
Rad-Tolerant Class-V, Precision Analog Controller

 Check for Samples: [UC19432-SP](#)

FEATURES

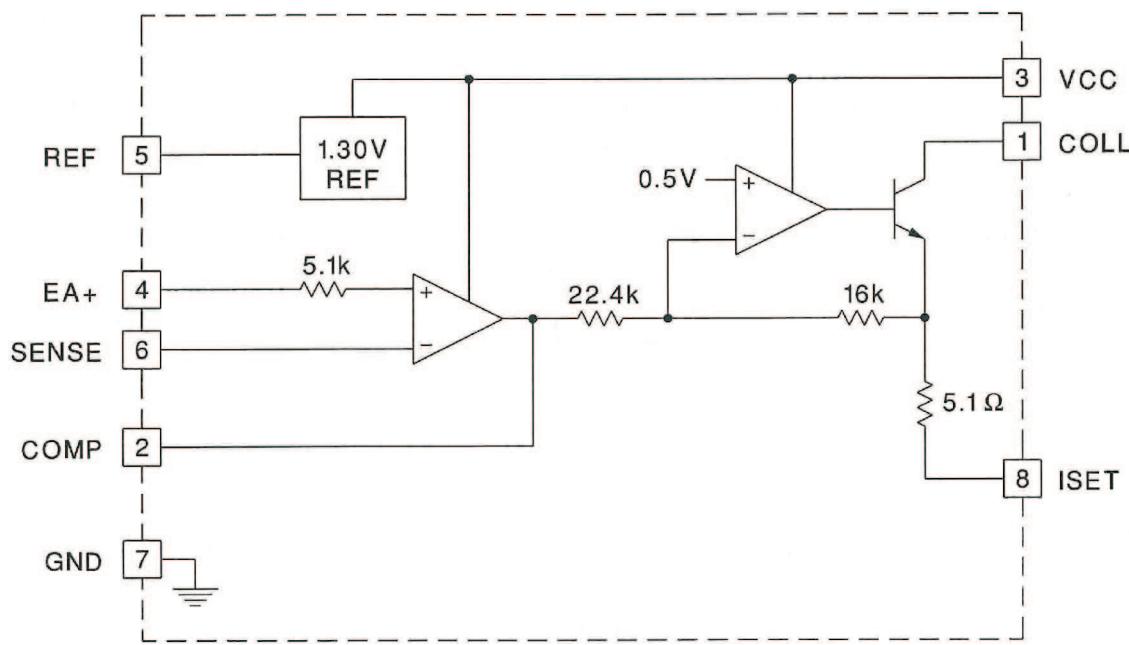
- QML-V Qualified, SMD 5962-09233
- Rad Tolerant: 30 kRad(Si) TID ⁽¹⁾
 - TID Dose Rate = 10 mRad/sec
- Programmable Transconductance for Optimum Current Drive
- Accessible 1.3 V precision Reference
- Both Error Amplifier Inputs Available
- 0.7% Overall Reference Tolerance
- 0.4% Initial Accuracy
- 2.4-V to 24-V Operating Supply Voltage and User Programmable Reference
- Reference Accuracy Maintained for Entire Range of Supply Voltage

- Superior Accuracy and Easier Compensation for Optoisolator Application
- Low Quiescent Current (0.5 mA Typ)

(1) Radiation tolerance is a typical value based upon initial device qualification. Radiation Lot Acceptance Testing is available - contact factory for details.

DESCRIPTION

The UC19432 is an adjustable precision analog controller with 100-mA sink capability if the ISET pin is grounded. A resistor between ISET and ground will modify the transconductance while decreasing the maximum current sink. This will add further control in the optocoupler configuration. The trimmed precision reference along with the non-inverting error amplifier inputs are accessible for custom configuration. A sister device, the UC19431 adjustable shunt regulator, has an on-board resistor network providing six preprogrammed voltage levels, as well as external programming capability.


ORDERING INFORMATION

T _A	PACKAGE	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-55°C to 125°C	CDIP-8	5962-0923301VPA	UC19432-SP

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		VALUE	UNIT
VCC	Supply voltage	24	V
V _{COLL}	Regulated output	24	V
SENSE, EA+	EA input	6	V
COMP	EA compensation	6	V
REF	Reference output	6	V
I _{COLL}	Output sink current (continuous or time average)	125	mA
ISET	Output source current (continuous or time average)	-125	mA
	Power dissipation at T _A ≤ 25°C Derate 8 mW/°C for T _A > 25°C	1	W
	Storage temperature range	-65 to 150	°C
	Junction temperature	-55 to 150	°C
	Lead temperature (soldering, 10 seconds)	300	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

over operating free-air temperature range, $COLL$ output = 2.4 V to 24 V, VCC = 15 V, I_{COLL} = 10 mA, $T_A = T_J = -55^\circ\text{C}$ to 125°C (unless otherwise noted).

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Reference voltage tolerance	$T_A = 25^\circ\text{C}$, $V_{COLL} = 5\text{ V}$	1.295	1.3	1.305	V
Reference temperature tolerance	$V_{COLL} = 5\text{ V}$	1.291	1.3	1.309	V
Reference line regulation	$VCC = 2.4\text{ V to }24\text{ V}$, $V_{COLL} = 5\text{ V}$		10	38	mV
Reference load regulation	$I_{COLL} = 10\text{ mA TO }50\text{ mA}$, $V_{COLL} = 5\text{ V}$		10	38	mV
Reference sink current				10	μA
Reference source current			-10		μA
EA input bias current		-0.5	-0.2		μA
EA input offset voltage		-4		4	mV
EA+ Operational voltage limitations		0.9		1.6	V
EA output current sink (internally limited)		16			μA
EA output current source				-0.8	mA
Minimum operating current	$VCC = 24\text{ V}$, $V_{COLL} = 5\text{ V}$	0.5	0.8		mA
Collector current limit ⁽¹⁾	$V_{COLL} = VCC = 24\text{ V}$, Ref = 1.3 V, ISET = GND	130	155		mA
Collector saturation	$I_{COLL} = 20\text{ mA}$	0.7	1.1	1.5	V
Transconductance (gm) ^{(1) (2)}	$VCC = 2.4\text{ V to }24\text{ V}$, $V_{COLL} = 3\text{ V}$, ISET = GND	-170	-140	-110	mS
Error amplifier AVOL		60	90		dB
Error amplifier GBW		1.5	3		MHz
Transconductance amplifier GBW				3	MHz

(1) Programmed transconductance and collector current limit equations are specified in the ISET pin description.

(2) Measured as $\Delta I_{COLL}/\Delta V_{COMP}$ for $I_{COLL} = 5\text{ mA}$ to 20 mA .

PIN DESCRIPTIONS

COLL The collector of the output transistor with a maximum voltage of 24 V. This pin is the output of the transconductance amplifier. The overall open loop voltage gain of the transconductance amplifier is $gm \times R_L$, where gm is designed to be $-140\text{ mS} \pm 30\text{ mS}$ and R_L represents the output load.

COMP The output of the error amplifier and the input to the transconductance amplifier. This pin is available to compensate the high frequency gain of the error amplifier. It is internally voltage limited to approximately 2 V.

EA+ The non-inverting input to the error amplifier.

GND The reference and power ground for the device. The power ground of the output transistor is isolated on the chip from the substrate ground used to bias the remainder of the device.

ISET The current set pin for the transconductance amplifier. The transconductance will be -140 mS as specified in the electrical table if this pin is grounded. If a resistance, R_L , is added to the ISET pin, the resulting new transconductance is calculated using [Equation 1](#). The maximum current will be approximated by [Equation 2](#).

$$gm = \frac{-0.714}{(5.1 \Omega + R_L)} \quad (1)$$

$$I_{MAX} = \frac{0.65 \text{ V}}{5.1 \Omega + R_L} \quad (2)$$

REF The output of the trimmed precision reference. It can source or sink 10 μA and still maintain less than $\pm 1\%$ output variation.

SENSE The inverting terminal of the error amplifier used as both the voltage sense input to the error amplifier and its other compensation point. The error amplifier uses the SENSE input to compare against the 1.3-V on-chip reference.

The SENSE pin is also used as the under-voltage lockout (UVLO). It is intended to keep the chip from operating until the internal reference is properly biased. The threshold is approximately 1 V. It is important that once the UVLO is released, the error amplifier can drive the transconductance amplifier to stabilize the loop. If a capacitor is connected between the SENSE and COMP pins to create a pole, it will limit the slew rate of the error amplifier. To increase the bandwidth and ensure startup a low load current, it is recommended to create a zero along with the pole as shown in the UC19431 shunt regulator application. The error amplifier must slew 2 V to drive the transconductance amplifier initially on.

VCC The power connection for the device. The minimum to maximum operating voltage is 2.4 V to 24 V. The quiescent current is typically 0.5 mA.

OVER-VOLTAGE COMPARATOR APPLICATION

The signal V_{IN} senses the input voltage. As long as the input voltage is less than 5.5 V, the output is equal to the voltage on V_{IN} . During this region of operation, the diode is reversed biased which keeps the EA+ pin at 1.3 V. When V_{IN} exceeds the over-voltage threshold of 5.5 V, the output is driven low. This forward biases the diode and creates hysteresis by changing the threshold to 4.5 V.

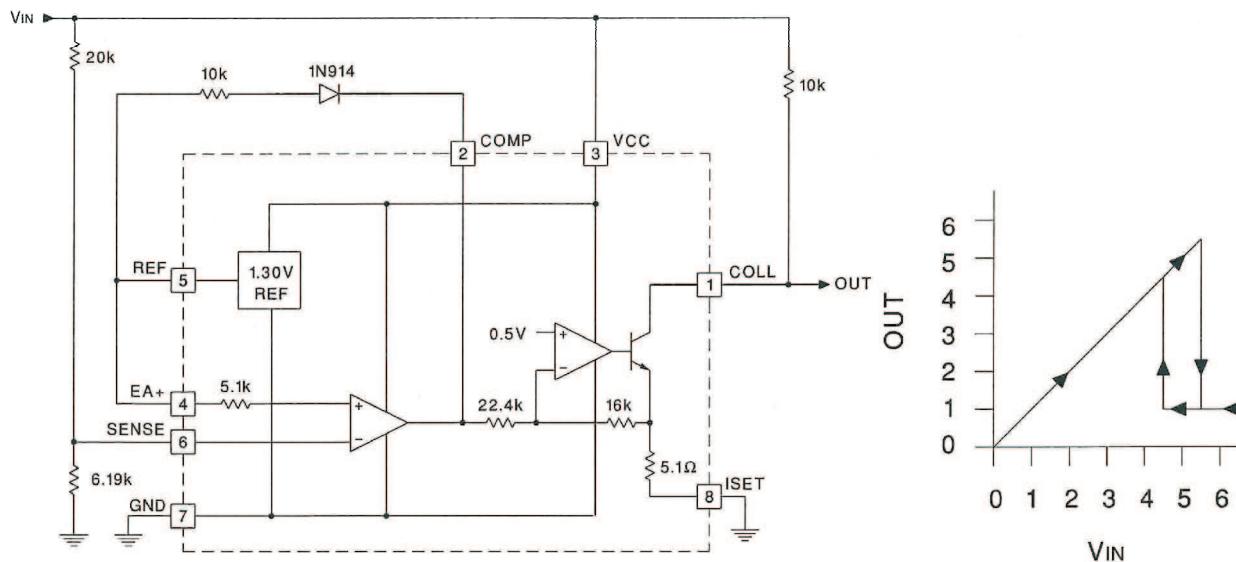
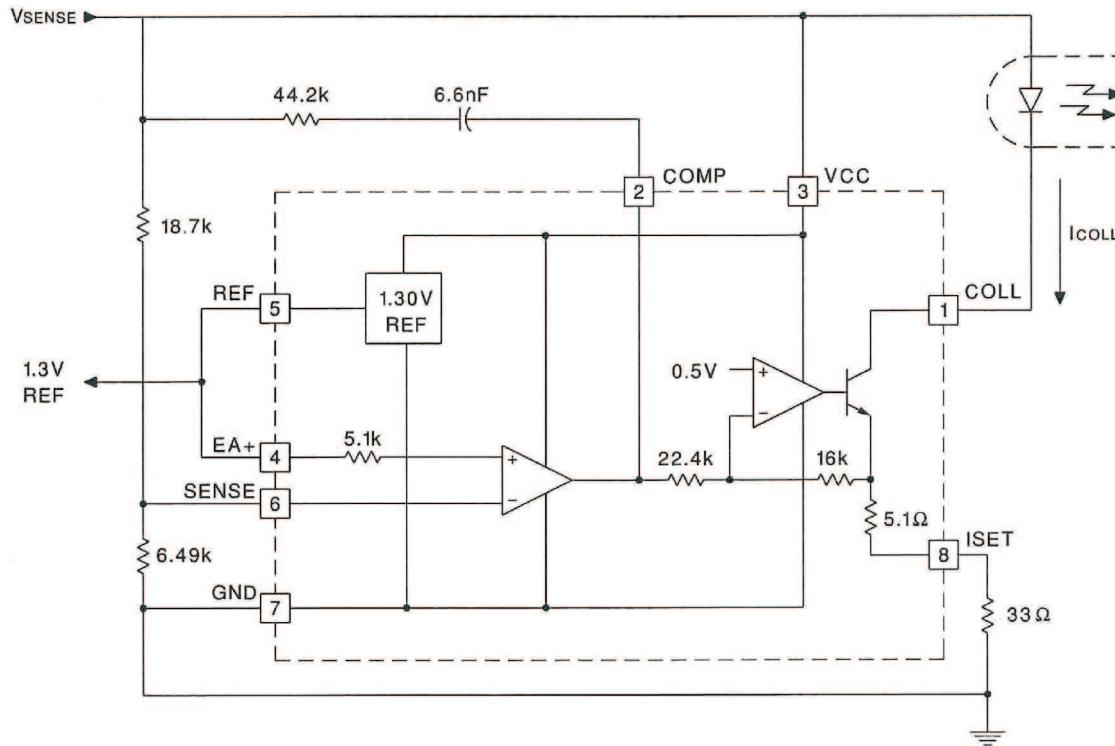



Figure 1. 5.5-V Over-Voltage Comparator With Hysteresis

OPTOCOUPLER APPLICATION

The optocoupler application shown in [Figure 2](#) takes advantage of the accessible pins REF and ISET. The ISET pin has a $33\text{-}\Omega$ resistor to ground that protects the optocoupler by limiting the current to about 16 mA. This also lowers the transconductance to approximately 19 mS. The ability to adjust the transconductance gives the designer further control of the loop gain. The REF pin is available to satisfy any high precision voltage requirements.

Figure 2. 5-V Optocoupler Application

PACKAGING INFORMATION

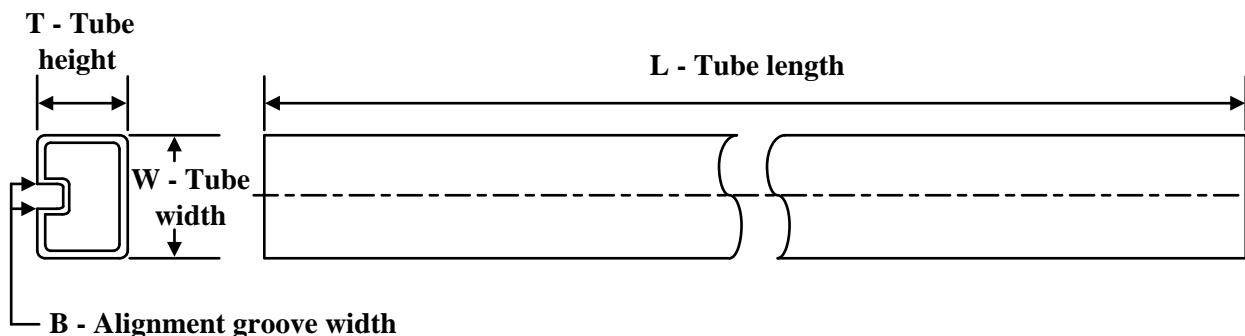
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
5962-0923301VPA	Active	Production	CDIP (JG) 8	50 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	0923301VPA UC19432-SP
5962-0923301VPA.A	Active	Production	CDIP (JG) 8	50 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	0923301VPA UC19432-SP

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

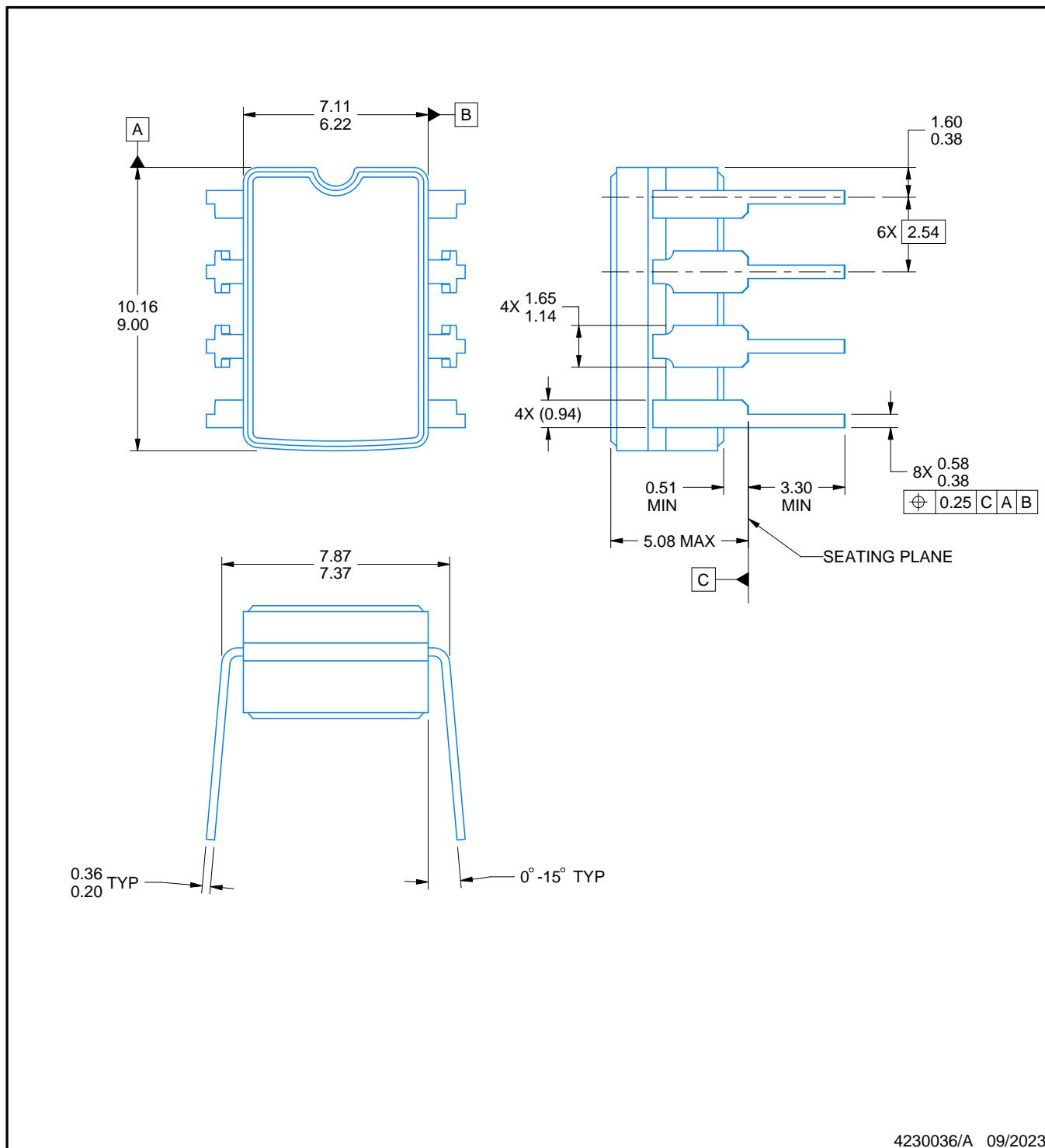
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TUBE

*All dimensions are nominal


Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μm)	B (mm)
5962-0923301VPA	JG	CDIP	8	50	506.98	15.24	13440	NA
5962-0923301VPA.A	JG	CDIP	8	50	506.98	15.24	13440	NA

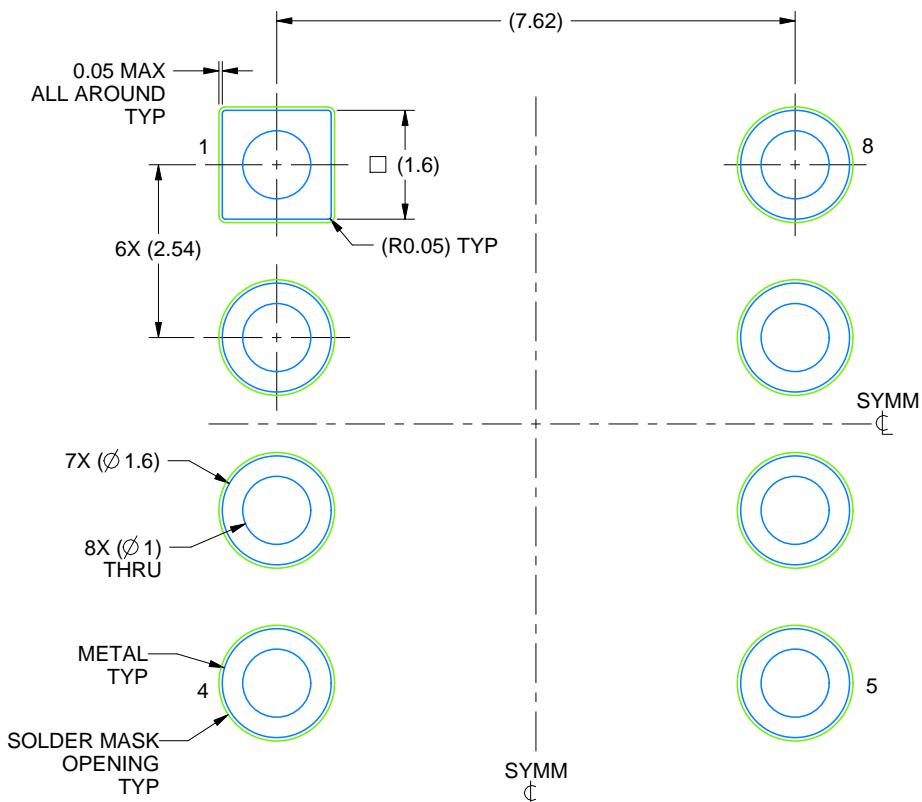
PACKAGE OUTLINE

JG0008A

CDIP - 5.08 mm max height

CERAMIC DUAL IN-LINE PACKAGE

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This package can be hermetically sealed with a ceramic lid using glass frit.
4. Index point is provided on cap for terminal identification.
5. Falls within MIL STD 1835 GDIP1-T8

EXAMPLE BOARD LAYOUT

JG0008A

CDIP - 5.08 mm max height

CERAMIC DUAL IN-LINE PACKAGE

LAND PATTERN EXAMPLE
NON SOLDER MASK DEFINED
SCALE: 9X

4230036/A 09/2023

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025