

TS5A3166-Q1 0.9-Ω SPST Analog Switch

1 Features

- Qualified for Automotive Applications
- Isolation in Powered-Off Mode, $V_+ = 0$
- Low ON-State Resistance (0.9 Ω)
- Control Inputs are 5.5 V Tolerant
- Low Charge Injection
- Low Total Harmonic Distortion (THD)
- 1.65-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Cell Phones
- PDAs
- Radar System
- Infotainment System
- Portable Instrumentation
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communication Circuits
- Modems
- Hard Drives
- Computer Peripherals
- Wireless Terminals and Peripherals
- Microphone Switching – Notebook Docking

3 Description

The TS5A3166-Q1 is a single-pole single-throw (SPST) analog switch that is designed to operate from 1.65 V to 5.5 V. The device offers a low ON-state resistance. The device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.

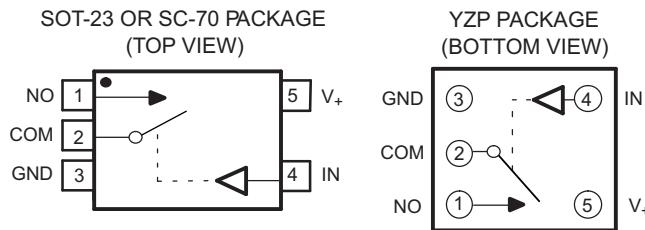
Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TS5A3166-Q	SC70 (5)	2.00 mm x 1.25 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

4 Simplified Schematic

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.


Table of Contents

1	Features	1	9	Detailed Description	18
2	Applications	1	9.1	Overview	18
3	Description	1	9.2	Functional Block Diagram	19
4	Simplified Schematic	1	9.3	Feature Description	19
5	Revision History	2	9.4	Device Functional Modes	19
6	Pin Configuration and Functions	3	10	Application and Implementation	20
7	Specifications	3	10.1	Application Information	20
7.1	Absolute Maximum Ratings	3	10.2	Typical Application	21
7.2	ESD Ratings	3	11	Power Supply Recommendations	22
7.3	Recommended Operating Conditions	4	12	Layout	22
7.4	Thermal Information	4	12.1	Layout Guidelines	22
7.5	Electrical Characteristics for 5-V Supply	5	12.2	Layout Example	22
7.6	Electrical Characteristics for 3.3-V Supply	7	13	Device and Documentation Support	23
7.7	Electrical Characteristics for 2.5-V Supply	9	13.1	Trademarks	23
7.8	Electrical Characteristics for 1.8-V Supply	11	13.2	Electrostatic Discharge Caution	23
7.9	Typical Characteristics	13	13.3	Glossary	23
8	Parameter Measurement Information	15	14	Mechanical, Packaging, and Orderable Information	23

5 Revision History

Changes from Original (July 2014) to Revision A	Page
• Initial release of full document.	1

6 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.		
NO	1	IO	Normally closed
COM	2	IO	Common
GND	3	GND	Digital ground
IN	4	Input	Digital control pin to connect COM to NO
V ₊	5	Power	Power Supply

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾⁽²⁾

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V ₊	Supply voltage range ⁽³⁾	-0.5	6.5	V
V _{NO} V _{COM}	Analog voltage range ⁽³⁾⁽⁴⁾⁽⁵⁾	-0.5	V ₊ + 0.5	V
I _K	Analog port diode current	V _{NO} , V _{COM} < 0	-50	mA
I _{NO} I _{COM}	On-state switch current	V _{NO} , V _{COM} = 0 to V ₊	-200	200
	On-state peak switch current ⁽⁶⁾		-400	
V _I	Digital input voltage range ⁽³⁾⁽⁴⁾	-0.5	6.5	V
I _{IK}	Digital clamp current	V _I < 0	-50	mA
I ₊	Continuous current through V ₊		100	mA
I _{GND}	Continuous current through GND		-100	mA
T _{stg}	Storage temperature range	-65	150	°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
- (3) All voltages are with respect to ground, unless otherwise specified.
- (4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (5) This value is limited to 5.5 V maximum.
- (6) Pulse at 1-ms duration < 10% duty cycle.

7.2 ESD Ratings

		VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000
		Charged-device model (CDM), per AEC Q100-011	

- (1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
$V_{I/O}$	Input/output voltage	0	5.5	V
V_+	Supply voltage	0	5.5	V
V_I	Control Input Voltage	0	5.5	V
T_A	Operating free-air temperature	-40	125	°C

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾	TS5A3166-Q1	UNIT
	DCK	
	5 PINS	
$R_{\theta JA}$	283.1	°C/W
$R_{\theta JC(\text{top})}$	92.2	
$R_{\theta JB}$	60.8	
Ψ_{JT}	1.7	
Ψ_{JB}	60.0	

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, [SPRA953](http://www.ti.com).

7.5 Electrical Characteristics for 5-V Supply⁽¹⁾

$V_+ = 4.5 \text{ V to } 5.5 \text{ V}$, $T_A = -40^\circ\text{C to } 85^\circ\text{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	T_A	V_+	85°C			125°C			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
Analog Switch											
Analog signal range	$V_{\text{COM}}, V_{\text{NO}}$				0	V_+		0	V_+		V
Peak ON resistance	r_{peak}	$0 \leq V_{\text{NO}} \leq V_+$, $I_{\text{COM}} = -100 \text{ mA}$, Switch ON, See Figure 13	25°C	4.5 V	0.8	1.1		0.8	1.1		Ω
			Full		1.2			1.44			
ON-state resistance	r_{on}	$V_{\text{NO}} = 2.5 \text{ V}$, $I_{\text{COM}} = -100 \text{ mA}$, Switch ON, See Figure 13	25°C	4.5 V	0.7	0.9		0.7	0.9		Ω
			Full		1			1.2			
ON-state resistance flatness	$r_{\text{on}(\text{flat})}$	$0 \leq V_{\text{NO}} \leq V_+$, $I_{\text{COM}} = -100 \text{ mA}$, $V_{\text{NO}} = 1 \text{ V, } 1.5 \text{ V, } 2.5 \text{ V, } 1 \text{ V}$, $I_{\text{COM}} = -100 \text{ mA}$, Switch ON, See Figure 13	25°C	4.5 V	0.15			0.15			Ω
			25°C		0.09	0.15		0.09	0.15		
			Full		0.15			0.18			
NO OFF leakage current	$I_{\text{NO(OFF)}}$	$V_{\text{NO}} = 1 \text{ V, } V_{\text{COM}} = 4.5 \text{ V, } \text{or } V_{\text{NO}} = 4.5 \text{ V, } V_{\text{COM}} = 1 \text{ V, }$	25°C	5.5 V	-20	4	20	-80	4	80	nA
			Full		-100		100	-400		400	
	$I_{\text{NO(PWROFF)}}$	$V_{\text{NO}} = 0 \text{ to } 5.5 \text{ V, } V_{\text{COM}} = 5.5 \text{ V to } 0$	25°C	0 V	-5	0.4	5	-5	0.4	5	μA
			Full		-15		15	-30		30	
COM OFF leakage current	$I_{\text{COM(OFF)}}$	$V_{\text{COM}} = 1 \text{ V, } V_{\text{NO}} = 4.5 \text{ V, } \text{or } V_{\text{COM}} = 4.5 \text{ V, } V_{\text{NO}} = 1 \text{ V, }$	25°C	5.5 V	-20	4	20	-80	4	80	nA
			Full		-100		100	-400		400	
	$I_{\text{COM(PWROFF)}}$	$V_{\text{COM}} = 5.5 \text{ V to } 0, V_{\text{NO}} = 0 \text{ to } 5.5 \text{ V, }$	25°C	0 V	-5	0.4	5	-5	0.4	5	μA
			Full		-15		15	-30		30	
NO ON leakage current	$I_{\text{NO(ON)}}$	$V_{\text{NO}} = 1 \text{ V, } V_{\text{COM}} = \text{Open, } \text{or } V_{\text{NO}} = 4.5 \text{ V, } V_{\text{COM}} = \text{Open, }$	25°C	5.5 V	-2	0.3	2	-80	0.3	80	nA
			Full		-20		20	-400		400	
COM ON leakage current	$I_{\text{COM(ON)}}$	$V_{\text{COM}} = 1 \text{ V, } V_{\text{NO}} = \text{Open, } \text{or } V_{\text{COM}} = 4.5 \text{ V, } V_{\text{NO}} = \text{Open, }$	25°C	5.5 V	-2	0.3	2	-80	0.3	80	nA
			Full		-20		20	-400		400	
Digital Control Inputs (IN)											
Input logic high	V_{IH}		Full		2.4	5.5	2.4	5.5			V
Input logic low	V_{IL}		Full		0	0.8	0	0.8			V
Input leakage current	$I_{\text{IH}}, I_{\text{IL}}$	$V_I = 5.5 \text{ V or } 0$	25°C	5.5 V	-2	0.3	2				nA
			Full		-20		20	-400		400	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Electrical Characteristics for 5-V Supply⁽¹⁾ (continued)
 $V_+ = 4.5 \text{ V to } 5.5 \text{ V}$, $T_A = -40^\circ\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	T_A	V_+	85°C			125°C			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
Dynamic											
Turn-on time	t_{ON}	$V_{COM} = V_+$, $R_L = 50 \Omega$,	$C_L = 35 \text{ pF}$, See Figure 17	25°C	5 V	2.5	4.5	7	2.5	4.5	7
				Full	4.5 V to 5.5 V	1.5	7.5	1.5	7.5	7.5	ns
Turn-off time	t_{OFF}	$V_{COM} = V_+$, $R_L = 50 \Omega$,	$C_L = 35 \text{ pF}$, See Figure 17	25°C	5 V	6	9	11.5	6	9	11.5
				Full	4.5 V to 5.5 V	4	12.5	4	12.5	12.5	ns
Charge injection	Q_C	$V_{GEN} = 0$, $R_{GEN} = 0$,	$C_L = 1 \text{ nF}$, See Figure 20	25°C	5 V	1			1		
NO OFF capacitance	$C_{NO(OFF)}$	$V_{NO} = V_+$ or GND, Switch OFF,	See Figure 16	25°C	5 V	19			19		
COM OFF capacitance	$C_{COM(OFF)}$	$V_{COM} = V_+$ or GND, Switch OFF,	See Figure 16	25°C	5 V	18			18		
NO ON capacitance	$C_{NO(ON)}$	$V_{NO} = V_+$ or GND, Switch ON,	See Figure 16	25°C	5 V	35.5			35.5		
COM ON capacitance	$C_{COM(ON)}$	$V_{COM} = V_+$ or GND, Switch ON,	See Figure 16	25°C	5 V	35.5			35.5		
Digital input capacitance	C_I	$V_I = V_+$ or GND,	See Figure 16	25°C	5 V	2			2		
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	5 V	200			200		
OFF isolation	O_{ISO}	$R_L = 50 \Omega$, $f = 1 \text{ MHz}$,	Switch OFF, See Figure 19	25°C	5 V	-64			-64		
Total harmonic distortion	THD	$R_L = 600 \Omega$, $C_L = 50 \text{ pF}$,	$f = 20 \text{ Hz to } 20 \text{ kHz}$, See Figure 21	25°C	5 V	0.005			0.005		
Supply											
Positive supply current	I_+	$V_I = V_+$ or GND,	Switch ON or OFF	25°C	5.5 V	0.01	0.1	0.01	0.1	0.8	μA
				Full		0.5					

7.6 Electrical Characteristics for 3.3-V Supply⁽¹⁾

$V_+ = 3$ V to 3.6 V, $T_A = -40^\circ\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	T_A	V_+	85°C			125°C			UNIT	
					MIN	TYP	MAX	MIN	TYP	MAX		
Analog Switch												
Analog signal range	$V_{\text{COM}}, V_{\text{NO}}$				0	V_+		0	V_+		V	
Peak ON resistance	r_{peak}	$0 \leq V_{\text{NO}} \leq V_+, I_{\text{COM}} = -100 \text{ mA}$, Switch ON, See Figure 13	25°C	3 V	1.1	1.5		1.1	1.5		Ω	
			Full		1.7			2.07				
ON-state resistance	r_{on}	$V_{\text{NO}} = 2 \text{ V}, I_{\text{COM}} = -100 \text{ mA}$, Switch ON, See Figure 13	25°C	3 V	1	1.4		1	1.4		Ω	
			Full		1.5			1.8				
ON-state resistance flatness	$r_{\text{on}(\text{flat})}$	$0 \leq V_{\text{NO}} \leq V_+, I_{\text{COM}} = -100 \text{ mA}$, Switch ON, See Figure 13	25°C	3 V	0.3			0.3			Ω	
		$V_{\text{NO}} = 2 \text{ V}, 0.8 \text{ V}, I_{\text{COM}} = -100 \text{ mA}$, Switch ON, See Figure 13	25°C		0.09	0.15		0.09	0.15			
			Full		0.15			0.18				
NO OFF leakage current	$I_{\text{NO(OFF)}}$	$V_{\text{NO}} = 1 \text{ V}, V_{\text{COM}} = 3 \text{ V}$, or $V_{\text{NO}} = 3 \text{ V}, V_{\text{COM}} = 1 \text{ V}$, Switch OFF, See Figure 14	25°C	3.6 V	-2	0.5	2	-2	0.5	2	nA	
			Full		-20		20	-360		360		
	$I_{\text{NO(PWROFF)}}$		25°C	0 V	-1	0.1	1	-1	0.1	1	μA	
			Full		-5		5	-27		27		
COM OFF leakage current	$I_{\text{COM(OFF)}}$	$V_{\text{COM}} = 1 \text{ V}, V_{\text{NO}} = 3 \text{ V}$, or $V_{\text{COM}} = 3 \text{ V}, V_{\text{NO}} = 1 \text{ V}$, Switch OFF, See Figure 14	25°C	3.6 V	-2	0.5	2	-72	0.5	72	nA	
			Full		-20		20	-360		360		
	$I_{\text{COM(PWROFF)}}$		25°C	0 V	-1	0.1	1	-2	0.1	2	μA	
			Full		-5		5	-27		27		
NO ON leakage current	$I_{\text{NO(ON)}}$	$V_{\text{NO}} = 1 \text{ V}, V_{\text{COM}} = \text{Open}$, or $V_{\text{NO}} = 3 \text{ V}, V_{\text{COM}} = \text{Open}$, Switch ON, See Figure 15	25°C	3.6 V	-2	0.2	2	-72		72	nA	
			Full		-20		20	-360		360		
COM ON leakage current	$I_{\text{COM(ON)}}$	$V_{\text{COM}} = 1 \text{ V}, V_{\text{NO}} = \text{Open}$, or $V_{\text{COM}} = 3 \text{ V}, V_{\text{NO}} = \text{Open}$, Switch ON, See Figure 15	25°C	3.6 V	-2	0.2	2	-72		72	nA	
			Full		-20		20	-360		360		
Digital Control Inputs (IN)												
Input logic high	V_{IH}		Full		2	5.5		2	5.5		V	
Input logic low	V_{IL}		Full		0	0.8		0	0.8		V	
Input leakage current	$I_{\text{IH}}, I_{\text{IL}}$	$V_I = 5.5 \text{ V or } 0$	25°C	3.6 V	-2	0.3	2				nA	
			Full		-20		20	-360		360		

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

Electrical Characteristics for 3.3-V Supply⁽¹⁾ (continued)

$V_+ = 3\text{ V}$ to 3.6 V , $T_A = -40^\circ\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	T_A	V_+	85°C			125°C			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
Dynamic											
Turn-on time	t_{ON}	$V_{COM} = V_+$, $R_L = 50\ \Omega$,	$C_L = 35\text{ pF}$, See Figure 17	25°C	3.3 V	2	5	10	2	5	10
				Full	3 V to 3.6 V	1.5	11	1.5	11	11	ns
Turn-off time	t_{OFF}	$V_{COM} = V_+$, $R_L = 50\ \Omega$,	$C_L = 35\text{ pF}$, See Figure 17	25°C	3.3 V	6.5	9	12	6.5	9	12
				Full	3 V to 3.6 V	4	13	4	13	13	ns
Charge injection	Q_C	$V_{GEN} = 0$, $R_{GEN} = 0$,	$C_L = 1\text{ nF}$, See Figure 21	25°C	3.3 V	1			1		
NO OFF capacitance	$C_{NO(OFF)}$	$V_{NO} = V_+$ or GND, Switch OFF,	See Figure 16	25°C	3.3 V	19			19		
COM OFF capacitance	$C_{COM(OFF)}$	$V_{COM} = V_+$ or GND, Switch OFF,	See Figure 16	25°C	3.3 V	18			18		
NO ON capacitance	$C_{NO(ON)}$	$V_{NO} = V_+$ or GND, Switch ON,	See Figure 16	25°C	3.3 V	36			36		
COM ON capacitance	$C_{COM(ON)}$	$V_{COM} = V_+$ or GND, Switch ON,	See Figure 16	25°C	3.3 V	36			36		
Digital input capacitance	C_I	$V_I = V_+$ or GND,	See Figure 16	25°C	3.3 V	2			2		
Bandwidth	BW	$R_L = 50\ \Omega$, Switch ON,	See Figure 18	25°C	3.3 V	200			200		
OFF isolation	Q_{ISO}	$R_L = 50\ \Omega$, $f = 1\text{ MHz}$,	Switch OFF, See Figure 19	25°C	3.3 V	-64			-64		
Total harmonic distortion	THD	$R_L = 600\ \Omega$, $C_L = 50\text{ pF}$,	$f = 20\text{ Hz}$ to 20 kHz , See Figure 21	25°C	3.3 V	0.01			0.01		
Supply											
Positive supply current	I_+	$V_I = V_+$ or GND,	Switch ON or OFF	25°C	3.6 V	0.01	0.1	0.01	0.1	0.7	μA
				Full		0.25					

7.7 Electrical Characteristics for 2.5-V Supply⁽¹⁾

$V_+ = 2.3$ V to 2.7 V, $T_A = -40^\circ\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	T_A	V_+	85°C			125°C			UNIT		
					MIN	TYP	MAX	MIN	TYP	MAX			
Analog Switch													
Analog signal range	$V_{\text{COM}}, V_{\text{NO}}$			2.3 V	0	V_+	0	V_+	0	V_+	V		
Peak ON resistance	r_{peak}	0 ≤ $V_{\text{NO}} \leq V_+$, $I_{\text{COM}} = -100$ mA,	Switch ON, See Figure 13	25°C	2.3 V	1.8	2.4	1.8	2.4	3.1	Ω		
				Full		2.6							
ON-state resistance	r_{on}	$V_{\text{NO}} = 2$ V, $I_{\text{COM}} = -100$ mA,	Switch ON, See Figure 13	25°C	2.3 V	1.2	2.1	1.2	2.1	2.88	Ω		
				Full		2.4							
ON-state resistance flatness	$r_{\text{on}(\text{flat})}$	0 ≤ $V_{\text{NO}} \leq V_+$, $I_{\text{COM}} = -100$ mA,	Switch ON, See Figure 13	25°C	2.3 V	0.7		0.7	0.7	0.6	Ω		
		$V_{\text{NO}} = 2$ V, 0.8 V, $I_{\text{COM}} = -100$ mA,		25°C		0.4	0.6						
		Full		Full		0.6							
NO OFF leakage current	$I_{\text{NO(OFF)}}$	$V_{\text{NO}} = 1$ V, $V_{\text{COM}} = 3$ V, or $V_{\text{NO}} = 3$ V, $V_{\text{COM}} = 1$ V,	Switch OFF, See Figure 14	25°C	2.7 V	-5	0.3	5	-64	0.3	64	nA	
				Full		-50		50	-320		320		
	$I_{\text{NO(PWROFF)}}$	$V_{\text{NO}} = 0$ to 3.6 V, $V_{\text{COM}} = 3.6$ V to 0,		25°C	0 V	-2	0.05	2	-2	0.05	2	μA	
				Full		-15		15	-24		24		
COM OFF leakage current	$I_{\text{COM(OFF)}}$	$V_{\text{COM}} = 1$ V, $V_{\text{NO}} = 3$ V, or $V_{\text{COM}} = 3$ V, $V_{\text{NO}} = 1$ V,	Switch OFF, See Figure 14	25°C	2.7 V	-5	0.3	5	-64	0.3	64	nA	
				Full		-50		50	-320		320		
	$I_{\text{COM(PWROFF)}}$	$V_{\text{COM}} = 3.6$ V to 0, $V_{\text{NO}} = 0$ to 3.6 V,		25°C	0 V	-2	0.05	2	-2	0.05	2	μA	
				Full		-15		15	-24		24		
NO ON leakage current	$I_{\text{NO(ON)}}$	$V_{\text{NO}} = 1$ V, $V_{\text{COM}} = \text{Open}$, or $V_{\text{NO}} = 3$ V, $V_{\text{COM}} = \text{Open}$,	Switch ON, See Figure 15	25°C	2.7 V	-2	0.3	2	-64		64	nA	
				Full		-20		20	-320		320		
COM ON leakage current	$I_{\text{COM(ON)}}$	$V_{\text{COM}} = 1$ V, $V_{\text{NO}} = \text{Open}$, or $V_{\text{COM}} = 3$ V, $V_{\text{NO}} = \text{Open}$,	Switch ON, See Figure 15	25°C	2.7 V	-2	0.3	2	-64	0.3	64	nA	
				Full		-20		20	-320		320		
Digital Control Inputs (IN1, IN2)													
Input logic high	V_{IH}			Full		1.8	5.5	1.8	5.5		V		
Input logic low	V_{IL}			Full		0	0.6	0	0.6		V		
Input leakage current	$I_{\text{IH}}, I_{\text{IL}}$	$V_I = 5.5$ V or 0		25°C	2.7 V	-2	0.3	2				nA	
				Full		-20		20	-320		320		

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

Electrical Characteristics for 2.5-V Supply⁽¹⁾ (continued)

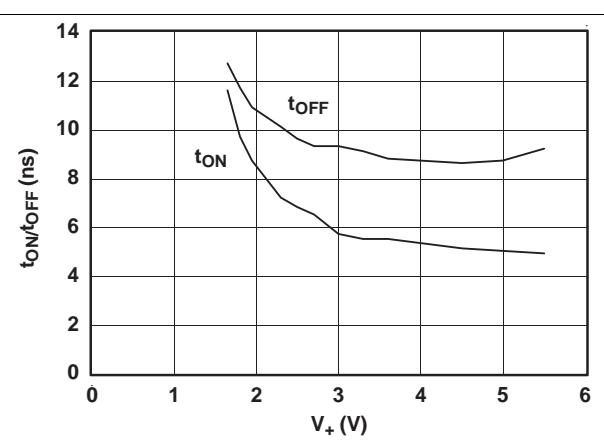
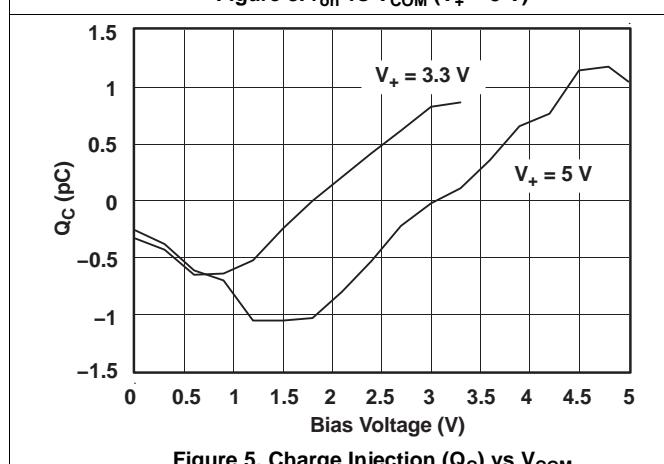
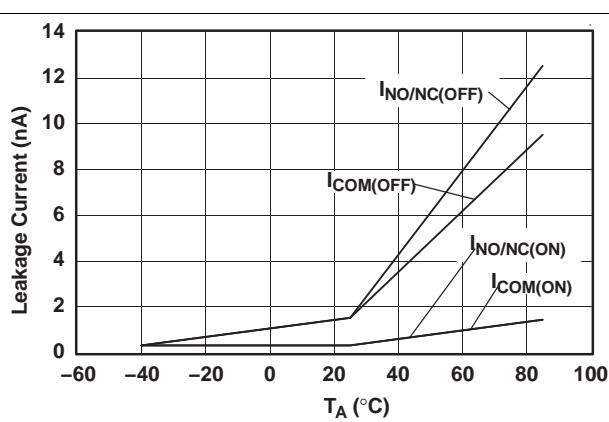
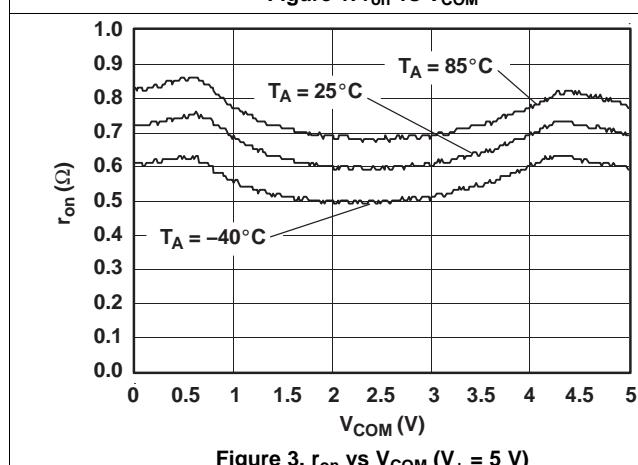
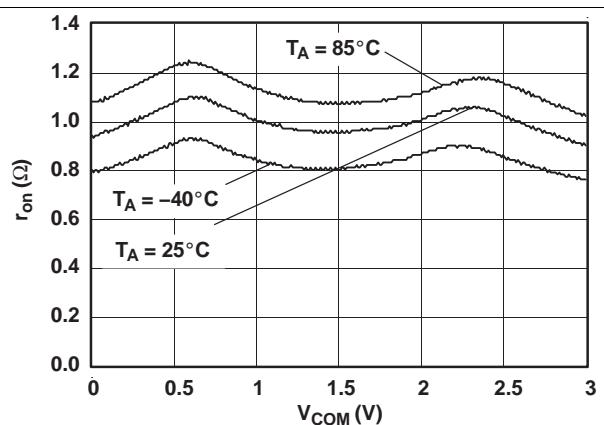
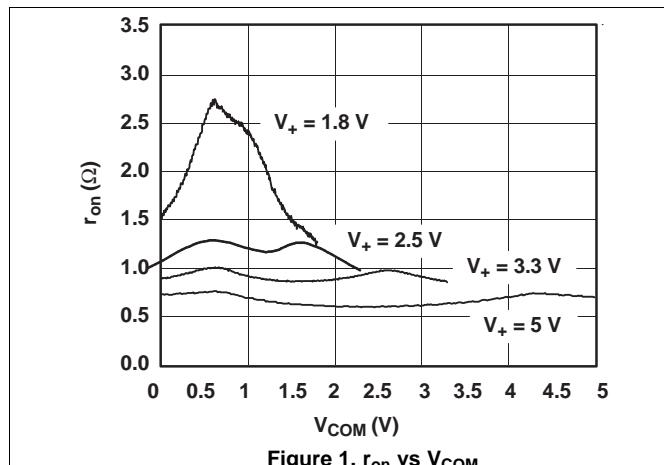
$V_+ = 2.3$ V to 2.7 V, $T_A = -40^\circ\text{C}$ to 85°C (unless otherwise noted)

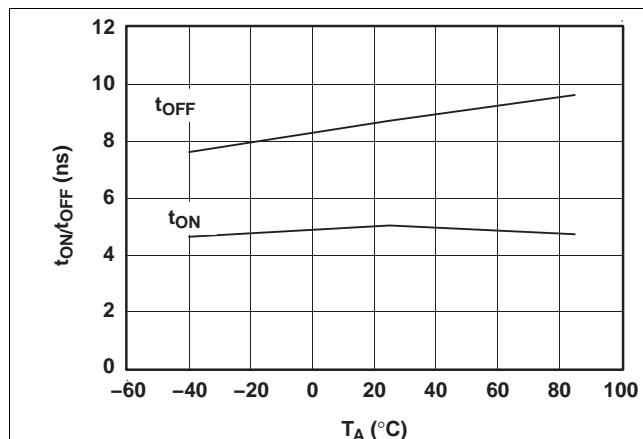
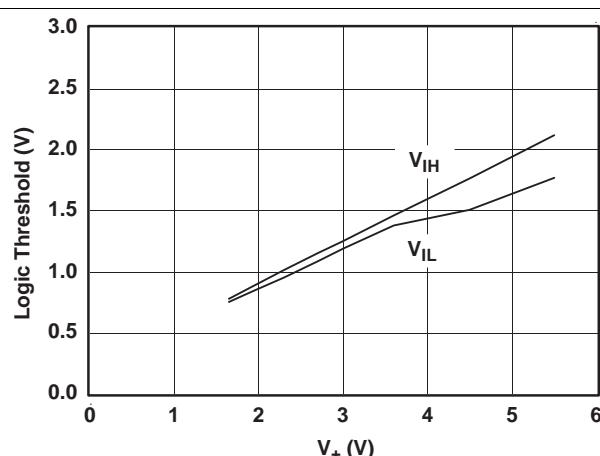
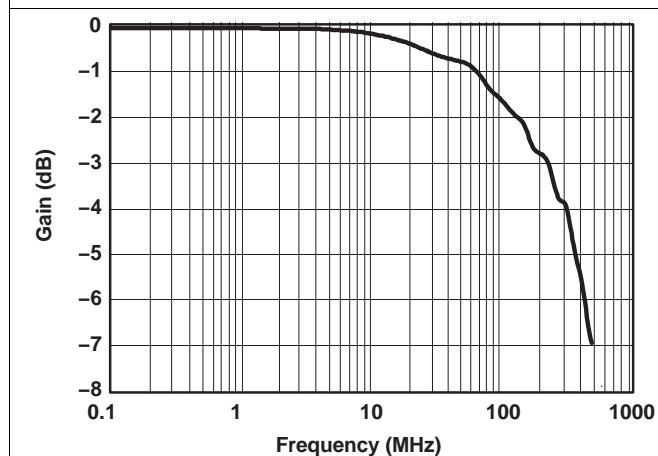
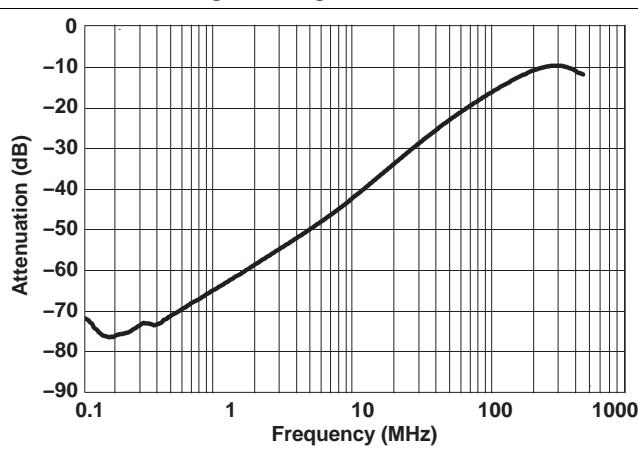
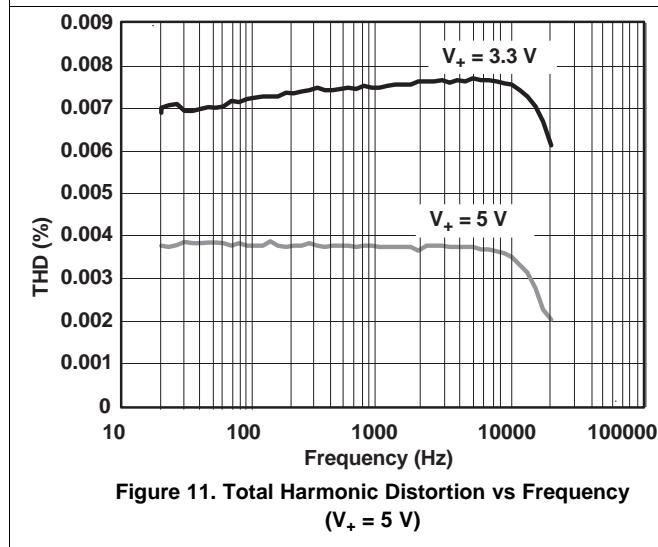
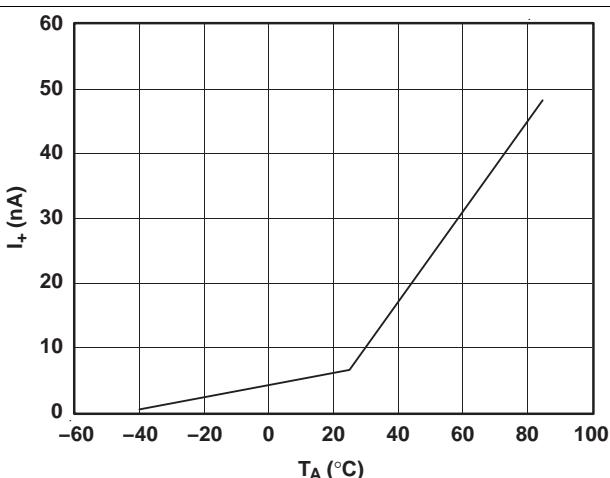
PARAMETER	SYMBOL	TEST CONDITIONS	T_A	V_+	85°C			125°C			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
Dynamic											
Turn-on time	t_{ON}	$V_{COM} = V_+$, $R_L = 50 \Omega$,	$C_L = 35 \text{ pF}$, See Figure 17	25°C	2.5 V	2	6	10	2	6	10
				Full	2.3 V to 2.7 V	1	12	1	12	12	ns
Turn-off time	t_{OFF}	$V_{COM} = V_+$, $R_L = 50 \Omega$,	$C_L = 35 \text{ pF}$, See Figure 17	25°C	2.5 V	4.5	8	10.5	4.5	8	10.5
				Full	2.3 V to 2.7 V	3	15	3	15	15	ns
Charge injection	Q_C	$V_{GEN} = 0$, $R_{GEN} = 0$,	$C_L = 1 \text{ nF}$, See Figure 21	25°C	2.5 V	4			4		
NO OFF capacitance	$C_{NO(OFF)}$	$V_{NO} = V_+$ or GND, Switch OFF,	See Figure 16	25°C	2.5 V	19.5			19.5		
COM OFF capacitance	$C_{COM(OFF)}$	$V_{COM} = V_+$ or GND, Switch OFF,	See Figure 16	25°C	2.5 V	18.5			18.5		
NO ON capacitance	$C_{NO(ON)}$	$V_{NO} = V_+$ or GND, Switch ON,	See Figure 16	25°C	2.5 V	36.5			36.5		
COM ON capacitance	$C_{COM(ON)}$	$V_{COM} = V_+$ or GND, Switch ON,	See Figure 16	25°C	2.5 V	36.5			36.5		
Digital input capacitance	C_I	$V_I = V_+$ or GND,	See Figure 16	25°C	2.5 V	2			2		
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	2.5 V	150			150		
OFF isolation	Q_{ISO}	$R_L = 50 \Omega$, $f = 1 \text{ MHz}$,	Switch OFF, See Figure 19	25°C	2.5 V	-62			-62		
Total harmonic distortion	THD	$R_L = 600 \Omega$, $C_L = 50 \text{ pF}$,	$f = 20 \text{ Hz}$ to 20 kHz, See Figure 21	25°C	2.5 V	0.02			0.02		
Supply											
Positive supply current	I_+	$V_I = V_+$ or GND,	Switch ON or OFF	25°C	2.7 V	0.001	0.02	0.001	0.02	0.6	μA
				Full		0.25					

7.8 Electrical Characteristics for 1.8-V Supply⁽¹⁾

$V_+ = 1.65 \text{ V to } 1.95 \text{ V}$, $T_A = -40^\circ\text{C to } 85^\circ\text{C}$ (unless otherwise noted))

PARAMETER	SYMBOL	TEST CONDITIONS	T_A	V_+	85°C			125°C			UNIT	
					MIN	TYP	MAX	MIN	TYP	MAX		
Analog Switch												
Analog signal range	$V_{\text{COM}}, V_{\text{NO}}$				0	V_+		0	V_+		V	
Peak ON resistance	r_{peak}	$0 \leq V_{\text{NO}} \leq V_+$, $I_{\text{COM}} = -100 \text{ mA}$,	Switch ON, See Figure 13	25°C	1.65 V	4.2	25	4.2	25		Ω	
				Full		30		36				
ON-state resistance	r_{on}	$V_{\text{NO}} = 2 \text{ V}$, $I_{\text{COM}} = -100 \text{ mA}$,	Switch ON, See Figure 13	25°C	1.65 V	1.6	3.9	1.6	3.9		Ω	
				Full		4.0		4.8				
ON-state resistance flatness	$r_{\text{on}(\text{flat})}$	$0 \leq V_{\text{NO}} \leq V_+$, $I_{\text{COM}} = -100 \text{ mA}$,	Switch ON, See Figure 13	25°C	1.65 V	2.8		2.8			Ω	
		$V_{\text{NO}} = 2 \text{ V, } 0.8 \text{ V}$, $I_{\text{COM}} = -100 \text{ mA}$,		25°C		4.1	22	4.1	22			
				Full		27		32.4				
NO OFF leakage current	$I_{\text{NO(OFF)}}$	$V_{\text{NO}} = 1 \text{ V}$, $V_{\text{COM}} = 3 \text{ V}$, or $V_{\text{NO}} = 3 \text{ V}$, $V_{\text{COM}} = 1 \text{ V}$,	Switch OFF, See Figure 14	25°C	1.95 V	-5	5	-58	58		nA	
				Full		-50	50	-320	320			
	$I_{\text{NO(PWROFF)}}$	$V_{\text{NO}} = 0 \text{ to } 3.6 \text{ V}$, $V_{\text{COM}} = 3.6 \text{ V to } 0$,		25°C	0 V	-2	2	-2	2		μA	
				Full		-10	10	-22	22			
COM OFF leakage current	$I_{\text{COM(OFF)}}$	$V_{\text{COM}} = 1 \text{ V}$, $V_{\text{NO}} = 3 \text{ V}$, or $V_{\text{COM}} = 3 \text{ V}$, $V_{\text{NO}} = 1 \text{ V}$,	Switch OFF, See Figure 14	25°C	1.95 V	-5	5	-58	58		nA	
				Full		-50	50	-320	320			
	$I_{\text{COM(PWROFF)}}$	$V_{\text{COM}} = 0 \text{ to } 3.6 \text{ V}$, $V_{\text{NO}} = 3.6 \text{ V to } 0$,		25°C	0 V	-2	2	-2	2		μA	
				Full		-10	10	-22	22			
NO ON leakage current	$I_{\text{NO(ON)}}$	$V_{\text{NO}} = 1 \text{ V}$, $V_{\text{COM}} = \text{Open}$, or $V_{\text{NO}} = 3 \text{ V}$, $V_{\text{COM}} = \text{Open}$,	Switch ON, See Figure 15	25°C	1.95 V	-2	2	-58	58		nA	
				Full		-20	20	-320	320			
COM ON leakage current	$I_{\text{COM(ON)}}$	$V_{\text{COM}} = 1 \text{ V}$, $V_{\text{NO}} = \text{Open}$, or $V_{\text{COM}} = 3 \text{ V}$, $V_{\text{NO}} = \text{Open}$,	Switch ON, See Figure 15	25°C	1.95 V	-2	2	-58	58		nA	
				Full		-20	20	-320	320			
Digital Control Inputs (IN1, IN2)												
Input logic high	V_{IH}			Full		1.5	5.5	1.5	5.5		V	
Input logic low	V_{IL}			Full		0	0.6	0	0.6		V	
Input leakage current	$I_{\text{IH}}, I_{\text{IL}}$	$V_I = 5.5 \text{ V or } 0$		25°C	1.95 V	-2	0.3	2			nA	
				Full		-20	20	-320	320			







(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum







Electrical Characteristics for 1.8-V Supply⁽¹⁾ (continued)

$V_+ = 1.65 \text{ V to } 1.95 \text{ V}$, $T_A = -40^\circ\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	T_A	V_+	85°C			125°C			UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
Dynamic											
Turn-on time	t_{ON}	$V_{COM} = V_+$, $R_L = 50 \Omega$,	$C_L = 35 \text{ pF}$, See Figure 17	25°C	1.8 V	3	9	18	3	9	18
				Full	1.65 V to 1.95 V	1	20		1	20	ns
Turn-off time	t_{OFF}	$V_{COM} = V_+$, $R_L = 50 \Omega$,	$C_L = 35 \text{ pF}$, See Figure 17	25°C	1.8 V	5	10	15.5	5	10	15.5
				Full	1.65 V to 1.95 V	4	18.5		4	18.5	ns
Charge injection	Q_C	$V_{GEN} = 0$, $R_{GEN} = 0$,	$C_L = 1 \text{ nF}$, See Figure 21	25°C	1.8 V	2			2		
NO OFF capacitance	$C_{NO(OFF)}$	$V_{NO} = V_+$ or GND, Switch OFF,	See Figure 16	25°C	1.8 V	19.5			19.5		
COM OFF capacitance	$C_{COM(OFF)}$	$V_{COM} = V_+$ or GND, Switch OFF,	See Figure 16	25°C	1.8 V	18.5			18.5		
NO ON capacitance	$C_{NO(ON)}$	$V_{NO} = V_+$ or GND, Switch ON,	See Figure 16	25°C	1.8 V	36.5			36.5		
COM ON capacitance	$C_{COM(ON)}$	$V_{COM} = V_+$ or GND, Switch ON,	See Figure 16	25°C	1.8 V	36.5			36.5		
Digital input capacitance	C_I	$V_I = V_+$ or GND,	See Figure 16	25°C	1.8 V	2			2		
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	1.8 V	150			150		
OFF isolation	Q_{ISO}	$R_L = 50 \Omega$, $f = 1 \text{ MHz}$,	Switch OFF, See Figure 19	25°C	1.8 V	-62			-62		
Total harmonic distortion	THD	$R_L = 600 \Omega$, $C_L = 50 \text{ pF}$,	$f = 20 \text{ Hz to } 20 \text{ kHz}$ See Figure 21	25°C	1.8 V	0.055			0.055		
Supply											
Positive supply current	I_+	$V_I = V_+$ or GND,	Switch ON or OFF	25°C	1.95 V	0.001	0.01		0.001	0.01	μA
				Full		0.15			0.6		

7.9 Typical Characteristics

Typical Characteristics (continued)

Figure 7. t_{ON} and t_{OFF} vs Temperature ($V_+ = 5$ V)

Figure 8. Logic Threshold vs V_+

Figure 9. Gain vs Frequency ($V_+ = 5$ V)

Figure 10. OFF Isolation vs Frequency ($V_+ = 5$ V)

Figure 11. Total Harmonic Distortion vs Frequency ($V_+ = 5$ V)

Figure 12. Power-Supply Current vs Temperature ($V_+ = 5$ V)

8 Parameter Measurement Information

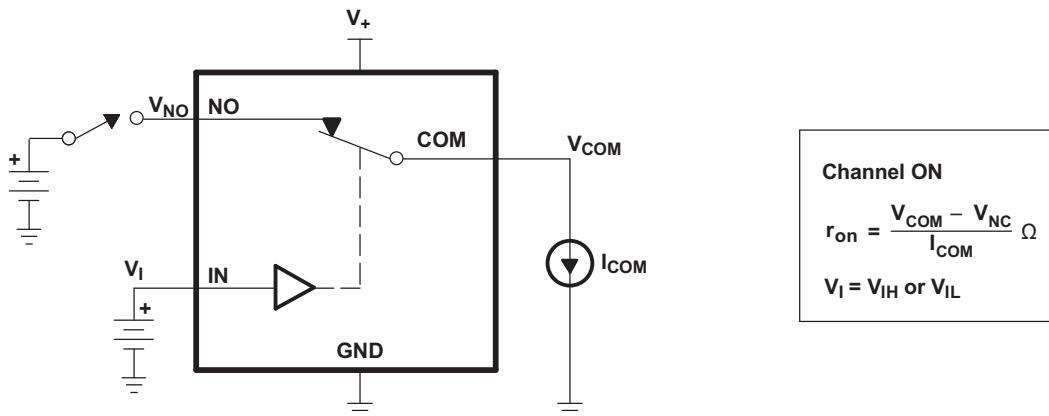


Figure 13. ON-State Resistance (r_{on})

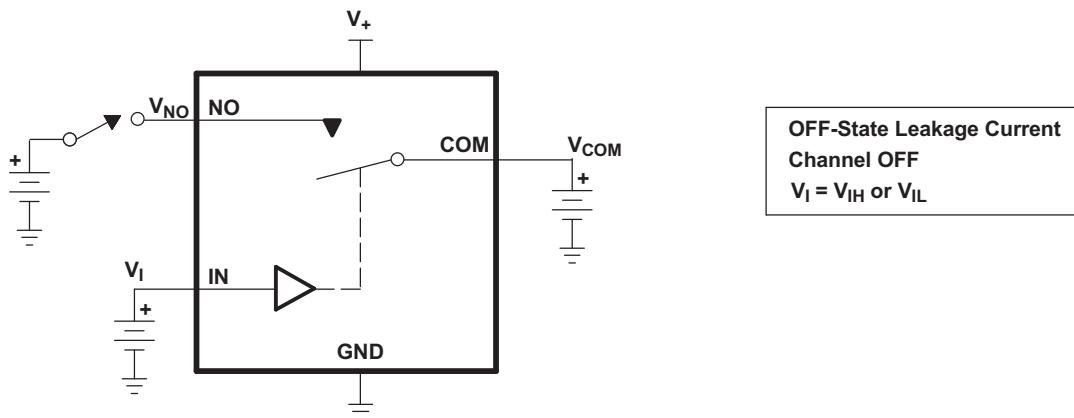


Figure 14. OFF-State Leakage Current ($I_{COM(OFF)}$, $I_{NO(OFF)}$, $I_{COM(PWR OFF)}$, $I_{NO(PWR FF)}$)

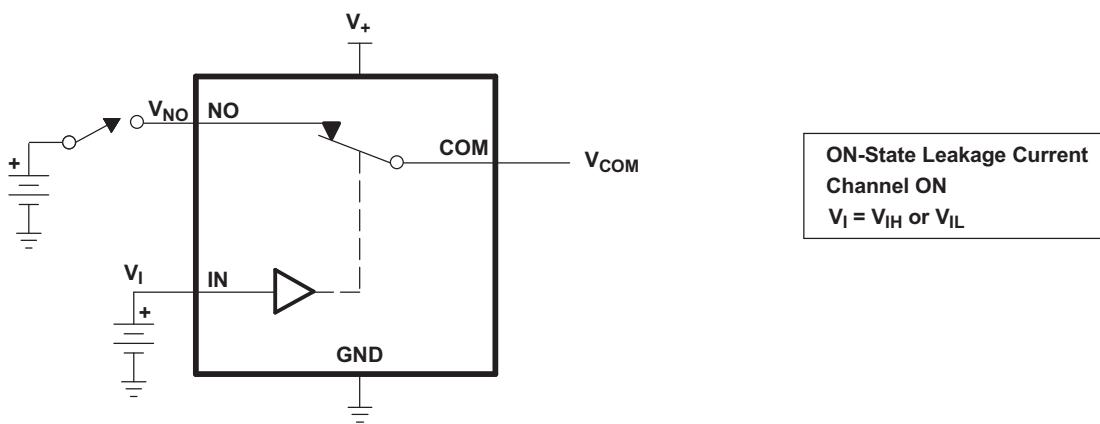


Figure 15. ON-State Leakage Current ($I_{COM(ON)}$, $I_{NO(ON)}$)

Parameter Measurement Information (continued)

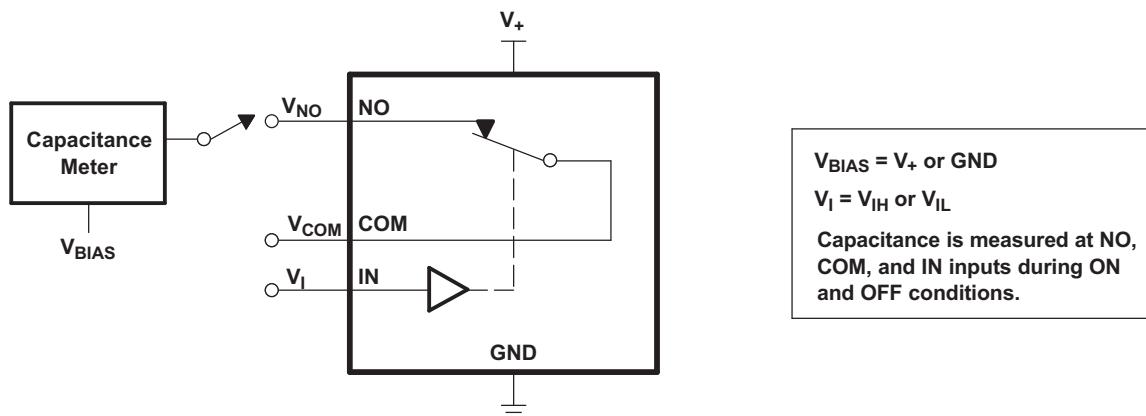
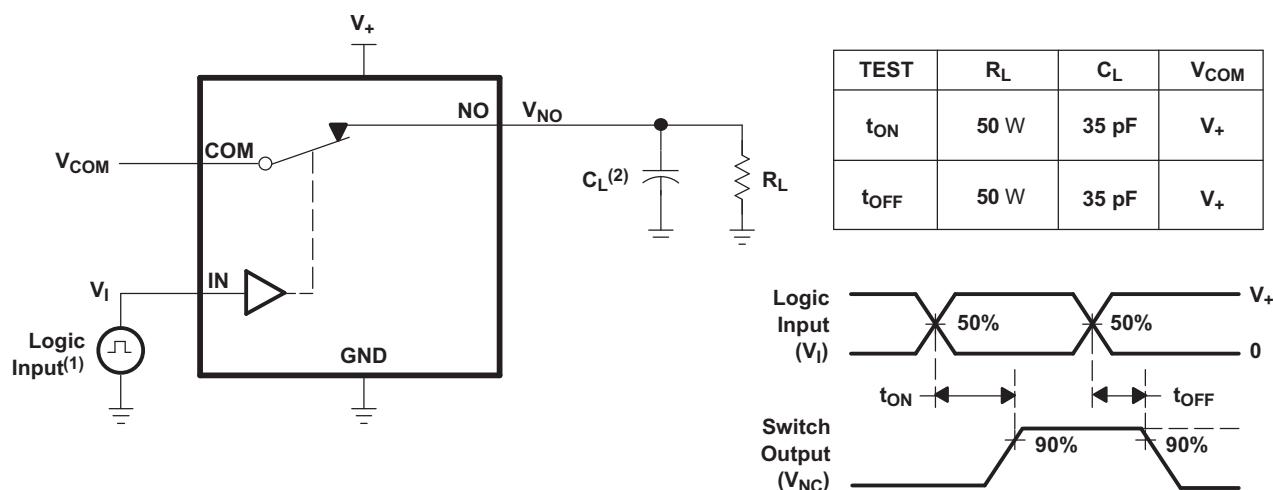



Figure 16. Capacitance (C_I , $C_{COM(OFF)}$, $C_{COM(ON)}$, $C_{NO(OFF)}$, $C_{NO(ON)}$)

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_r < 5$ ns, $t_f < 5$ ns.
- (2) C_L includes probe and jig capacitance.

Figure 17. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

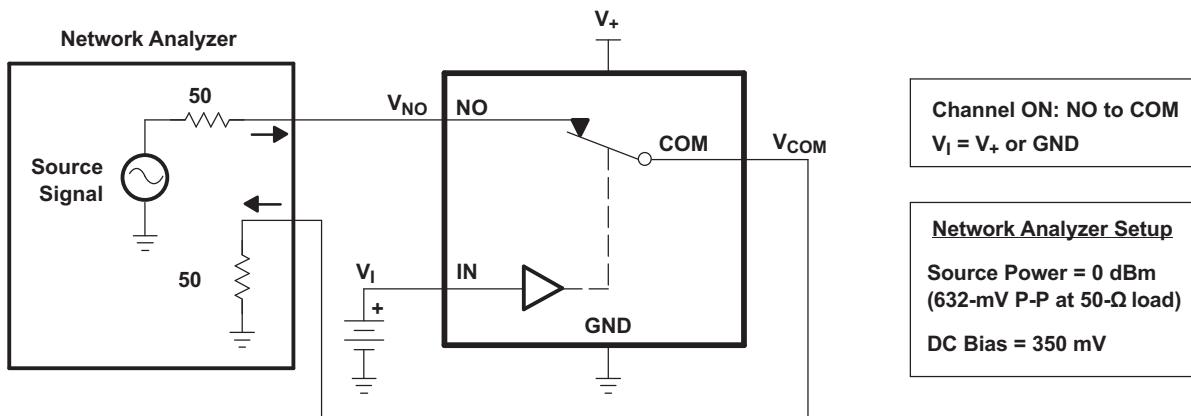


Figure 18. Bandwidth (BW)

Parameter Measurement Information (continued)

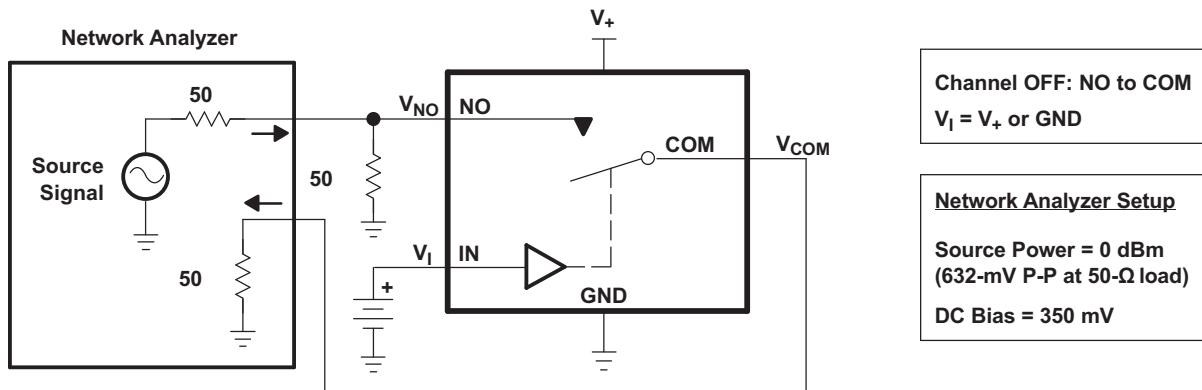
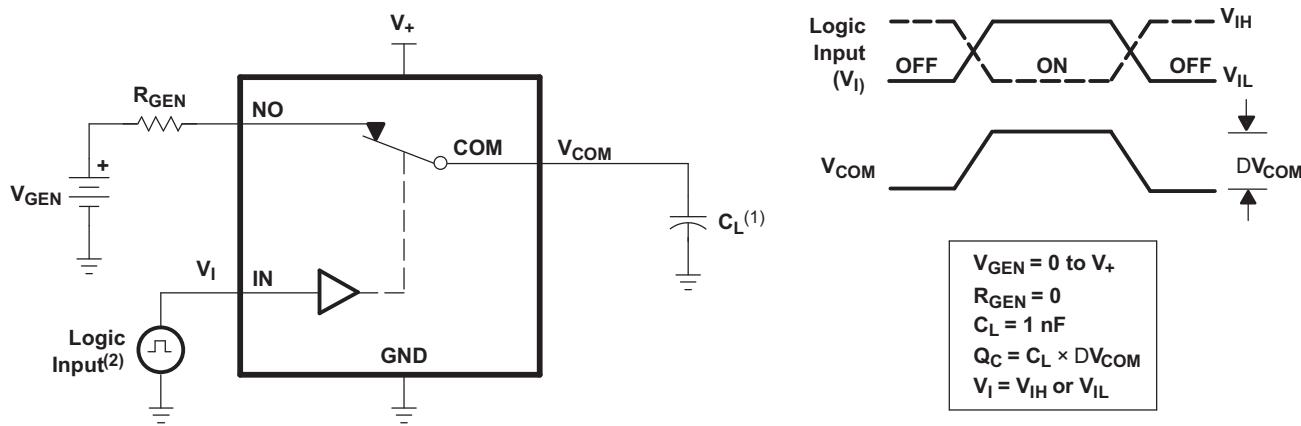
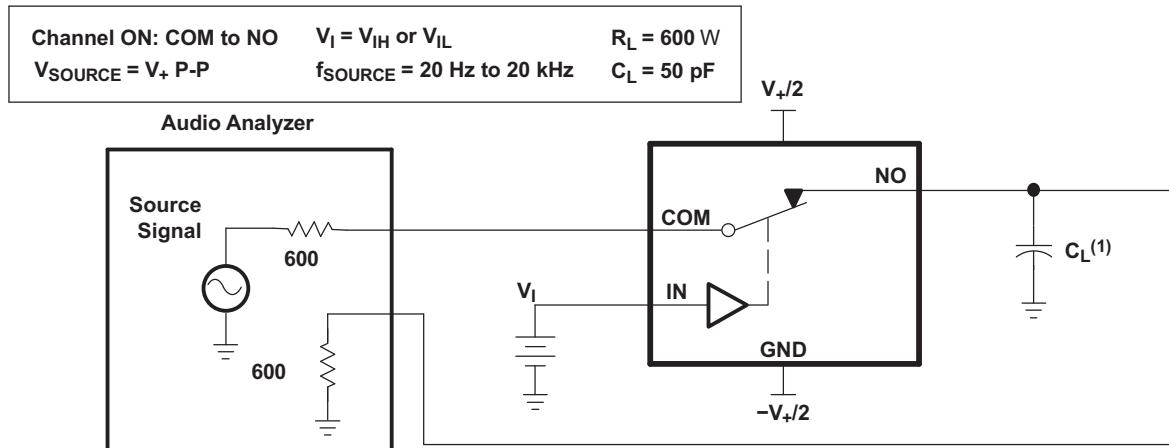




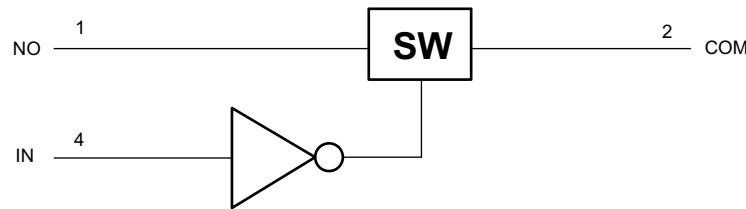
Figure 19. OFF Isolation (O_{ISO})

- (1) C_L includes probe and jig capacitance.
- (2) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.

Figure 20. Charge Injection (Q_C)

- (1) C_L includes probe and jig capacitance.

Figure 21. Total Harmonic Distortion (THD)


9 Detailed Description

9.1 Overview

Table 1. Parameter Description

SYMBOL	DESCRIPTION
V_{COM}	Voltage at COM
V_{NO}	Voltage at NO
r_{on}	Resistance between COM and NO ports when the channel is ON
r_{peak}	Peak on-state resistance over a specified voltage range
$r_{on(\text{flat})}$	Difference between the maximum and minimum value of r_{on} in a channel over the specified range of conditions
$I_{NO(\text{OFF})}$	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst-case input and output conditions
$I_{NO(\text{PWROFF})}$	Leakage current measured at the NO port during the power-down condition, $V_+ = 0$
$I_{COM(\text{OFF})}$	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the OFF state under worst-case input and output conditions
$I_{COM(\text{PWROFF})}$	Leakage current measured at the COM port during the power-down condition, $V_+ = 0$
$I_{NO(\text{ON})}$	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open
$I_{COM(\text{ON})}$	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the ON state and the output (NO) open
V_{IH}	Minimum input voltage for logic high for the control input (IN)
V_{IL}	Maximum input voltage for logic low for the control input (IN)
V_I	Voltage at the control input (IN)
I_{IH}, I_{IL}	Leakage current measured at the control input (IN)
t_{ON}	Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON.
t_{OFF}	Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF.
Q_C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance, and ΔV_{COM} is the change in analog output voltage.
$C_{NO(\text{OFF})}$	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
$C_{COM(\text{OFF})}$	Capacitance at the COM port when the corresponding channel (COM to NO) is OFF
$C_{NO(\text{ON})}$	Capacitance at the NO port when the corresponding channel (NO to COM) is ON
$C_{COM(\text{ON})}$	Capacitance at the COM port when the corresponding channel (COM to NO) is ON
C_I	Capacitance of control input (IN)
O_{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NO to COM) in the OFF state.
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.
THD	Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.
I_+	Static power-supply current with the control (IN) pin at V_+ or GND

9.2 Functional Block Diagram

9.3 Feature Description

Table 2. Summary Of Characteristics⁽¹⁾

Configuration	Single Pole Single Throw (SPST)
Number of channels	1
ON-state resistance (r_{on})	0.9 Ω
ON-state resistance flatness ($r_{on(flat)}$)	0.15 Ω
Turn-on/turn-off time (t_{ON}/t_{OFF})	7.5 ns/12.5 ns
Charge injection (Q_C)	1 pC
Bandwidth (BW)	200 MHz
OFF isolation (O_{ISO})	–64 dB at 1 MHz
Total harmonic distortion (THD)	0.005%
Leakage current ($I_{COM(OFF)}$)	±4 nA
Power-supply current (I_+)	0.5 μA
Package option	5-pin DSBGA, SOT-23, or SC-70

(1) $V_+ = 5$ V, $T_A = 25^\circ\text{C}$

9.4 Device Functional Modes

Table 3. Function Table

IN	NO TO COM, COM TO NO
L	OFF
H	ON

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

SPST analog switch is a basic component that could be used in any electrical system design. The following are some basic applications that utilize the TS5A3166, more detailed applications may be found in the *Typical Application* section.

1. Gain-control circuit for amplifier
 - (a) Additional details are available in the *Typical Application* section.
2. Improve lock time of a PLL by changing the time constant
 - (a) Example Diagram:

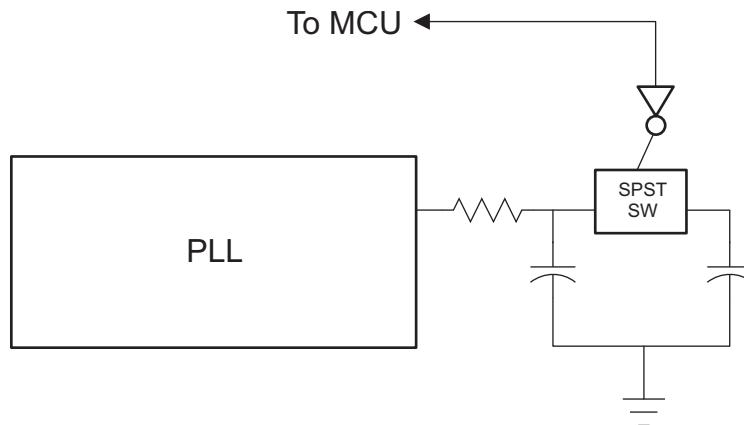


Figure 22. Improved Lock Time Circuit Simplified Block Diagram

1. Improve power consumption for PLL

- (a) Example Diagram:

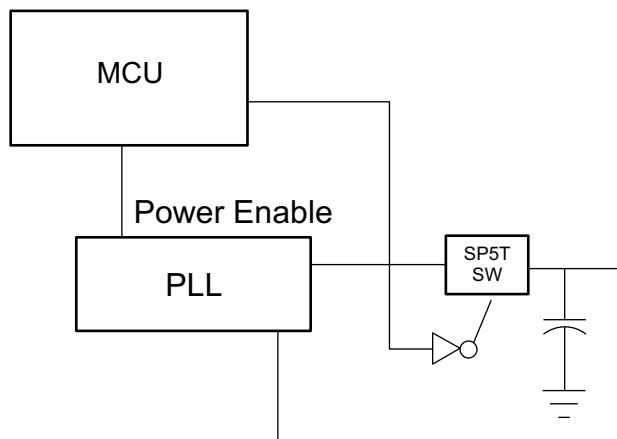


Figure 23. PLL Improved Power Consumption Simplified Block Diagram

10.2 Typical Application

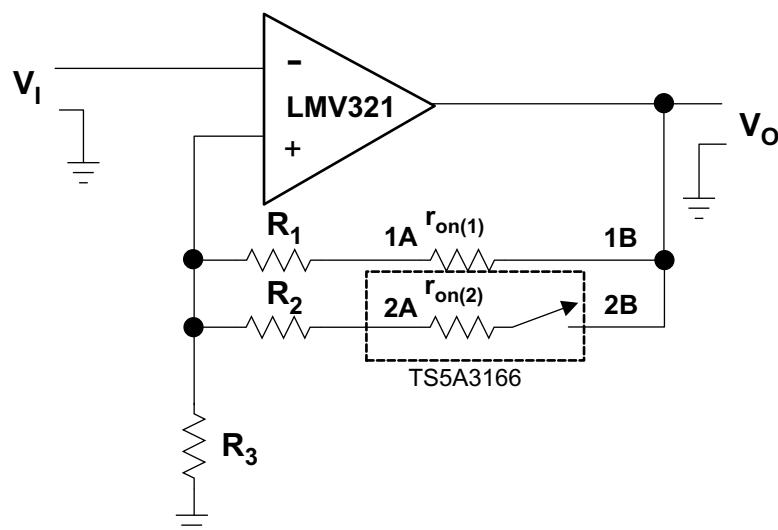


Figure 24. Gain-Control Circuit for OP Amplifier

10.2.1 Design Requirements

Place a switch in series with the input of the op amp. Since the op amp input impedance is very large, a switch on $r_{on(1)}$ is irrelevant.

10.2.2 Detailed Design Procedure

By choosing values of R_1 and R_2 , such that $R_x \gg r_{on(x)}$, r_{on} of TS5A3166 can be ignored. The gain of op amp can be calculated as follow:

$$V_o / V_I = 1 + R_1 \parallel R_3 \quad (1)$$

$$R_1 \parallel R_3 = (R_1 + r_{on(1)}) \parallel (R_2 + r_{on(2)}) \quad (2)$$

10.2.3 Application Curves



Figure 25. r_{on} vs V_{COM}

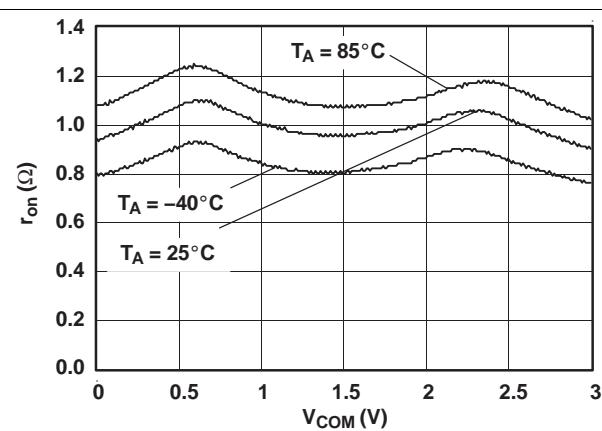


Figure 26. r_{on} vs V_{COM} ($V_+ = 3$ V)

Typical Application (continued)

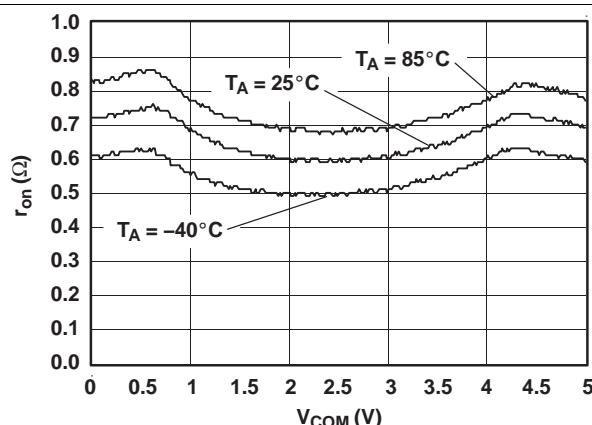


Figure 27. r_{on} vs V_{COM} ($V_+ = 5$ V)

11 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*.

Each Vcc terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1 μ F bypass capacitor is recommended. If there are multiple Vcc terminals then a 0.01 μ F or 0.022 μ F capacitor is recommended for each power terminal. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1 μ F and 1 μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results

12 Layout

12.1 Layout Guidelines

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change of width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This upsets the transmission line characteristics, especially the distributed capacitance and self-inductance of the trace — resulting in the reflection. It is a given that not all PCB traces can be straight, and so they will have to turn corners. Below figure shows progressively better techniques of rounding corners. Only the last example maintains constant trace width and minimizes reflections.

12.2 Layout Example

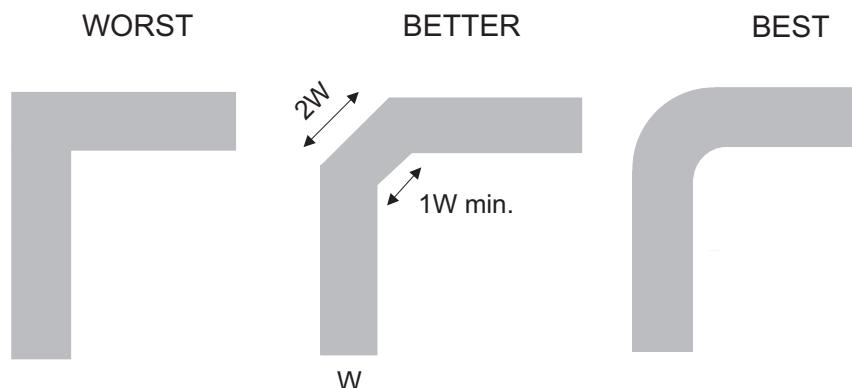


Figure 28. Trace Example

13 Device and Documentation Support

13.1 Trademarks

All trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

[SLYZ022](#) — *TI Glossary*.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
TS5A3166QDCKRQ1	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	SIU
TS5A3166QDCKRQ1.B	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	SIU

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

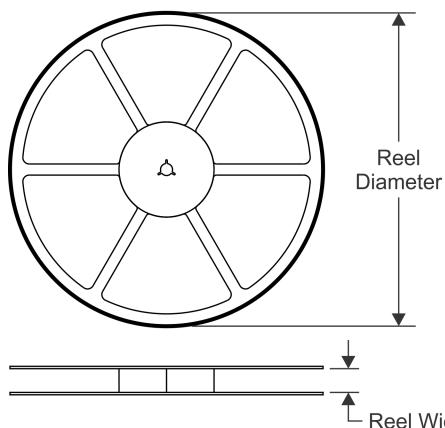
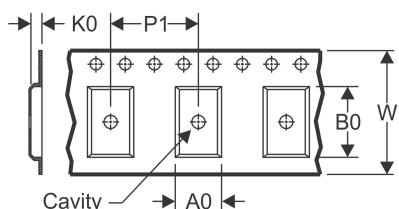
⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

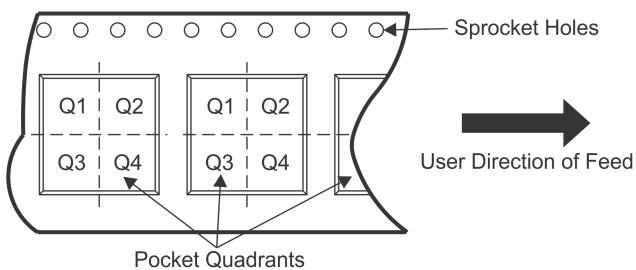
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

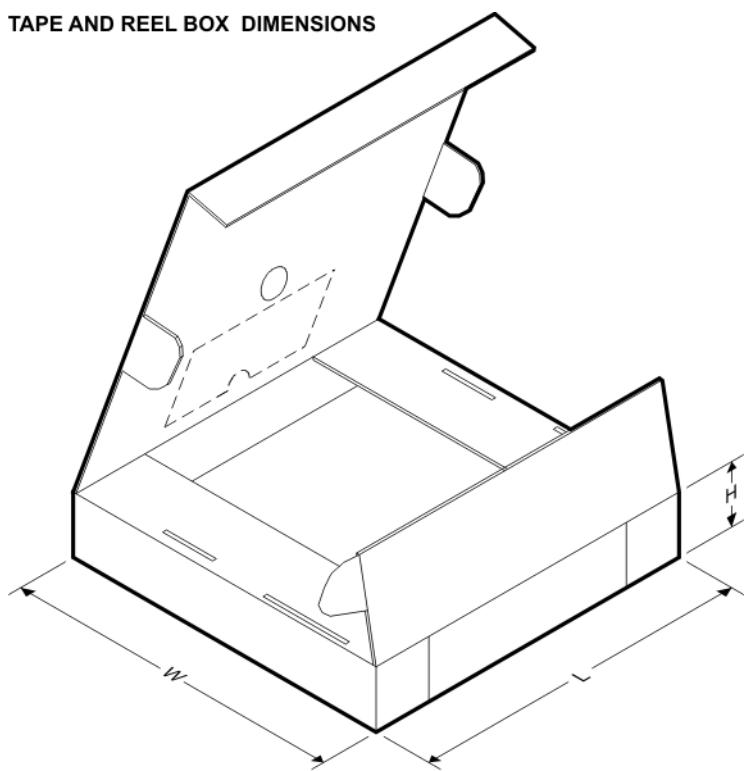


OTHER QUALIFIED VERSIONS OF TS5A3166-Q1 :

- Catalog : [TS5A3166](#)



NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

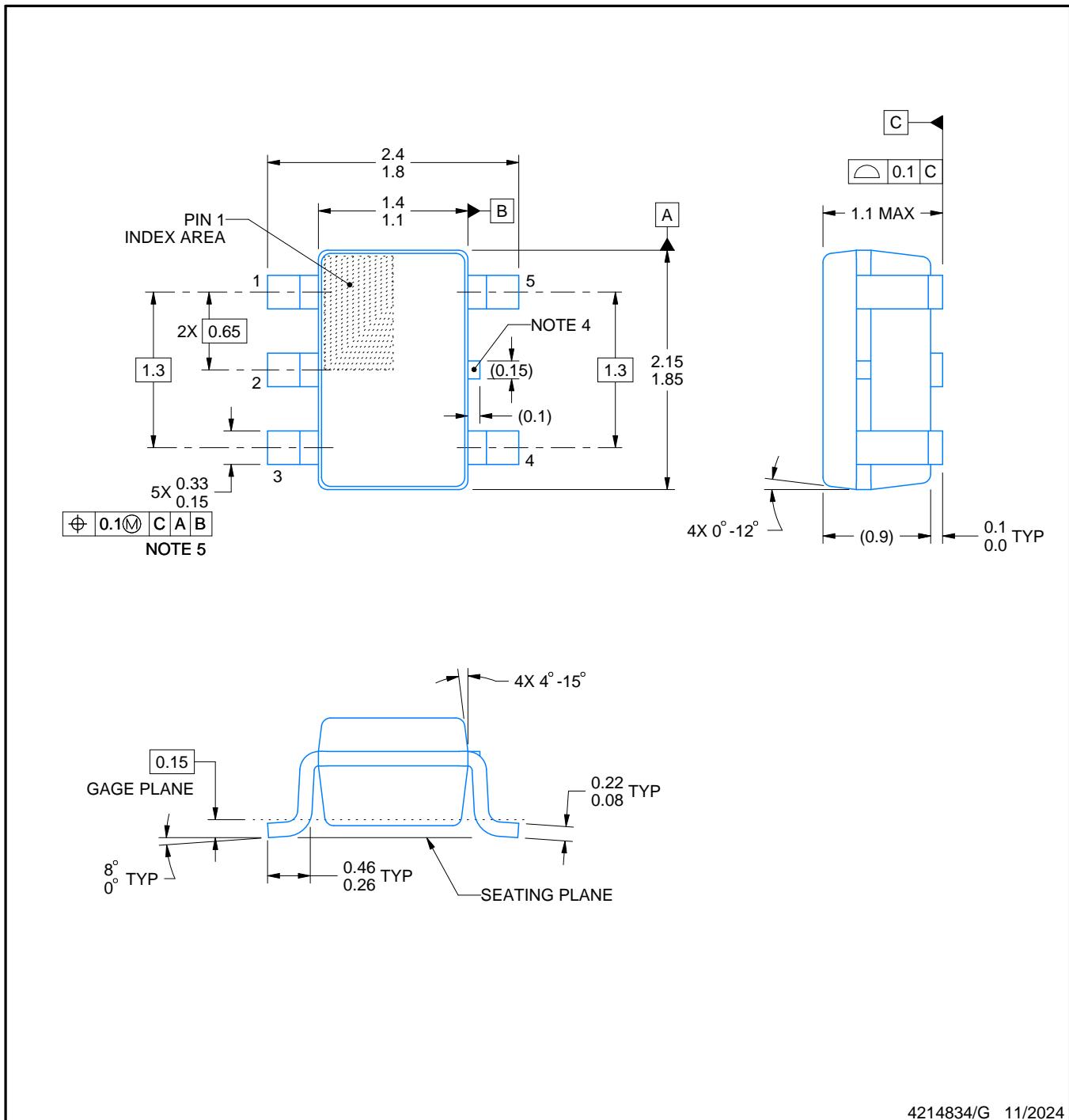
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A3166QDCKRQ1	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A3166QDCKRQ1	SC70	DCK	5	3000	180.0	180.0	18.0


PACKAGE OUTLINE

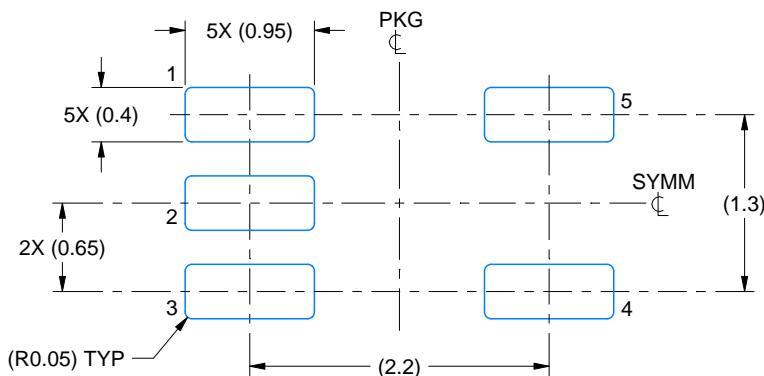
DCK0005A

SOT - 1.1 max height

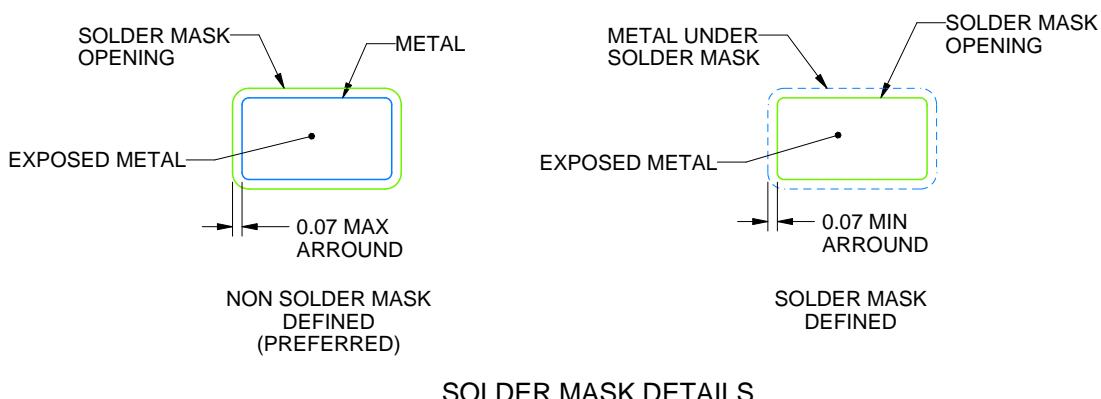
SMALL OUTLINE TRANSISTOR

4214834/G 11/2024

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Reference JEDEC MO-203.
4. Support pin may differ or may not be present.
5. Lead width does not comply with JEDEC.
6. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side

EXAMPLE BOARD LAYOUT


DCK0005A

SOT - 1.1 max height

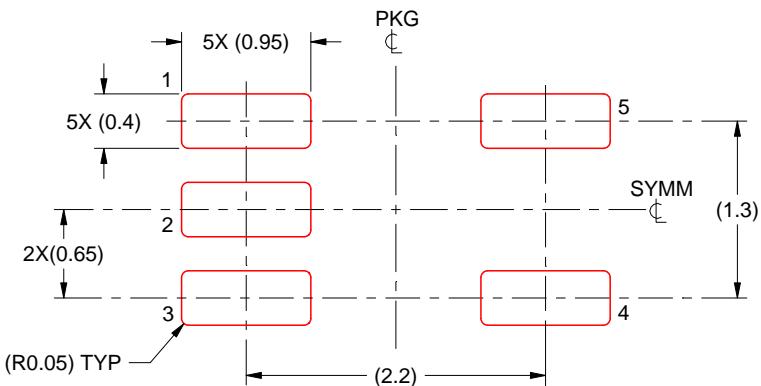
SMALL OUTLINE TRANSISTOR

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:18X

SOLDER MASK DETAILS

4214834/G 11/2024

NOTES: (continued)


7. Publication IPC-7351 may have alternate designs.
8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DCK0005A

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

SOLDER PASTE EXAMPLE
BASED ON 0.125 THICK STENCIL
SCALE:18X

4214834/G 11/2024

NOTES: (continued)

9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
10. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025