Product details

Number of receivers 4 Number of transmitters 3 ADC sampling rate (Max) (MSPS) 25 Arm CPU ARM-Cortex R4F 200MHz Interface type 2 CAN-FD, I2C, QSPI, SPI, UART DSP C674x DSP 600MHz Hardware accelerators Radar hardware accelerator RAM 1792 Rating Automotive Operating temperature range (C) -40 to 125
Number of receivers 4 Number of transmitters 3 ADC sampling rate (Max) (MSPS) 25 Arm CPU ARM-Cortex R4F 200MHz Interface type 2 CAN-FD, I2C, QSPI, SPI, UART DSP C674x DSP 600MHz Hardware accelerators Radar hardware accelerator RAM 1792 Rating Automotive Operating temperature range (C) -40 to 125
FCBGA (ALP) 180
  • FMCW transceiver
    • Integrated 4 receivers and 3 transmitters Antennas-On-Package (AOP)
    • Integrated PLL, transmitter, receiver, Baseband, and ADC
    • 60- to 64-GHz coverage with 4-GHz continuous bandwidth
    • Supports 6-bit phase shifter
    • Ultra-accurate chirp engine based on fractional-N PLL
  • Built-in calibration and self-test
    • Arm Cortex-R4F-based radio control system
    • Built-in firmware (ROM)
    • Self-calibrating system across frequency and temperature
    • Embedded self-monitoring with no host processor involvement on Functional Safety-Compliant targeted devices
  • C674x DSP for advanced signal processing (AWR6843 only)
  • Hardware accelerator for FFT, filtering, and CFAR processing
  • Memory compression
  • Arm® Cortex®-R4F microcontroller for object detection, and interface control
    • Supports autonomous mode (loading user application from QSPI flash memory)
  • Internal memory with ECC
    • AWR6843:1.75 MB, divided into MSS program RAM (512 KB), MSS data RAM (192 KB), DSP L1RAM (64KB) and L2 RAM (256 KB), and L3 radar data cube RAM (768 KB)
    • AWR6443: 1.4 MB, divided into MSS program RAM (512 KB), MSS data RAM (192 KB), and L3 radar data cube RAM (768 KB)
    • Technical reference manual includes allowed size modifications
  • Other interfaces available to user application
    • Up to 6 ADC channels (low sample rate monitoring)
    • Up to 2 SPI ports
    • Up to 2 UARTs
    • 2 CAN-FD interfaces
    • I2C
    • GPIOs
    • 2 lane LVDS interface for raw ADC data and debug instrumentation
  • Functional Safety-Compliant targeted
    • Developed for functional safety applications
    • Documentation will be available to aid ISO 26262 functional safety system design
    • Hardware integrity up to ASIL-B targeted
    • Safety-related certification
      • ISO 26262 certification by TUV Sud planned
  • AEC-Q100 qualified
  • Power management
    • Built-in LDO network for enhanced PSRR
    • I/Os support dual voltage 3.3 V/1.8 V
  • Clock source
    • 40.0 MHz crystal with internal oscillator
    • Supports external oscillator at 40 MHz
    • Supports externally driven clock (square/sine) at 40 MHz
  • Easy hardware design
    • 0.8-mm pitch, 180-pin 15 mm × 15 mm flip chip BGA package (ALP) for easy assembly and low-cost PCB design
    • Small solution size
  • Supports automotive temperature operating range
  • FMCW transceiver
    • Integrated 4 receivers and 3 transmitters Antennas-On-Package (AOP)
    • Integrated PLL, transmitter, receiver, Baseband, and ADC
    • 60- to 64-GHz coverage with 4-GHz continuous bandwidth
    • Supports 6-bit phase shifter
    • Ultra-accurate chirp engine based on fractional-N PLL
  • Built-in calibration and self-test
    • Arm Cortex-R4F-based radio control system
    • Built-in firmware (ROM)
    • Self-calibrating system across frequency and temperature
    • Embedded self-monitoring with no host processor involvement on Functional Safety-Compliant targeted devices
  • C674x DSP for advanced signal processing (AWR6843 only)
  • Hardware accelerator for FFT, filtering, and CFAR processing
  • Memory compression
  • Arm® Cortex®-R4F microcontroller for object detection, and interface control
    • Supports autonomous mode (loading user application from QSPI flash memory)
  • Internal memory with ECC
    • AWR6843:1.75 MB, divided into MSS program RAM (512 KB), MSS data RAM (192 KB), DSP L1RAM (64KB) and L2 RAM (256 KB), and L3 radar data cube RAM (768 KB)
    • AWR6443: 1.4 MB, divided into MSS program RAM (512 KB), MSS data RAM (192 KB), and L3 radar data cube RAM (768 KB)
    • Technical reference manual includes allowed size modifications
  • Other interfaces available to user application
    • Up to 6 ADC channels (low sample rate monitoring)
    • Up to 2 SPI ports
    • Up to 2 UARTs
    • 2 CAN-FD interfaces
    • I2C
    • GPIOs
    • 2 lane LVDS interface for raw ADC data and debug instrumentation
  • Functional Safety-Compliant targeted
    • Developed for functional safety applications
    • Documentation will be available to aid ISO 26262 functional safety system design
    • Hardware integrity up to ASIL-B targeted
    • Safety-related certification
      • ISO 26262 certification by TUV Sud planned
  • AEC-Q100 qualified
  • Power management
    • Built-in LDO network for enhanced PSRR
    • I/Os support dual voltage 3.3 V/1.8 V
  • Clock source
    • 40.0 MHz crystal with internal oscillator
    • Supports external oscillator at 40 MHz
    • Supports externally driven clock (square/sine) at 40 MHz
  • Easy hardware design
    • 0.8-mm pitch, 180-pin 15 mm × 15 mm flip chip BGA package (ALP) for easy assembly and low-cost PCB design
    • Small solution size
  • Supports automotive temperature operating range

The AWR6843AOP is an Antenna-on-Package (AOP) device that is an evolution within the single-chip radar device family from Texas Instruments (TI). This device enables unprecedented levels of integration in an extremely small form factor and is an ideal solution for low power, self-monitored, ultra-accurate radar systems in the Automtive space.Multiple automotive qualified variants are currently available including Functional Safety-Compliant targeted devices and non-functional safety devices.

The AWR6843AOP is an Antenna-on-Package (AOP) device that is an evolution within the single-chip radar device family from Texas Instruments (TI). This device enables unprecedented levels of integration in an extremely small form factor and is an ideal solution for low power, self-monitored, ultra-accurate radar systems in the Automtive space.Multiple automotive qualified variants are currently available including Functional Safety-Compliant targeted devices and non-functional safety devices.

Download

Similar products you might be interested in

open-in-new Compare products
Similar functionality to the compared device.
AWR6843 ACTIVE Single-chip 60-GHz to 64-GHz automotive radar sensor integrating DSP, MCU and radar accelerator AWR6843AOP and AWR6843 are the same at die level.

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 35
Type Title Date
* Data sheet AWR6843AOP Single-Chip 60- to 64-GHz mmWave SensorAntennas-On-Package (AOP) datasheet (Rev. B) 08 Jun 2021
* Errata AWR6843AOP Device Errata, Silicon Revision 2.0 (Rev. A) 30 May 2021
Technical article How to design automotive in-cabin gesture systems and more with one multifunction 60-GHz radar sensor 27 Aug 2021
Application note mmWave Radar Radome Design Guide 17 Aug 2021
Application note mmWave Radar Sensors: Object Versus Range (Rev. A) 10 May 2021
Application note mmWave Production Testing Overview 10 Apr 2021
Technical article Simplify your 60-GHz automotive in-cabin radar sensor design with antenna-on-package technology 17 Feb 2021
Application note TI mmWave Radar Device Regulatory Compliance Overview (Rev. B) 06 Feb 2021
User guide 60GHz mmWave Sensor EVMs (Rev. D) 04 Dec 2020
Application note Self-Calibration of mmWave Radar Devices (Rev. A) 02 Dec 2020
White paper The fundamentals of millimeter wave radar sensors (Rev. A) 27 Aug 2020
White paper mmWave radar sensors in robotics applications (Rev. A) 22 Jun 2020
User guide AWR18xx/16xx/14xx/68xx Technical Reference Manual (Rev. E) 18 May 2020
White paper How antenna-on-package design simplifies mmWave sensing in buildings and factori (Rev. A) 28 Apr 2020
Application note Migrating to xWR68xx and xWR18xx Millimeter Wave (Rev. B) 09 Mar 2020
Application note Programming Chirp Parameters in TI Radar Devices (Rev. A) 13 Feb 2020
Application note IWR6x43 Flash Variants Supported by the mmWave Sensor (Rev. B) 29 Jan 2020
Application note Interference Management Using AWR/IWR Devices 03 Jan 2020
Application note Memory Compression and Decompression Engine for TI mmwave Radar 02 Dec 2019
Application note How to select the right proximity sensor technology 19 Jul 2019
User guide MMWAVEICBOOST Quick Start Guide 06 May 2019
White paper Bringing intelligent autonomy to fine motion detection (Rev. A) 20 Dec 2018
Application note mmWave xWR1xxx/xWR6xxx Bootloader Flow 23 Oct 2018
Application note mmwave Radar Device ADC Raw Data Capture (Rev. B) 23 Oct 2018
White paper Leveraging the 60-GHz RF band to enable accurate mmWave sensing 19 Oct 2018
Application note MIMO Radar (Rev. A) 26 Jul 2018
Application note Introduction to the DSP Subsystem in the xWR6843 29 Jun 2018
Application note Watchdog Timer for mmwave Radar Sensors (Rev. A) 08 Jun 2018
White paper mmWave radar: Enabling greater intelligent autonomy at the edge 06 Jun 2018
White paper Robust traffic and intersection monitoring using millimeter wave sensors (Rev. B) 17 May 2018
Application note TI mmWave Radar sensor RF PCB Design, Manufacturing and Validation Guide 07 May 2018
Application note Adding CAN-FD Tx and Rx to an Existing mmWave Project 12 Apr 2018
User guide Radar Hardware Accelerator User's Guide - Part 2 (Rev. A) 13 Mar 2018
Application note Adding Flash Read and Write to an Existing mmWave Project 25 Sep 2017
White paper Cities grow smarter through innovative semiconductor technologies 07 Jul 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

AWR6843AOPEVM — AWR6843AOP evaluation module for single-chip, 60-GHz to 64-GHz, automotive radar sensor with AoP

The AWR6843 antenna-on-package (AoP) evaluation module (EVM) is an easy-to-use 60-GHz automotive mmWave sensor evaluation platform with integrated, short-range, wide field-of-view (FoV) AoP technology enabling direct connectivity to the mmWave sensors carrier card platform (MMWAVEICBOOST) and for (...)

In stock
Limit: 50
Evaluation board

DCA1000EVM — Real-time data-capture adapter for radar sensing evaluation module

The DCA1000 evaluation module (EVM) provides real-time data capture and streaming for two- and four-lane low-voltage differential signaling (LVDS) traffic from TI AWR and IWR radar sensor EVMs. The data can be streamed out via 1-Gbps Ethernet in real time to a PC running the MMWAVE-STUDIO tool for (...)

In stock
Limit: 10
Evaluation board

MMWAVEICBOOST — mmWave sensors carrier card platform

The MMWAVEICBOOST carrier card expands capabilities of select 60 GHz mmWave evaluation modules. This board provides advanced software developement, debug features such as trace and single step via TI’s Code Composers compatible debuggers. On-board Launchpad interface enables pairing with (...)

In stock
Limit: 50
Software development kit (SDK)

MMWAVE-SDK — mmWave software development kit (SDK)

The mmWave software development kit (SDK) is a collection of software packages to enable application evaluation and development on TI mmWave sensors. This tool includes the MMWAVE-SDK and companion packages to support your design needs.

The MMWAVE-SDK is a unified software platform for the TI mmWave (...)

Simulation model

xWR6843AOP IBIS Model

SPRM763.ZIP (2351 KB) - IBIS Model
Simulation model

xWR6x43 BSDL Model (Rev. B)

SWRM045B.ZIP (3 KB) - BSDL Model
Design tool

MMWAVE-3P-SEARCH — mmWave radar sensors third-party search tool

TI has partnered with companies to offer a wide range of solutions using TI mmWave radar sensors and related services. These companies can accelerate your path to production using mmWave radar. Download this search tool to quickly browse our third-party solutions and find the right third-party to (...)
Reference designs

TIDEP-01023 — Child-presence and occupant-detection reference design using 60-GHz antenna-on-package mmWave sensor

This reference design demonstrates the use of the AWR6843AOP, a 60-GHz single-chip mmWave sensor with integrated antenna. The sensor also has an integrated DSP, MCU, and a hardware accelerator for fast Fourier transform (FFT) processing.

The AWR6843AOP sensor can help developers address a wide range (...)

Package Pins Download
FCBGA (ALP) 180 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos