Product details

Number of channels (#) 1 Total supply voltage (Max) (+5V=5, +/-5V=10) 36 Total supply voltage (Min) (+5V=5, +/-5V=10) 4.5 Vos (offset voltage @ 25 C) (Max) (mV) 0.025 GBW (Typ) (MHz) 10 Features EMI Hardened, High Cload Drive Slew rate (Typ) (V/us) 20 Rail-to-rail In, Out Offset drift (Typ) (uV/C) 0.1 Iq per channel (Typ) (mA) 1 Vn at 1 kHz (Typ) (nV/rtHz) 5.5 CMRR (Typ) (dB) 120 Rating Catalog Operating temperature range (C) -40 to 125 Input bias current (Max) (pA) 20 Output current (Typ) (mA) 65 Architecture CMOS THD + N @ 1 kHz (Typ) (%) 0.00008
Number of channels (#) 1 Total supply voltage (Max) (+5V=5, +/-5V=10) 36 Total supply voltage (Min) (+5V=5, +/-5V=10) 4.5 Vos (offset voltage @ 25 C) (Max) (mV) 0.025 GBW (Typ) (MHz) 10 Features EMI Hardened, High Cload Drive Slew rate (Typ) (V/us) 20 Rail-to-rail In, Out Offset drift (Typ) (uV/C) 0.1 Iq per channel (Typ) (mA) 1 Vn at 1 kHz (Typ) (nV/rtHz) 5.5 CMRR (Typ) (dB) 120 Rating Catalog Operating temperature range (C) -40 to 125 Input bias current (Max) (pA) 20 Output current (Typ) (mA) 65 Architecture CMOS THD + N @ 1 kHz (Typ) (%) 0.00008
SOIC (D) 8 19 mm² 4.9 x 3.9 SOT-23 (DBV) 5 5 mm² 2.9 x 1.6 VSSOP (DGK) 8 15 mm² 3 x 4.9
  • Low Offset Voltage: ±5 µV
  • Low Offset Voltage Drift: ±0.2 µV/°C
  • Low Noise: 5.5 nV/√Hz at 1 kHz
  • High Common-Mode Rejection: 140 dB
  • Low Bias Current: ±5 pA
  • Rail-to-Rail Input and Output
  • Wide Bandwidth: 10 MHz GBW
  • High Slew Rate: 20 V/µs
  • Low Quiescent Current: 1 mA per Amplifier
  • Wide Supply: ±2.25 V to ±18 V, +4.5 V to +36 V
  • EMI/RFI Filtered Inputs
  • Differential Input Voltage Range to Supply Rail
  • High Capacitive Load Drive Capability: 1 nF
  • Industry Standard Packages:
    • Single in SOIC-8, SOT-5, and VSSOP-8
    • Dual in SOIC-8 and VSSOP-8
    • Quad in SOIC-14 and TSSOP-14
  • Low Offset Voltage: ±5 µV
  • Low Offset Voltage Drift: ±0.2 µV/°C
  • Low Noise: 5.5 nV/√Hz at 1 kHz
  • High Common-Mode Rejection: 140 dB
  • Low Bias Current: ±5 pA
  • Rail-to-Rail Input and Output
  • Wide Bandwidth: 10 MHz GBW
  • High Slew Rate: 20 V/µs
  • Low Quiescent Current: 1 mA per Amplifier
  • Wide Supply: ±2.25 V to ±18 V, +4.5 V to +36 V
  • EMI/RFI Filtered Inputs
  • Differential Input Voltage Range to Supply Rail
  • High Capacitive Load Drive Capability: 1 nF
  • Industry Standard Packages:
    • Single in SOIC-8, SOT-5, and VSSOP-8
    • Dual in SOIC-8 and VSSOP-8
    • Quad in SOIC-14 and TSSOP-14

The OPAx192 family (OPA192, OPA2192, and OPA4192) is a new generation of 36-V, e-trim operational amplifiers.

These devices offer outstanding dc precision and ac performance, including rail-to-rail input/output, low offset (±5 µV, typ), low offset drift (±0.2 µV/°C, typ), and 10-MHz bandwidth.

Unique features such as differential input-voltage range to the supply rail, high output current (±65 mA), high capacitive load drive of up to 1 nF, and high slew rate (20 V/µs) make the OPA192 a robust, high-performance operational amplifier for high-voltage industrial applications.

The OPA192 family of op amps is available in standard packages and is specified from –40°C to +125°C.

The OPAx192 family (OPA192, OPA2192, and OPA4192) is a new generation of 36-V, e-trim operational amplifiers.

These devices offer outstanding dc precision and ac performance, including rail-to-rail input/output, low offset (±5 µV, typ), low offset drift (±0.2 µV/°C, typ), and 10-MHz bandwidth.

Unique features such as differential input-voltage range to the supply rail, high output current (±65 mA), high capacitive load drive of up to 1 nF, and high slew rate (20 V/µs) make the OPA192 a robust, high-performance operational amplifier for high-voltage industrial applications.

The OPA192 family of op amps is available in standard packages and is specified from –40°C to +125°C.

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 36
Type Title Date
* Data sheet OPAx192 36-V, Precision, Rail-to-Rail Input/Output, Low Offset Voltage, Low Input Bias Current Op Amp with e-trim datasheet (Rev. E) 25 Nov 2015
E-book Tips and tricks for designing with voltage references (Rev. A) 07 May 2021
E-book An Engineer’s Guide to Designing with Precision Amplifiers 29 Apr 2021
Application note Offset Correction Methods: Laser Trim, e-Trim, and Chopper (Rev. C) 13 Apr 2021
Application note MUX-Friendly, Precision Operational Amplifiers (Rev. B) 17 Dec 2020
Application note AN-31 Amplifier Circuit Collection (Rev. D) 21 Oct 2020
Application note 'Improved' Howland current pump with buffer circuit 16 Oct 2020
Application note Analysis of Improved Howland Current Pump Configurations 07 Oct 2020
Application note “Improved” Howland current pump circuit 07 Aug 2020
Application note EMI-Hardened Op Amps Reduce Errors In Pulse Oximeters (Rev. A) 21 Aug 2019
Application note EMI-Hardened Op Amps Reduce Errors in EKGs (Rev. A) 21 Aug 2019
Application note Driving a low-voltage single-ended SAR ADC circuit with high-voltage input 10 Jun 2019
Application note Using An Op Amp for High-Side Current Sensing 22 Mar 2019
Application note Circuit for driving a switched-capacitor SAR ADC w/ a buffered instrument amp (Rev. A) 08 Mar 2019
Application note Circuit for driving a switched-capacitor SAR ADC with an instrumentation amp (Rev. A) 07 Mar 2019
Application note High-side current-sensing circuit design (Rev. A) 13 Feb 2019
Application note Slew-rate limiter circuit (Rev. A) 04 Feb 2019
Application note AC coupled (HPF) non-inverting amplifier circuit (Rev. A) 01 Feb 2019
Application note Green-Williams-Lis: Improved Op Amp Spice Model 28 Jan 2019
Application note Buffer (follower) circuit (Rev. A) 14 Jan 2019
Application note Multichannel Analog Input Modules for PLC Equipment 04 Jan 2019
Application note Three op amp instrumentation amplifier circuit 31 Dec 2018
Application note TIA microphone amplifier circuit 30 Dec 2018
E-book Analog Engineer’s Pocket Reference Guide Fifth Edition (Rev. C) 30 Nov 2018
Application note Inverting Amplifier with T-Network Feedback Circuit 14 Apr 2018
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017
Selection guide TI Components for Aerospace and Defense Guide (Rev. E) 22 Mar 2017
Technical article Does a low-leakage multiplexer really matter in a high-impedance PLC system? 19 Feb 2016
Technical article Understanding voltage references: level shift of precision voltage references 15 May 2015
Analog design journal Analog Applications Journal 4Q 2014 24 Oct 2014
Analog design journal SPICE models for Precision DACs 24 Oct 2014
Application note Combined Voltage and Current Output with the DACx760 24 Jul 2014
Technical article Part 3 - Electrical overstress in a nut shell 10 Jul 2014
Technical article Industrial DACs: An evolution of 3-wire analog outputs 23 May 2014
More literature A High-Voltage Bidirectional Current Source 19 Dec 2013
Application note Compensate Transimpedance Amplifiers Intuitively (Rev. A) 30 Mar 2005

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP-Adapter-EVM, which provides a fast, easy and inexpensive way to interface with small, surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them directly to existing circuits.

The (...)

In stock
Limit: 5
Evaluation board

DIYAMP-EVM — Universal Do-It-Yourself (DIY) Amplifier Circuit Evaluation Module

The DIYAMP-EVM is a unique evaluation module (EVM) family that provides engineers and do it yourselfers (DIYers) with real-world amplifier circuits, enabling you to quickly evaluate design concepts and verify simulations. It is available in three industry-standard packages (SC70, SOT23, SOIC) and 12 (...)
Simulation model

OPAx192 TINA-TI Spice Model (Rev. E)

SBOM860E.ZIP (10 KB) - TINA-TI Spice Model
Simulation model

OPAx192 TINA-TI Reference Design (Rev. E)

SBOM861E.TSC (318 KB) - TINA-TI Reference Design
Simulation model

OPAx192 PSpice Model (Rev. E)

SBOM862E.ZIP (26 KB) - PSpice Model
Simulation model

TINA-TI Reference Design Companion for Two Op Amp Instrumentation Amp Circuit

SBOMAU7.ZIP (551 KB) - TINA-TI Reference Design
Simulation model

TINA-TI Reference Design Companion for Three Op Amp Instrumentation Amp Circuit

SBOMAU8.ZIP (27 KB) - TINA-TI Reference Design
Simulation model

TINA-TI Reference Design Companion for TIA Microphone Amplifier Circuit

SBOMAV2.ZIP (550 KB) - TINA-TI Reference Design
Simulation model

TINA-TI Simulation Companion for High-side Current-sensing Circuit (Rev. B)

SBOMAV4B.ZIP (11 KB) - TINA-TI Reference Design
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
Calculation tool

OPAMP-NOISECALC — Noise Calculator, Generator and Examples

This folder contains three tools to help in understandning and managing noise in cicuits. The included tools are:
  • A noise generator tool - This is a Lab View 4-Run Time executable that generates Gaussian white noise, uniform white noise, 1/f noise, short noise, and 60Hz line noise. Temporal data (...)
Design tool

CIRCUIT060001 — Single-supply, low-side, unidirectional current-sensing circuit

This single–supply, low–side, current sensing solution accurately detects load current up to 1A and converts it to a voltage between 50mV and 4.9V. The input current range and output voltage range can be scaled as necessary and larger supplies can be used to accommodate larger swings.
Design tool

CIRCUIT060002 — Temperature sensing with NTC thermistor circuit

This temperature sensing circuit uses a resistor in series with a negative–temperature–coefficient (NTC) thermistor to form a voltage divider, which has the effect of producing an output voltage that is linear over temperature. The circuit uses an op amp in a non–inverting (...)
Design tool

CIRCUIT060003 — Temperature sensing with PTC thermistor circuit

This temperature sensing circuit uses a resistor in series with a positive–temperature–coefficient (PTC) thermistor to form a voltage–divider, which has the effect of producing an output voltage that is linear over temperature. The circuit uses an op amp in a non–inverting (...)
Design tool

CIRCUIT060004 — Low-noise and long-range PIR sensor conditioner circuit

This two stage amplifier design amplifies and filters the signal from a passive infrared (PIR) sensor. The circuit includes multiple low–pass and high–pass filters to reduce noise at the output of the circuit to be able to detect motion at long distances and reduce false triggers. This (...)
Design tool

CIRCUIT060005 — High-side current sensing with discrete difference amplifier circuit

This single–supply, high–side, low–cost current sensing solution detects load current between 50mA and 1A and converters it to an output voltage from 0.25V to 5V. High–side sensing allows for the system to identify ground shorts and does not create a ground disturbance on the load.
Design tool

CIRCUIT060006 — Bridge amplifier circuit

A strain gauge is a sensor whose resistance varies with applied force. To measure the variation in resistance, the strain gauge is placed in a bridge configuration. This design uses a 2 op amp instrumentation circuit to amplify a differential signal created by the change in resistance of a strain (...)
Design tool

CIRCUIT060007 — Low-side, bidirectional current-sensing circuit

This single-supply low-side, bidirectional current sensing solution can accurately detect load currents from –1A to 1A. The linear range of the output is from 110mV to 3.19V. Low-side current sensing keeps the common-mode voltage near ground, and is thus most useful in applications with large (...)
Design tool

CIRCUIT060008 — Full-wave rectifier circuit

This absolute value circuit can turn alternating current (AC) signals to single polarity signals. This circuit functions with limited distortion for ±10-V input signals at frequencies up to 50kHz and for signals as small as ±25mV at frequencies up to 1kHz.
Design tool

CIRCUIT060009 — Half-wave rectifier circuit

The precision half-wave rectifier inverts and transfers only the negative-half input of a time varying input signal (preferably sinusoidal) to its output. By appropriately selecting the feedback resistor values, different gains can be achieved. Precision half-wave rectifiers are commonly used with (...)
Design tool

CIRCUIT060010 — PWM generator circuit

This circuit utilizes a triangle wave generator and comparator to generate a 500 kHz pulse-width modulated (PWM) waveform with a duty cycle that is inversely proportional to the input voltage. An op amp and comparator generate a triangle waveform which is applied to the inverting input of a second (...)
Design tool

CIRCUIT060011 — Single-supply, second-order, multiple feedback high-pass filter circuit

The multiple-feedback (MFB) high-pass (HP) filter is a 2nd-order active filter. Vref provides a DC offset to accommodate for single-supply applications. This HP filter inverts the signal (Gain = –1 V/V) for frequencies in the pass band. An MFB filter is preferable when the gain is high or when (...)
Design tool

CIRCUIT060012 — Single-supply, 2nd-order, multiple feedback low-pass filter circuit

The multiple-feedback (MFB) low-pass filter (LP filter) is a second-order active filter. Vref provides a DC offset to accommodate for single-supply applications. This LP filter inverts the signal (Gain = –1 V/V) for frequencies in the pass band. An MFB filter is preferable when the gain is (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060014 — Voltage-to-current (V-I) converter circuit with MOSFET

This single-supply, low-side, V-I converter delivers a well-regulated current to a load which can be connected to a voltage greater than the op amp supply voltage. The circuit accepts an input voltage between 0 V and 2 V and converts it to a current between 0 mA and 100 mA. The current is accurately (...)
Design tool

CIRCUIT060016 — Non-inverting microphone pre-amplifier circuit

This circuit uses a non–inverting amplifier circuit configuration to amplify the microphone output signal. This circuit has very good magnitude flatness and exhibits minor frequency response deviations over the audio frequency range. The circuit is designed to be operated from a single 5-V supply.
Design tool

CIRCUIT060017 — Dual-supply, discrete, programmable gain amplifier circuit

This circuit provides programmable, non-inverting gains ranging from 6 dB (2 V/V) to 60 dB (1000 V/V) using a variable input resistance. The design maintains the same cutoff frequency over the gain range.
Design tool

CIRCUIT060018 — Photodiode amplifier circuit

This circuit consists of an op amp configured as a transimpedance amplifier for amplifying the light dependent current of a photodiode.
Design tool

CIRCUIT060019 — Inverting op amp with non-inverting positive reference voltage circuit

This design uses an inverting amplifier with a non-inverting positive reference voltage to translate an input signal of –1 V to 2 V to an output voltage of 0.05 V to 4.95 V. This circuit can be used to translate a sensor output voltage with a positive slope and negative offset to a usable ADC (...)
Design tool

CIRCUIT060020 — Inverting amplifier circuit

This design inverts the input signal, Vi , and applies a signal gain of –2 V/V. The input signal typically comes from a low-impedance source because the input impedance of this circuit is determined by the input resistor, R1. The common-mode voltage of an inverting amplifier is equal to the (...)
Design tool

Simulation for Buffer (Follower) Circuit

SBOC491.ZIP (210 KB)
Design tool

Simulation for Slew Rate Limiter

SBOC508.ZIP (308 KB)
Reference designs

TIDA-01333 — 8-ch Isolated High Voltage Analog Input Module with ISOW7841 Reference Design

The TIDA-01333 isolated high voltage analog input module reference design has eight channels supporting both, voltage and current measurement. In addition, 4 channels support common-mode voltages up to ±160V. Isolation of +5V line and the Serial Peripheral Interface  (SPI) communication (...)
Reference designs

TIDA-00764 — 8-ch Isolated High Voltage Analog Input Module Reference Design

This reference design is a high-voltage analog input module with eight channels. Each channel can be used for both voltage and current measurement. The design uses 16-bit analog-to-digital converter (ADC) ADS8681 that can handle input voltage of up to ±12.288 V. This make any (...)
Reference designs

TIPD159 — Voltage-Mode Multiplying DAC Reference Design

This multiplying DAC (MDAC) circuit creates a unipolar voltage output from 0 V to 2.5 V. This design does not require dual supplies to realize a unipolar, positive output voltage as with typical MDAC circuits. This design removes the need for a negative rail by using the MDAC in (...)
Reference designs

TIPD128 — Capacitive Load Drive Verified Reference Design Using an Isolation Resistor

This TI Verified Design implements a variety of op amps driving capacitive loads from 100pF to 1uF using a isolation resistor.  The OPA192 is highlighted due to its ability to drive large capacitive loads with small isolation resistors.
Reference designs

TIPD119 — Combined Voltage and Current Output Terminal for Analog Outputs (AO) in Industrial Applications

This TI Verified Reference Design implements a combined voltage and current output terminal for analog outputs in industrial applications.  The DAC8760 combined with the OPA192 create a combined voltage and current output that allows for a single two-terminal output connector for both the voltage and (...)
Reference designs

TIPD140 — Single Op-Amp Slew Rate Limiter Reference Design

This TI Reference Design demonstrates a single op amp used as a slew rate limiter.  In control systems for valves or motors, abrupt changes in voltages or currents can cause mechanical damages.  By controlling the slew rate of the command voltages, into the drive circuits, the load (...)
Package Pins Download
SOIC (D) 8 View options
SOT-23 (DBV) 5 View options
VSSOP (DGK) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos