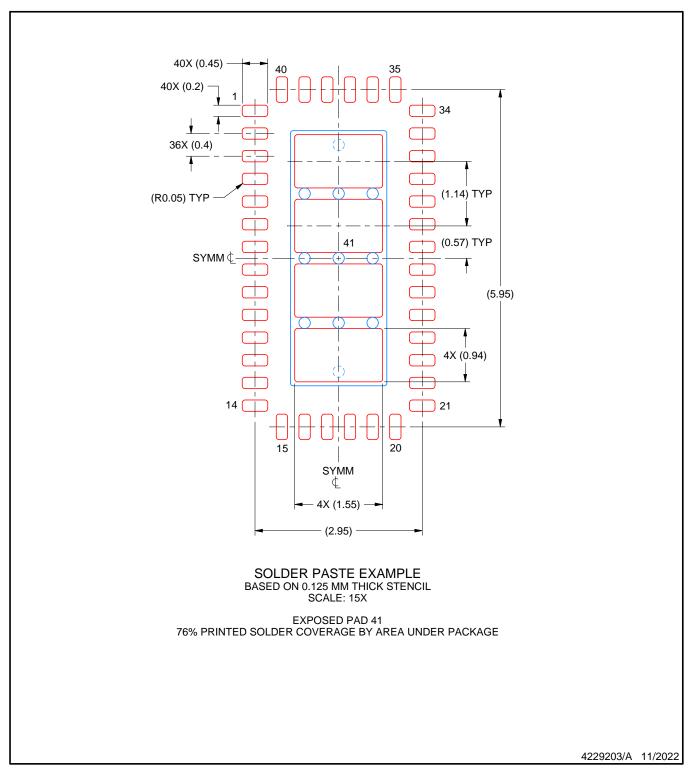



#### NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
  2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



PLASTIC QUAD FLATPACK - NO LEAD




NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025