Product details


Number of series cells 1 Charge current (Max) (A) 1.5 Operating Vin (Max) (V) 13.5 Cell chemistry Li-Ion/Li-Polymer, Lithium Phosphate/LiFePO4 Battery charge voltage (Min) (V) 3.5 Battery charge voltage (Max) (V) 4.52 Absolute Vin (safety rating) (Max) ((V)) 22 Control topology Switch-Mode Buck Control interface I2C Features BAT temp thermistor monitoring (JEITA profile), IC thermal regulation, IINDPM (Input current limit), Input OVP, Power Path, USB OTG integrated, VINDPM (Input voltage threshold to maximize adaptor power) Operating Vin (Min) (V) 3.9 Rating Catalog open-in-new Find other Battery charger ICs

Package | Pins | Size

WQFN (RTW) 24 16 mm² 4 x 4 open-in-new Find other Battery charger ICs


  • Single chip solution to charge wearable accessories from adapter or battery
  • High-efficiency, 1.5-MHz, synchronous switch-mode buck charger
    • 95.5% charge efficiency at 0.5 A and 94.5% efficiency at 1-A
    • ±0.5% charge voltage regulation (10-mV step)
    • I2C programmable JEITA profile of charge voltage, current and temperature thresholds
    • Low termination current with high accuracy 20-mA±10-mA
    • Small inductor form factor of 2.5x2.0x1.0 mm3
  • Boost mode with output from 4.6V to 5.15V
    • 94% boost efficiency at 1-A output
    • Integrated control to switch between charge and boost mode
    • PMID_GOOD pin control external PMOS FET for protection against fault conditions
  • Single input supporting USB input, high-voltage adapter, or wireless power
    • Support 4-V to 13.5-V input voltage range with 22-V absolute max input rating
    • Programmable input current limit (IINDPM) with I2C (100-mA to 3.2-A, 100-mA/step)
    • Maximum power tracking by input voltage limit (VINDPM) up to 5.4-V
    • VINDPM threshold automatically tracks battery voltage
  • Narrow VDC (NVDC) power path management
    • System instant-on with no battery or deeply discharged battery
  • Flexible I2C configuration and autonomous charging for optimal system performance
  • High integration includes all MOSFETs, current sensing and loop compensation
  • Low RDSON 19.5-mΩ BATFET to minimize charging loss and extend battery run time
    • BATFET control for ship mode, and full system reset with and without adapter
  • 7-µA low battery leakage current in ship mode
  • 9.5-µA low battery leakage current with system standby
  • High accuracy battery charging profile
    • ±6% charge current regulation
    • ±7.5% input current regulation
    • Remote battery sensing to charge faster
    • Programmable top-off timer for full battery charging
  • Safety Related Certifications:
    • IEC 62368-1 CB Certification
open-in-new Find other Battery charger ICs


The BQ25618/619 integrates charge, boost converter and voltage protection in a single device. It offers the industry’s lowest termination current for switching chargers to charge wearable devices by full battery capacity. The BQ25618/619 best-in-class low quiescent current reduces battery leakage down to 6 uA in ship mode, which conserves battery energy to double the shelf life for the device. BQ25619 is in 4x4 QFN package for easy layout. BQ25618 is in 2.0x2.4mm2 WCSP package for space limited design.

The BQ25619/618 is a highly integrated 1.5-A switch-mode battery charge management and system Power Path management device for Li-ion and Li-polymer battery. It features fast charging with high input voltage support for a wide range of applications including wearables, and earphone charging case. Its low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time, and extends battery run time during discharging phase. Its input voltage and current regulation, low termination current, and battery remote sensing deliver maximum charging power to the battery. The solution is highly integrated with input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2), low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4) between system and battery. It also integrates the bootstrap diode for the high-side gate drive for simplified system design. The I2C serial interface with charging and system settings makes the device a truly flexible solution.

The device supports a wide range of input sources, including standard USB host port, USB charging port, USB compliant high voltage adapter and wireless power. It is compliant with USB 2.0 and USB 3.0 power spec with input current and voltage regulation. The device takes the result from the detection circuit in the system, such as USB PHY device.

The device integrates the buck charger and boost regulator into one solution with single inductor. The boost mode supplies 5-V (adjustable 4.6-V/4.75-V/5-V/5.15-V) on PMID pin. The boost mode is used to save BOM and charge another battery by the control of PMID_GOOD. The PMID_GOOD pin is used to drive the external PMOS FET to disconnect boost output PMID from the attached accessories.

The Power Path management regulates the system slightly above battery voltage but does not drop below 3.5-V minimum system voltage (programmable) with adapter applied. With this feature, the system maintains operation even when the battery is completely depleted or removed. When the input current limit or voltage limit is reached, the Power Path management automatically reduces the charge current. As the system load continues to increase, the battery starts to discharge the battery until the system power requirement is met. This supplement mode prevents overloading the input source.

The device initiates and completes a charging cycle without software control. It senses the battery voltage and charges the battery in three phases: pre-conditioning, constant current and constant voltage. At the end of the charging cycle, the charger automatically terminates when the charge current is below a preset limit and the battery voltage is higher than the recharge threshold. If the fully charged battery falls below the recharge threshold, the charger automatically starts another charging cycle.

The charger provides various safety features for battery charging and system operations, including battery negative temperature coefficient thermistor monitoring, charging safety timer and overvoltage and over-current protections. Thermal regulation reduces charge current when the junction temperature exceeds 110°C. The status register reports the charging status and any fault conditions. With I2C, the VBUS_GD bit indicates if a good power source is present, and the INT output immediately notifies host when a fault occurs.

The device also provides the QON pin for BATFET enable and reset control to exit low power ship mode or full system reset function.

The BQ25619 device is available in 24-pin, 4 mm × 4 mm x 0.75 mm thin WQFN package and BQ25618 is available in 30-ball, 2.0 mm × 2.4 mm WCSP package.

open-in-new Find other Battery charger ICs
Similar products you might be interested in
open-in-new Compare products
Same functionality with different pin-out to the compared device.
BQ25618 ACTIVE I2C controlled 1.5-A single cell buck battery charger with 20-mA termination and 1-A boost in WCSP This product is in a WCSP package
BQ25895 ACTIVE I2C 1cell 5A buck battery charger with high input voltage and 3.1-A boost with HVDCP enabled This product is 5A, 1S I2C buck switching charger with D+/D- USB detection

Technical documentation

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Hardware development

document-generic User guide
The BQ25619 evaluation module (EVM) is used to evaluate the BQ25619 device. This is a 3-A single-cell battery charger optimized for power bank applications in low-power portable designs. The OTG reverse synchronous boost operation and forward buck mode operation allows for control over power (...)
  • 92% charge efficiency at 2-A from 5-V input and 92% boost efficiency at 1-A output
  • Output short circuit protection and soft-start up to 500-µF capacitive load in OTG mode
  • 10-µA low battery leakage current with system voltage standby 3-µA low battery leakage current in ship mode
  • BATFET control to support (...)

Software development

Linux driver for BQ256XX
BQ256XXSW-LINUX — The Linux driver supports the BQ256XX family of I2C Controlled, 1-cell, switch-mode battery charge management and system power path management ICs. The Linux driver supports communication through the I2C bus and interfaces with the power supply sub-system.

Linux mainline status

Available in Linux (...)

CAD/CAE symbols

Package Pins Download
WQFN (RTW) 24 View options

Ordering & quality

Information included:
  • RoHS
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​