Home Power management

Power management

Pushing power further

Your partner in power management

As your partner in power management, we are in constant pursuit of pushing the limits of power: developing new process, packaging and circuit-design technologies to deliver the best devices for your application. We’re committed to working alongside you to solve key power design challenges – increasing power density, extending battery life, reducing electromagnetic interference (EMI), enhancing power and signal integrity, and making systems even safer. It’s our mission to make more innovation possible for engineers everywhere. Watch this video to learn about how TI is pushing power further.

Product portfolio

Linear & LDO regulators

Linear regulators with low dropout voltage for sensitive analog systems

Supervisors & voltage references

A broad portfolio of voltage supervisors and high-accuracy series and shunt references

Multi-channel ICs & PMICs

Scalable to fully integrated PMICs that reduce system complexity with fewer components

Gate drivers

A comprehensive portfolio of gate drivers for all of your MOSFET, IGBT, GaNFET and SiCFET designs

Gallium nitride (GaN) products

The most efficient, integrated GaN power devices for lifetime reliability


A wide range of N-channel and P-channel discrete and module solutions

New power products

Explore our featured new products below. For more new power products, see our new products page.


60-nA quiescent current bi-directional buck/boost converter with bypass mode


3-V to 36-V, 2-A, low-IQ synchronous buck regulator


Automotive, low IQ ideal diode controller with active rectification and load dump protection

Power design tools & simulation

Perform quick calculations and simulations to help you analyze and understand your design performance with our comprehensive power design tools.

Reduce development time with our end-to-end power-supply design tool.

Quickly create circuit simulations with the new PSpice® for TI design and simulation tool to select the right device for your design.

Accelerate your power-supply designs with in-depth, real-time calculations of voltages and currents.

Select the correct discrete point-of-load regulators and PMICs to power your processor or FPGA from TI, Xilinx, Intel, NXP and more.

Generate a quick estimate of the junction temperatures of components on your PCB.

TI Power

Power trends

Power management is at the center of enabling the continued integration of electronics in our lives. For decades, TI has been at the forefront of developing new process, packaging and circuit-design technologies to deliver the best power devices for your design.

Whether it’s improving power density, extending battery life, reducing electromagnetic interference, preserving power and signal integrity, or maintaining safety in the presence of high voltages, we’re ready to work alongside you to address these key power-management challenges.

Power density icon
Low EMI icon
Isolation icon

Power density
Achieve more power in smaller spaces, enhancing system functionality at reduced system costs

Lower system costs and quickly meet EMI standards by reducing emissions

Increase safety with the highest working voltage and reliability

Low IQ icon
Low noise icon

Low quiescent current (IQ)
Extend battery and shelf life without compromising system performance

Low noise & precision
Enhance power and signal integrity to improve system-level protection and accuracy

Low quiescent current (IQ): Extend battery & shelf life without compromising system performance

In battery-operated systems, the need to achieve high efficiency at no- or light-load conditions requires power solutions to tightly regulate the output while maintaining ultra-low supply current. With TI’s portfolio of ultra-low IQ technologies and products, you can maximize your battery run time and enable low power consumption in your next design.

Key benefits of TI technologies for low IQ include:

  • Low, always-on power: Long battery run times, enabled by ultra-low leakage process technologies and novel control topologies.
  • Fast response times: Fast wake-up comparators and zero-IQ feedback control enable fast dynamic responses without compromising low power consumption.
  • Reduced form factor: Area reduction techniques for resistors and capacitors facilitate integration into space-constrained applications while not affecting quiescent power.

Overcoming Low-IQ Challenges in Low-Power Applications

Designers of ultra-low-power electronics make constant trade-offs between higher performance and longer battery life. In this paper, we examine solutions to reduce IQ and address the fundamental challenge of how to achieve higher performance for longer periods of time.


How to extend battery life with low-IQ technologies

This video series provides a primer on key current specifications, the benefits of low IQ in a battery-powered systems, and specific examples of applications that are facing increased demand for low-IQ designs.

Low EMI: Lower system costs & quickly meet EMI standards by reducing emissions

Electromagnetic interference (EMI) is a key requirement of increasing importance in electronic systems, especially in new automotive and industrial applications. Designing for low EMI can save you significant development cycle times while also reducing board area and solution cost. TI offers multiple features and technologies to mitigate EMI in all of the frequency bands of interest.

Key benefits of TI technologies for low EMI include:

  • Improved filter size and cost: Advanced spread-spectrum and active EMI suppression techniques reduces the impact of generated EMI.
  • Reduced design time and complexity: Flip-chip packaging, capacitor integration and advanced gate-driver techniques fundamentally reduce generated noise at the source.

Time-Saving and Cost-Effective Innovations for EMI Reduction in Power Supplies

As electronic systems become increasingly dense and interconnected, reducing the effects of EMI becomes an increasingly critical system design consideration. In this paper, we examine EMI in switch-mode power supplies, and provide technology examples to help you quickly and easily pass industry-standard EMI tests.


Designing a low EMI power supply

EMI design can be challenging, but we’re here to help. This comprehensive training series shows you an easier path to designing an efficient power supply that meets conducted and radiated EMI requirements.

Power density: Achieve more power in smaller spaces, enhancing system functionality at reduced system costs

Board area and height are becoming limiting factors as power demands increase. Power designers must squeeze more circuitry into their applications to differentiate their products while also increasing efficiency and enhancing thermal performance. Higher power levels in smaller form factors are now possible using TI’s advanced process, packaging and circuit-design technologies.

Key benefits of TI technologies for power density include:

  • Less heat: Achieve excellent device switching performance with our advanced silicon and gallium-nitride technologies.
  • Improved thermal performance: Remove heat from the package with advanced cooling technologies, including enhanced HotRod™ QFN packaging, power wafer chip-scale packaging and top-side cooling.
  • Increased efficiency: Use smaller passives while switching at higher frequencies – without sacrificing efficiency – with multilevel converter topologies and advanced power-stage gate drivers.
  • Reduced system footprint: Save board space, simplify board layout and achieve low parasitics using advanced multichip module technologies.

Understanding the Trade-Offs and Technologies to Increase Power Density

Space is limited in power-supply designs, and engineers face constant pressure to do more with less. The need for improved power density is clear, but what limits designers from increasing power density today? In this paper, we examine the barriers in depth and provide technology examples to help you overcome them.


Understanding the fundamental technologies of power density

Watch this five-part training series, where we outline how to achieve higher power density by examining four critical aspects of high-power-density solutions, as well as relevant technologies and products supporting these specific requirements.

Low noise & precision: Enhance power & signal integrity to improve system-level protection & accuracy

The need for low-noise LDO regulators and switching converters, precision monitoring and reliable protection is fundamental to enabling precision signal chains. For applications such as battery monitoring of electric vehicles, test and measurement, medical and more, TI uses dedicated power process technologies and advanced circuit and test techniques that increase accuracy, minimize distortion and reduce noise across both linear and switching power converters.

Key benefits of TI technologies for low noise and precision include:

  • Improved accuracy and precision: Reduce and mitigate integrated circuit error sources with fundamentally low-noise process technologies, advanced integrated circuit designs and low-stress packaging.
  • System noise mitigation: Manage noisy environments with high power-supply rejection ratio (PSRR) low-dropout regulators (LDOs), integrated filtering and remote sensing.

LDO noise demystified

Do you think of noise and power-supply rejection ratio (PSRR) as one and the same? Read this application note to learn how noise and PSRR differ from each other and explore approaches for reducing LDO noise in your designs.


LDO basics: PSRR

Watch this training video to understand the nuances of power-supply rejection ratio (PSRR), how to determine PSRR in your application, and what parameters and factors affect the PSRR value.

Isolation: Increase safety with the highest working voltage & reliability

Isolation is about reliable protection in the presence of dangerous high voltages. Galvanic isolation electrically separates two domains, allowing power or signals to transfer across the barrier without compromising human safety, while also preventing ground potential differences and improving noise immunity. TI’s portfolio of isolation technologies, including a capacitive SiO2 insulation barrier and integrated transformers, help exceed Verband der Automobilindustrie (VDA), Canadian Standards Association (CSA) and Underwriters Laboratory (UL) standards without compromising performance. To learn more about isolation, see all of our isolation solutions.

Key benefits of TI technologies for isolation include:

  • Improved system robustness and reliability: TI’s portfolio of high-voltage isolated products achieves low latency, excellent common-mode transient immunity and robust performance.
  • Improved form factors and simplified EMI compliance: TI’s isolation technologies help achieve best in-class size, thermals and EMI.

Meeting isolation requirements with high-voltage ICs

Isolation requirements vary greatly across industrial and automotive markets. This white paper explores key considerations and approaches for transferring power and signals across an isolation barrier, and examines how requirements differ for grid infrastructure, factory automation, motor drives and automotive applications.


How high-voltage isolation technology works

TI’s capacitive isolation technology enables the industry’s highest isolation ratings and longest lifetime reliability. Discover the performance advantages of capacitive isolation from one of our high-voltage technology experts.