www.ti.com

SLLS858-AUGUST 2007

FEATURES

- Operates With 3-V to 5.5-V V_{CC} Supply
- · Operates up to 1 Mbit/s
- Low Supply Current . . . 300 μA Typ
- External Capacitors . . . 4 × 0.1 μF
- Accepts 5-V Logic Input With 3.3-V Supply
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM)

APPLICATIONS

- Battery-Powered Systems
- PDAs
- Notebooks
- Laptops
- Palmtop PCs
- Hand-Held Equipment

D, DB, DW, OR PW PACKAGE (TOP VIEW) 16 V_{CC} C1+ 15 GND V+ С1− Пз 14 DOUT1 13**∏** RIN1 C2+ C2-12 ROUT1 П5 11 DIN1 V-10 DIN2 DOUT2 9 ROUT2 RIN2

NC - No internal connection

DESCRIPTION/ORDERING INFORMATION

The TRSF3232 consists of two line drivers, two line receivers, and a dual charge-pump circuit with ± 15 -kV ESD protection pin-to-pin (serial-port connection pins, including GND). This device provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The TRSF3232 operates at typical data signaling rates up to 1 Mbit/s and a driver output slew rate of 24 V/µs to 150 V/µs.

ORDERING INFORMATION

T _A	PA	CKAGE ⁽¹⁾⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SOIC - D	Tube of 40 TRSF323		TRSF3232C
	30IC - D	Reel of 2500	TRSF3232CDR	TRSF3232C
	SOIC - DW	Tube of 25	TRSF3232CDW	TRSF3232C
0°C to 70°C	SOIC - DW	Reel of 2000	TRSF3232CDWR	TRSF3232C
0.0 10 70.0	SSOP – DB	Tube of 70	TRSF3232CDB	RT22C
	330P – DB	Reel of 2000	TRSF3232CDBR	R122C
	TSSOP – PW	Tube of 70	TRSF3232CPW	RT22C
	1330P – PW	Reel of 2000	TRSF3232CPWR	KIZZO
	SOIC - D	Tube of 40	TRSF3232ID	TRSF3232I
	SOIC - DW	Reel of 2000	TRSF3232IDR	183532321
	SOIC - DW	Tube of 25	TRSF3232IDW	TRSF3232I
-40°C to 85°C	301C - DVV	Reel of 2000	TRSF3232IDWR	183532321
-40 C to 65 C	CCOD DD	Tube of 70	TRSF3232IDB	DT22I
	SSOP – DB	Reel of 2000	TRSF3232IDBR	RT22I
	TSSOP – PW	Tube of 70	TRSF3232IPW	DT22I
	1330F - PW	Reel of 2000	TRSF3232IPWR	RT22I

Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

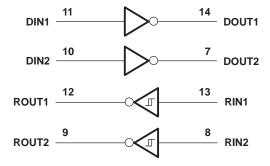
⁽²⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLES

Each Driver⁽¹⁾

INPUT DIN	OUTPUT DOUT
L	Н
Н	L


(1) H = high level, L = low level

Each Receiver⁽¹⁾

INPUT RIN	OUTPUT ROUT
L	Н
Н	L
Open	Н

(1) H = high level, L = low level Open = input disconnected or connected driver off

LOGIC DIAGRAM (POSITIVE LOGIC)

TRSF3232 3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER

SLLS858-AUGUST 2007

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V_{CC}	Supply voltage range ⁽²⁾		-0.3	6	V	
V+	Positive-output supply voltage range (2)		-0.3	7	V	
V-	Negative-output supply voltage range (2)		0.3	-7	V	
V+ - V-	Supply voltage difference ⁽²⁾			13	V	
VI	land to all and many and	Drivers	-0.3	6	V	
	Input voltage range	Receivers	-25	25	V	
.,	O day to selle me me me	Drivers	-13.2	13.2	1.7	
Vo	Output voltage range	voltage range Receivers		V _{CC} + 0.3	V	
		D package		82		
0	2)(4)	DB package		46]	
θ_{JA}	Package thermal impedance (3)(4)	DW package		57	°C/W	
		PW package		108		
T_J	Operating virtual junction temperature			150	°C	
T _{stg}	Storage temperature range		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to network GND.

Recommended Operating Conditions⁽¹⁾

See Figure 4

				MIN	NOM	MAX	UNIT
	Supply voltage		V _{CC} = 3.3 V	3	3.3	3.6	V
	Supply voltage Driver high-level input voltage Driver low-level input voltage Driver input voltage Driver input voltage Driver input voltage Driver input voltage Receiver input voltage TR	V _{CC} = 5 V	4.5	5	5.5	V	
\/	Driver high level input voltege	DIN	V _{CC} = 3.3 V	2			V
V _{IH}	Driver high-lever input voltage	DIN	V _{CC} = 5 V	2.4			V
V_{IL}	Driver low-level input voltage	DIN				0.8	V
\/	Driver input voltage	DIN		0		5.5	V
VI	Receiver input voltage					25	V
т	Operating free oir temperature	On and the first of the second trans		0		70	°C
T _A	Operating free-air temperature	TRSF3232I	-40		85		

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 4)

PARAMETER		TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I _{CC}	Supply current	No load, $V_{CC} = 3.3 \text{ V or } 5 \text{ V}$		0.3	1	mA

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

⁽³⁾ Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

⁽²⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25^{\circ}\text{C}$.

TRSF3232 3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER

SLLS858-AUGUST 2007

DRIVER SECTION

Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 4)

	PARAMETER	TEST CONDITIONS			TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND,	DIN = GND	5	5.4		V
V_{OL}	Low-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND,	DOUT at $R_L = 3 \text{ k}\Omega$ to GND, DIN = V_{CC}				V
I _{IH}	High-level input current	$V_I = V_{CC}$			±0.01	±1	μΑ
I _{IL}	Low-level input current	V _I at GND			±0.01	±1	μΑ
	Short-circuit output current (3)	V _O = 0 V	$V_{CC} = 3.6 \text{ V}$		±35	±60	mA
Ios	Short-circuit output current	VO = 0 V	$V_{CC} = 5.5 \text{ V}$		±35	±90	
ro	Output resistance	V_{CC} , V+, and V- = 0 V,	$V_O = \pm 2 \text{ V}$	300	10M		Ω

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 4)

	PARAMETER		TEST CONDITIONS		MIN 7	ΓΥΡ ⁽²⁾	MAX	TINU
			C _L = 1000 pF		250			
	Maximum data rate (see Figure 1)	$R_L = 3 k\Omega$, One DOUT switching	C _L = 250 pF,	V _{CC} = 3 V to 4.5 V	1000			kbit/s
	(000 r igu. 5 · /	0110 D001 cg	C _L = 1000 pF,	V _{CC} = 4.5 V to 5.5 V	1000			
t _{sk(p)}	Pulse skew ⁽³⁾	$C_L = 150 \text{ pF to } 2500 \text{ pF},$	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$	See Figure 2		300		ns
SR(tr)	Slew rate, transition region (see Figure 1)	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$	C _L = 150 pF to 1000 pF,	V _{CC} = 3.3 V	18		150	V/µs

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

 ⁽¹⁾ Test conditions are C1–C4 = 0.1 μF at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at V_{CC} = 5 V ± 0.5 V.
 (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.
 (3) Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

 ⁽²⁾ All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.
 (3) Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device.

TRSF3232 3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER

SLLS858-AUGUST 2007

RECEIVER SECTION

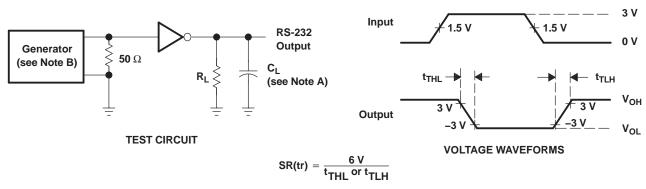
Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 4)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	V _{CC} - 0.6	V _{CC} - 0.1		V
V_{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
.,	Desitive gains input threshold voltage	V _{CC} = 3.3 V		1.5	2.4	V
V _{IT+}	Positive-going input threshold voltage	V _{CC} = 5 V		1.8	2.4	V
\/	Negative gains input threehold voltage	V _{CC} = 3.3 V	0.6	1.2		V
V_{IT-}	Negative-going input threshold voltage	V _{CC} = 5 V	0.8	1.5		V
V _{hys}	Input hysteresis (V _{IT+} - V _{IT-})			0.3		V
ri	Input resistance	$V_1 = \pm 3 \text{ V to } \pm 25 \text{ V}$	3	5	7	kΩ

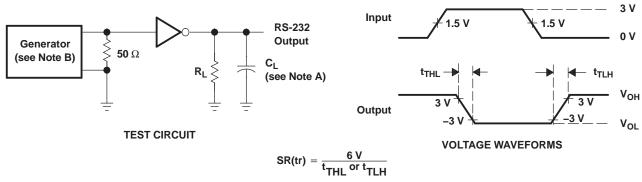
Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Switching Characteristics⁽¹⁾


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 3)

	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	C _L = 150 pF	300	ns
t _{PHL}	Propagation delay time, high- to low-level output	C _L = 150 pF	300	ns
t _{sk(p)}	Pulse skew ⁽³⁾		300	ns

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.



PARAMETER MEASUREMENT INFORMATION

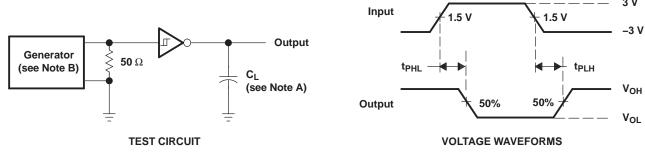
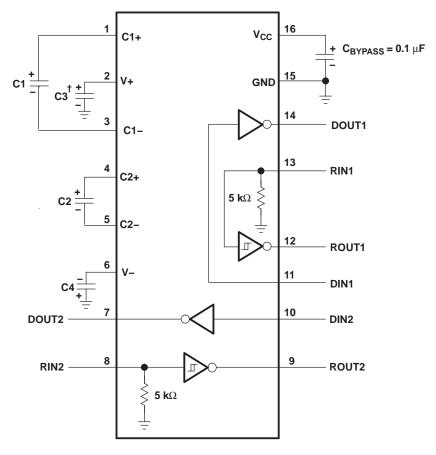

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 1. Driver Slew Rate

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew



- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: Z_O = 50 Ω , 50% duty cycle, $t_r \le$ 10 ns, $t_f \le$ 10 ns.

Figure 3. Receiver Propagation Delay Times

APPLICATION INFORMATION

 $^{^{\}dagger}$ C3 can be connected to V_{CC} or GND.

V_{CC} vs CAPACITOR VALUES

V _{CC}	C1	C2, C3, C4
$\begin{array}{c} 3.3 \text{ V} \pm 0.3 \text{ V} \\ 5 \text{ V} \pm 0.5 \text{ V} \\ 3 \text{ V to } 5.5 \text{ V} \end{array}$	0.1 μF 0.047 μF 0.1 μF	0.1 μF 0.33 μF 0.47 μF

Figure 4. Typical Operating Circuit and Capacitor Values

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
TRSF3232IDWR	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TRSF3232I
TRSF3232IDWR.A	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TRSF3232I

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

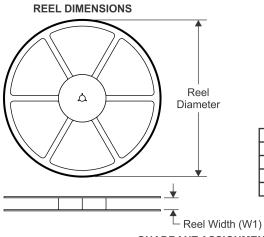
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

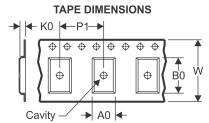
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

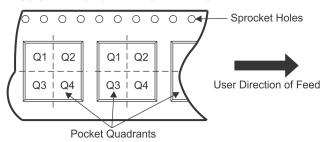
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Feb-2019


TAPE AND REEL INFORMATION

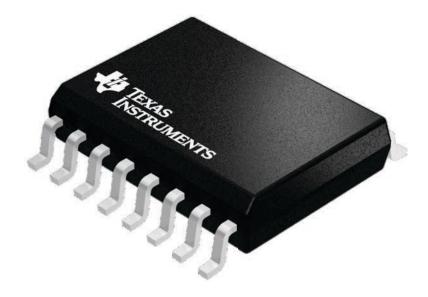
A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

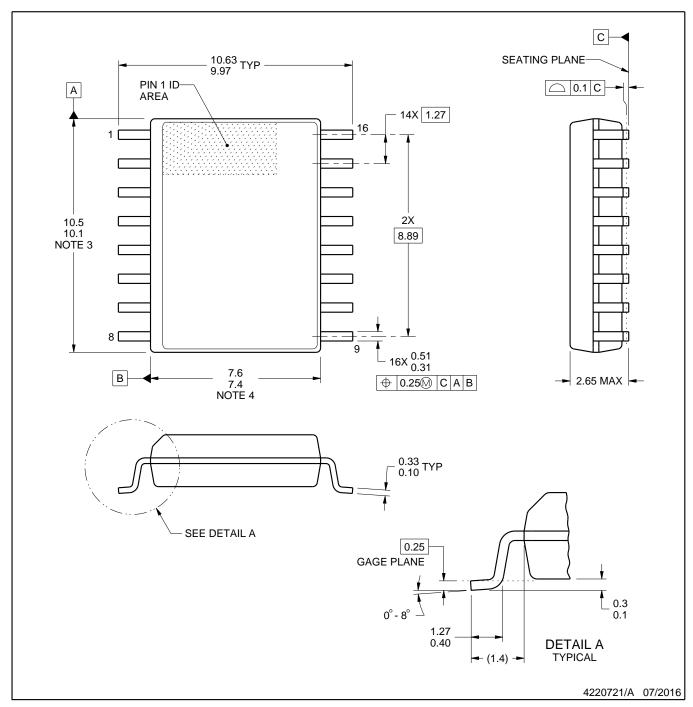
Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRSF3232IDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

www.ti.com 26-Feb-2019


*All dimensions are nominal

Device	Package Type	Package Type Package Drawing		SPQ	Length (mm)	Width (mm)	Height (mm)	
TRSF3232IDWR	SOIC	DW	16	2000	350.0	350.0	43.0	

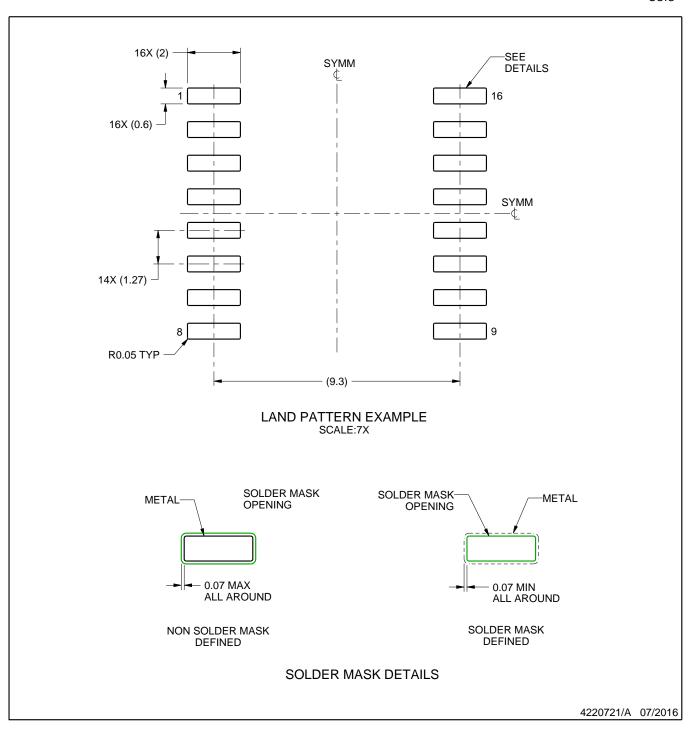
7.5 x 10.3, 1.27 mm pitch


SMALL OUTLINE INTEGRATED CIRCUIT

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

SOIC

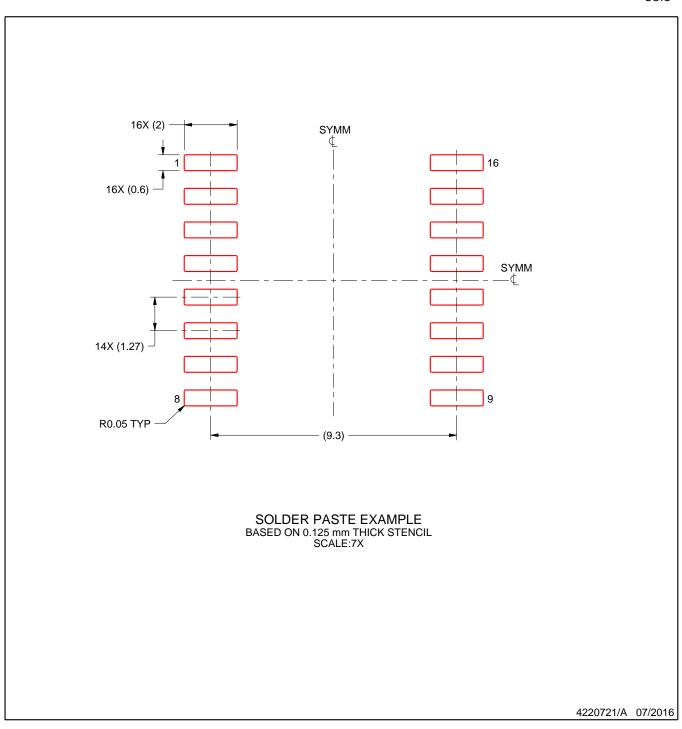
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025