Product details

Number of receivers 4 Number of transmitters 3 ADC sampling rate (Max) (MSPS) 25 Arm CPU ARM-Cortex R4F 200MHz Interface type 2 CAN-FD, I2C, QSPI, SPI, UART DSP C674x DSP 600MHz Hardware accelerators Radar hardware accelerator RAM 1792 Rating Automotive Operating temperature range (C) -40 to 125
Number of receivers 4 Number of transmitters 3 ADC sampling rate (Max) (MSPS) 25 Arm CPU ARM-Cortex R4F 200MHz Interface type 2 CAN-FD, I2C, QSPI, SPI, UART DSP C674x DSP 600MHz Hardware accelerators Radar hardware accelerator RAM 1792 Rating Automotive Operating temperature range (C) -40 to 125
FC/CSP (ABL) 161 108 mm² 10.4 x 10.4
  • FMCW transceiver
    • Integrated PLL, transmitter, receiver, Baseband, and ADC
    • 60- to 64-GHz coverage with 4-GHz continuous bandwidth
    • Four receive channels
    • Three transmit channels
    • Supports 6-bit phase shifter
    • Ultra-accurate chirp engine based on fractional-N PLL
    • TX power: 12 dBm
    • RX noise figure:
      • 12 dB
    • Phase noise at 1 MHz:
      • –93 dBc/Hz
  • Built-in calibration and self-test
    • Arm Cortex-R4F-based radio control system
    • Built-in firmware (ROM)
    • Self-calibrating system across frequency and temperature
    • Embedded self-monitoring with no host processor involvement on Functional Safety-Compliant targeted devices
  • C674x DSP for advanced signal processing (AWR6843 only)
  • Hardware accelerator for FFT, filtering, and CFAR processing
  • Memory compression
  • Arm® Cortex®-R4F microcontroller for object detection, and interface control
    • Supports autonomous mode (loading user application from QSPI flash memory)
  • Internal memory with ECC
    • AWR6843:1.75 MB, divided into MSS program RAM (512 KB), MSS data RAM (192 KB), DSP L1RAM (64KB) and L2 RAM (256 KB), and L3 radar data cube RAM (768 KB)
    • AWR6443: 1.4 MB, divided into MSS program RAM (512 KB), MSS data RAM (192 KB), and L3 radar data cube RAM (768 KB)
    • Technical reference manual includes allowed size modifications
  • Other interfaces available to user application
    • Up to 6 ADC channels (low sample rate monitoring)
    • Up to 2 SPI ports
    • Up to 2 UARTs
    • 2 CAN-FD interfaces
    • I2C
    • GPIOs
    • 2 lane LVDS interface for raw ADC data and debug instrumentation
  • Functional Safety-Compliant targeted
    • Developed for functional safety applications
    • Documentation will be available to aid ISO 26262 functional safety system design
    • Hardware integrity up to ASIL-B targeted
    • Safety-related certification ISO 26262 certification by TUV Sud planned
  • Non-Functional safety variants
  • AEC-Q100 qualified
  • Power management
    • Built-in LDO network for enhanced PSRR
    • I/Os support dual voltage 3.3 V/1.8 V
  • Clock source
    • 40.0 MHz crystal with internal oscillator
    • Supports external oscillator at 40 MHz
    • Supports externally driven clock (square/sine) at 40 MHz
  • Easy hardware design
    • 0.65-mm pitch, 161-pin 10.4 mm × 10.4 mm flip chip BGA package for easy assembly and low-cost PCB design
    • Small solution size
  • Supports automotive temperature operating range
  • FMCW transceiver
    • Integrated PLL, transmitter, receiver, Baseband, and ADC
    • 60- to 64-GHz coverage with 4-GHz continuous bandwidth
    • Four receive channels
    • Three transmit channels
    • Supports 6-bit phase shifter
    • Ultra-accurate chirp engine based on fractional-N PLL
    • TX power: 12 dBm
    • RX noise figure:
      • 12 dB
    • Phase noise at 1 MHz:
      • –93 dBc/Hz
  • Built-in calibration and self-test
    • Arm Cortex-R4F-based radio control system
    • Built-in firmware (ROM)
    • Self-calibrating system across frequency and temperature
    • Embedded self-monitoring with no host processor involvement on Functional Safety-Compliant targeted devices
  • C674x DSP for advanced signal processing (AWR6843 only)
  • Hardware accelerator for FFT, filtering, and CFAR processing
  • Memory compression
  • Arm® Cortex®-R4F microcontroller for object detection, and interface control
    • Supports autonomous mode (loading user application from QSPI flash memory)
  • Internal memory with ECC
    • AWR6843:1.75 MB, divided into MSS program RAM (512 KB), MSS data RAM (192 KB), DSP L1RAM (64KB) and L2 RAM (256 KB), and L3 radar data cube RAM (768 KB)
    • AWR6443: 1.4 MB, divided into MSS program RAM (512 KB), MSS data RAM (192 KB), and L3 radar data cube RAM (768 KB)
    • Technical reference manual includes allowed size modifications
  • Other interfaces available to user application
    • Up to 6 ADC channels (low sample rate monitoring)
    • Up to 2 SPI ports
    • Up to 2 UARTs
    • 2 CAN-FD interfaces
    • I2C
    • GPIOs
    • 2 lane LVDS interface for raw ADC data and debug instrumentation
  • Functional Safety-Compliant targeted
    • Developed for functional safety applications
    • Documentation will be available to aid ISO 26262 functional safety system design
    • Hardware integrity up to ASIL-B targeted
    • Safety-related certification ISO 26262 certification by TUV Sud planned
  • Non-Functional safety variants
  • AEC-Q100 qualified
  • Power management
    • Built-in LDO network for enhanced PSRR
    • I/Os support dual voltage 3.3 V/1.8 V
  • Clock source
    • 40.0 MHz crystal with internal oscillator
    • Supports external oscillator at 40 MHz
    • Supports externally driven clock (square/sine) at 40 MHz
  • Easy hardware design
    • 0.65-mm pitch, 161-pin 10.4 mm × 10.4 mm flip chip BGA package for easy assembly and low-cost PCB design
    • Small solution size
  • Supports automotive temperature operating range

The AWR device is an integrated single chip mmWave sensor based on FMCW radar technology capable of operation in the 60-GHz to 64-GHz band. It is built with TI’s low power45-nm RFCMOS process and enables unprecedented levels of integration in an extremely small formfactor. This is an ideal solution for low power, self-monitored, ultra-accurate radar systems in the automotive space. Multiple automotive qualified variants are currently available including Functional Safety-Compliant targeted devices and non-functional safety devices.

The AWR device is an integrated single chip mmWave sensor based on FMCW radar technology capable of operation in the 60-GHz to 64-GHz band. It is built with TI’s low power45-nm RFCMOS process and enables unprecedented levels of integration in an extremely small formfactor. This is an ideal solution for low power, self-monitored, ultra-accurate radar systems in the automotive space. Multiple automotive qualified variants are currently available including Functional Safety-Compliant targeted devices and non-functional safety devices.

Download

Similar products you might be interested in

open-in-new Compare products
Similar functionality to the compared device.
AWR1843 ACTIVE Single-chip 76-GHz to 81-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR1843 and AWR6843AOP at the device level share the same architecture.
NEW AWR6843AOP ACTIVE Single-chip 60-GHz to 64-GHz automotive radar sensor integrating antenna on package, DSP and MCU AWR6843AOP and AWR6843 are the same at die level.

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 33
Type Title Date
* Data sheet AWR6443, AWR6843 Single-Chip 60- to 64-GHz mmWave Sensor datasheet (Rev. C) 01 Apr 2021
* Errata AWR6843 Device Errata, Silicon Revision 2.0 (Rev. B) 04 Sep 2020
Application note mmWave Radar Radome Design Guide 17 Aug 2021
Application note mmWave Radar Sensors: Object Versus Range (Rev. A) 10 May 2021
Application note mmWave Production Testing Overview 10 Apr 2021
Application note TI mmWave Radar Device Regulatory Compliance Overview (Rev. B) 06 Feb 2021
User guide 60GHz mmWave Sensor EVMs (Rev. D) 04 Dec 2020
Application note Self-Calibration of mmWave Radar Devices (Rev. A) 02 Dec 2020
Application note Power Management Optimizations - Low Cost LC Filter Solution (Rev. A) 11 Nov 2020
White paper The fundamentals of millimeter wave radar sensors (Rev. A) 27 Aug 2020
User guide AWR18xx/16xx/14xx/68xx Technical Reference Manual (Rev. E) 18 May 2020
Technical article 3 ways radar technology is changing the in-cabin sensing market 04 May 2020
Application note Migrating to xWR68xx and xWR18xx Millimeter Wave (Rev. B) 09 Mar 2020
Application note Programming Chirp Parameters in TI Radar Devices (Rev. A) 13 Feb 2020
Application note IWR6x43 Flash Variants Supported by the mmWave Sensor (Rev. B) 29 Jan 2020
Application note TPS65313-Q1 and TPS65653-Q1 LDO free power solution for AWR1642/AWR1843 27 Jan 2020
Application note Interference Management Using AWR/IWR Devices 03 Jan 2020
Application note Memory Compression and Decompression Engine for TI mmwave Radar 02 Dec 2019
Application note How to select the right proximity sensor technology 19 Jul 2019
User guide MMWAVEICBOOST Quick Start Guide 06 May 2019
White paper Bringing intelligent autonomy to fine motion detection (Rev. A) 20 Dec 2018
Application note mmWave xWR1xxx/xWR6xxx Bootloader Flow 23 Oct 2018
Application note mmwave Radar Device ADC Raw Data Capture (Rev. B) 23 Oct 2018
White paper Leveraging the 60-GHz RF band to enable accurate mmWave sensing 19 Oct 2018
Application note MIMO Radar (Rev. A) 26 Jul 2018
Application note Introduction to the DSP Subsystem in the xWR6843 29 Jun 2018
Application note Watchdog Timer for mmwave Radar Sensors (Rev. A) 08 Jun 2018
Application note TI mmWave Radar sensor RF PCB Design, Manufacturing and Validation Guide 07 May 2018
Application note Adding CAN-FD Tx and Rx to an Existing mmWave Project 12 Apr 2018
User guide Radar Hardware Accelerator User's Guide - Part 2 (Rev. A) 13 Mar 2018
Application note XWR1xxx Power Management Optimizations - Low Cost LC Filter Solution 16 Oct 2017
Application note Adding Flash Read and Write to an Existing mmWave Project 25 Sep 2017
White paper Using a complex-baseband architecture in FMCW radar systems 17 Apr 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AWR6843ISK — AWR6843 single-chip 60-GHz to 64-GHz automotive radar sensor antenna plug-in module

AWR6843ISK is an easy-to-use 60 GHz mmWave sensor evaluation kit based on AWR6843 device. The AWR6843ISK may be used to evaluate the AWR6843 and AWR6443 devices. This board is powered by USB interface and enables access to point-cloud data over USB or CAN-FD interface.

This kit is supported by mmWave (...)

In stock
Limit: 5
Evaluation board

DCA1000EVM — Real-time data-capture adapter for radar sensing evaluation module

The DCA1000 evaluation module (EVM) provides real-time data capture and streaming for two- and four-lane low-voltage differential signaling (LVDS) traffic from TI AWR and IWR radar sensor EVMs. The data can be streamed out via 1-Gbps Ethernet in real time to a PC running the MMWAVE-STUDIO tool for (...)

In stock
Limit: 10
Evaluation board

MMWAVEICBOOST — mmWave sensors carrier card platform

The MMWAVEICBOOST carrier card expands capabilities of select 60 GHz mmWave evaluation modules. This board provides advanced software developement, debug features such as trace and single step via TI’s Code Composers compatible debuggers. On-board Launchpad interface enables pairing with (...)

In stock
Limit: 50
Debug probe

TMDSEMU110-U — XDS110 JTAG Debug Probe

The Texas Instruments XDS110 is a new class of debug probe (emulator) for TI embedded processors. The XDS110 replaces the XDS100 family while supporting a wider variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a single pod. Also, all XDS debug probes support Core and System Trace in all ARM and (...)

Out of stock on TI.com
Debug probe

TMDSEMU200-U — XDS200 USB Debug Probe

The XDS200 is a debug probe (emulator) used for debugging TI embedded devices.  The XDS200 features a balance of low cost with good performance as compared to the low cost XDS110 and the high performance XDS560v2.  It supports a wide variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a (...)

In stock
Limit: 3
Debug probe

TMDSEMU560V2STM-U — XDS560v2 System Trace USB Debug Probe

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).  Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

In stock
Limit: 1
Debug probe

TMDSEMU560V2STM-UE — XDS560v2 System Trace USB & Ethernet Debug Probe

The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors that (...)

In stock
Limit: 1
Debug probe

TMDSEMUPROTRACE — XDS560v2 PRO TRACE Receiver & Debug Probe

The XDS560v2 PRO TRACE Receiver is the latest model of the XDS560v2 family of high-performance debug probes (emulators) for TI processors. The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).

The (...)

In stock
Limit: 1
Software development kit (SDK)

MMWAVE-SDK — mmWave software development kit (SDK)

The mmWave software development kit (SDK) is a collection of software packages to enable application evaluation and development on TI mmWave sensors. This tool includes the MMWAVE-SDK and companion packages to support your design needs.

The MMWAVE-SDK is a unified software platform for the TI mmWave (...)

IDE, configuration, compiler or debugger

CCSTUDIO — Code Composer Studio™ integrated development environment (IDE)

Code Composer Studio؜™ software is an integrated development environment (IDE) that supports TI's microcontroller (MCU) and embedded processor portfolios. Code Composer Studio software comprises a suite of tools used to develop and debug embedded applications. The software includes an (...)
IDE, configuration, compiler or debugger

MMWAVE-STUDIO — mmWave studio

mmWave Studio is a collection of tools that enhance the evaluation of TI mmWave sensors. These easy-to-use tools provide capability to evaluate and prototype chirp designs and experiment with the out-of-the-box demo. The tools are hosted directly on TI.com and enable interaction with the mmWave (...)
IDE, configuration, compiler or debugger

SAFETI_CQKIT — Safety compiler qualification kit

The Safety Compiler Qualification Kit was developed to assist customers in qualifying their use of the TI ARM, C6000, C7000 or C2000/CLA C/C++ Compiler to functional safety standards such as IEC 61508 and ISO 26262.

The Safety Compiler Qualification Kit:

  • is free of charge for TI customers
  • does not (...)
IDE, configuration, compiler or debugger

SYSCONFIG — System configuration tool

To help simplify configuration challenges and accelerate software development, we created SysConfig, an intuitive and comprehensive collection of graphical utilities for configuring pins, peripherals, radios, subsystems, and other components.  SysConfig helps you manage, expose and resolve (...)
Software programming tool

UNIFLASH — UniFlash stand-alone flash tool for microcontrollers, Sitara™; processors and SimpleLink™

Supported devices: CC13xx, CC25xx, CC26xx, CC3x20, CC3x30, CC3x35, Tiva, C2000, MSP43x, Hercules, PGA9xx, IWR12xx, IWR14xx, IWR16xx, IWR18xx , IWR68xx, AWR12xx, AWR14xx, AWR16xx, AWR18xx.  Command line only: AM335x, AM437x, AM571x, AM572x, AM574x, AM65XX, K2G

CCS Uniflash is a standalone tool used to (...)

Simulation model

xWR6x43 BSDL Model (Rev. B)

SWRM045B.ZIP (3 KB) - BSDL Model
Simulation model

xWR6x43 IBIS Model

SWRM046.ZIP (2352 KB) - IBIS Model
Design tool

MMWAVE-3P-SEARCH — mmWave radar sensors third-party search tool

TI has partnered with companies to offer a wide range of solutions using TI mmWave radar sensors and related services. These companies can accelerate your path to production using mmWave radar. Download this search tool to quickly browse our third-party solutions and find the right third-party to (...)
Reference designs

TIDEP-01001 — Vehicle occupant detection reference design

This reference design demonstrates the use of the AWR6843 60GHz single-chip mmWave sensor with integrated DSP, as a Vehicle Occupant Detection (VOD) and Child Presence Detection (CPD) Sensor enabling the detection of life forms in a vehicle. This design provides a reference software processing chain (...)
Reference designs

TIDEP-01025 — mmWave diagnostic and monitoring reference design

This reference design showcases the inbuilt autonomous monitoring functionality in mmWave radar sensors that enhances system efficiency by minimizing the processing load on the host. The design uses a safety diagnostic library (SDL) to run diagnostic tests on programmable digital cores, peripherals (...)
Reference designs

TIDEP-01023 — Child-presence and occupant-detection reference design using 60-GHz antenna-on-package mmWave sensor

This reference design demonstrates the use of the AWR6843AOP, a 60-GHz single-chip mmWave sensor with integrated antenna. The sensor also has an integrated DSP, MCU, and a hardware accelerator for fast Fourier transform (FFT) processing.

The AWR6843AOP sensor can help developers address a wide range (...)

Package Pins Download
FC/CSP (ABL) 161 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos