SM320VC5421-EP

ACTIVE

Product details

DSP type 1 C54x DSP (max) (MHz) 100 CPU 16-bit Rating HiRel Enhanced Product Operating temperature range (°C) -40 to 85
DSP type 1 C54x DSP (max) (MHz) 100 CPU 16-bit Rating HiRel Enhanced Product Operating temperature range (°C) -40 to 85
LQFP (PGE) 144 484 mm² 22 x 22
  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Extended Temperature Performance of –40°C to 85°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree
  • 200-MIPS Dual-Core DSP Consisting of Two Independent Subsystems
  • Each Core Has an Advanced Multibus Architecture With Three Separate 16-Bit Data Memory Buses and One Program Bus
  • 40-Bit Arithmetic Logic Unit (ALU) Including a 40-Bit Barrel-Shifter and Two 40-Bit Accumulators Per Core
  • Each Core Has a 17-Bit × 17-Bit Parallel Multiplier Coupled to a 40-Bit Adder for Non-Pipelined Single-Cycle Multiply/Accumulate (MAC) Operations
  • Each Core Has a Compare, Select, and Store Unit (CSSU) for the Add/Compare Selection of the Viterbi Operator
  • Each Core Has an Exponent Encoder to Compute an Exponent Value of a 40-Bit Accumulator Value in a Single Cycle
  • Each Core Has Two Address Generators With Eight Auxiliary Registers and Two Auxiliary Register Arithmetic Units (ARAUs)
  • 16-Bit Data Bus With Data Bus Holder Feature
  • 512K-Word × 16-Bit Extended Program Address Space
  • Total of 256K-Word × 16-Bit Dual- and Single-Access On-Chip RAM (128K-Word x 16-Bit Two-Way Shared Memory)
  • Single-Instruction Repeat and Block-Repeat Operations
  • Instructions With 32-Bit-Long Word Operands
  • Instructions With Two or Three Operand Reads
  • Fast Return From Interrupts
  • Arithmetic Instructions With Parallel Store and Parallel Load
  • Conditional Store Instructions
  • Output Control of CLKOUT
  • Output Control of TOUT
  • Power Consumption Control With IDLE1, IDLE2, and IDLE3 Instructions
  • Dual 1.8-V (Core) and 3.3-V (I/O) Power Supplies for Low-Power, Fast Operations
  • 10-ns Single-Cycle Fixed-Point Instruction
  • Interprocessor Communication via Two Internal 8-Element FIFOs
  • Twelve Channels of Direct Memory Access (DMA) for Data Transfers With No CPU Loading (Six Channels Per Subsystem With External Access)
  • Six Multichannel Buffered Serial Ports (McBSPs) With 128-Channel Selection Capability (Three McBSPs per Subsystem)
  • 16-Bit Host-Port Interface (HPI) Multiplexed With External Memory Interface Pins
  • Software-Programmable Phase-Locked Loop (APLL) Provides Several Clocking Options (Requires External Oscillator)
  • On-Chip Scan-Based Emulation Logic, IEEE Standard 1149-1 (JTAG) Boundary-Scan Logic
  • Two Software-Programmable Timers (One Per Subsystem)
  • Software-Programmable Wait-State Generator (14 Wait States Maximum)
  • Provided in 144-pin Low-Profile Quad Flatpack (LQFP) (PGE Suffix) Package

Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.

  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Extended Temperature Performance of –40°C to 85°C
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree
  • 200-MIPS Dual-Core DSP Consisting of Two Independent Subsystems
  • Each Core Has an Advanced Multibus Architecture With Three Separate 16-Bit Data Memory Buses and One Program Bus
  • 40-Bit Arithmetic Logic Unit (ALU) Including a 40-Bit Barrel-Shifter and Two 40-Bit Accumulators Per Core
  • Each Core Has a 17-Bit × 17-Bit Parallel Multiplier Coupled to a 40-Bit Adder for Non-Pipelined Single-Cycle Multiply/Accumulate (MAC) Operations
  • Each Core Has a Compare, Select, and Store Unit (CSSU) for the Add/Compare Selection of the Viterbi Operator
  • Each Core Has an Exponent Encoder to Compute an Exponent Value of a 40-Bit Accumulator Value in a Single Cycle
  • Each Core Has Two Address Generators With Eight Auxiliary Registers and Two Auxiliary Register Arithmetic Units (ARAUs)
  • 16-Bit Data Bus With Data Bus Holder Feature
  • 512K-Word × 16-Bit Extended Program Address Space
  • Total of 256K-Word × 16-Bit Dual- and Single-Access On-Chip RAM (128K-Word x 16-Bit Two-Way Shared Memory)
  • Single-Instruction Repeat and Block-Repeat Operations
  • Instructions With 32-Bit-Long Word Operands
  • Instructions With Two or Three Operand Reads
  • Fast Return From Interrupts
  • Arithmetic Instructions With Parallel Store and Parallel Load
  • Conditional Store Instructions
  • Output Control of CLKOUT
  • Output Control of TOUT
  • Power Consumption Control With IDLE1, IDLE2, and IDLE3 Instructions
  • Dual 1.8-V (Core) and 3.3-V (I/O) Power Supplies for Low-Power, Fast Operations
  • 10-ns Single-Cycle Fixed-Point Instruction
  • Interprocessor Communication via Two Internal 8-Element FIFOs
  • Twelve Channels of Direct Memory Access (DMA) for Data Transfers With No CPU Loading (Six Channels Per Subsystem With External Access)
  • Six Multichannel Buffered Serial Ports (McBSPs) With 128-Channel Selection Capability (Three McBSPs per Subsystem)
  • 16-Bit Host-Port Interface (HPI) Multiplexed With External Memory Interface Pins
  • Software-Programmable Phase-Locked Loop (APLL) Provides Several Clocking Options (Requires External Oscillator)
  • On-Chip Scan-Based Emulation Logic, IEEE Standard 1149-1 (JTAG) Boundary-Scan Logic
  • Two Software-Programmable Timers (One Per Subsystem)
  • Software-Programmable Wait-State Generator (14 Wait States Maximum)
  • Provided in 144-pin Low-Profile Quad Flatpack (LQFP) (PGE Suffix) Package

Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.

The 320VC5421 fixed-point digital signal processor (DSP) is a dual-core solution running at 200-MIPS performance. The 5421 consists of two DSP subsystems capable of core-to-core communications and a 128K-word zero-wait-state on-chip program memory shared by the two DSP subsystems. Each subsystem consists of one 54x DSP core, 32K-word program/data DARAM, 32K-word data SARAM, 2K-word ROM, three multichannel serial interfaces, xDMA logic, one timer, one APLL, and other miscellaneous circuitry.

The 5421 also contains a host-port interface (HPI) that allows the 5421 to be viewed as a memory-mapped peripheral to a host processor. The 5421 is pin-compatible with the TMS320VC5420.

Each subsystem has its separate program and data spaces, allowing simultaneous accesses to program instructions and data. Two read operations and one write operation can be performed in one cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. Furthermore, data can be transferred between program and data spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5421 includes the control mechanisms to manage interrupts, repeated operations, and function calls. In addition, the 5421 has 128K words of on-chip program memory that can be shared between the two subsystems.

The 5421 is intended as a high-performance, low-cost, high-density DSP for remote data access or voice-over IP subsystems. It is designed to maintain the current modem architecture with minimal hardware and software impacts, thus maximizing reuse of existing modem technologies and development efforts.

The 320VC5421 fixed-point digital signal processor (DSP) is a dual-core solution running at 200-MIPS performance. The 5421 consists of two DSP subsystems capable of core-to-core communications and a 128K-word zero-wait-state on-chip program memory shared by the two DSP subsystems. Each subsystem consists of one 54x DSP core, 32K-word program/data DARAM, 32K-word data SARAM, 2K-word ROM, three multichannel serial interfaces, xDMA logic, one timer, one APLL, and other miscellaneous circuitry.

The 5421 also contains a host-port interface (HPI) that allows the 5421 to be viewed as a memory-mapped peripheral to a host processor. The 5421 is pin-compatible with the TMS320VC5420.

Each subsystem has its separate program and data spaces, allowing simultaneous accesses to program instructions and data. Two read operations and one write operation can be performed in one cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. Furthermore, data can be transferred between program and data spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. The 5421 includes the control mechanisms to manage interrupts, repeated operations, and function calls. In addition, the 5421 has 128K words of on-chip program memory that can be shared between the two subsystems.

The 5421 is intended as a high-performance, low-cost, high-density DSP for remote data access or voice-over IP subsystems. It is designed to maintain the current modem architecture with minimal hardware and software impacts, thus maximizing reuse of existing modem technologies and development efforts.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 3
Type Title Date
* Data sheet SM320VC5421-EP Fixed-Point Digital Signal Processor datasheet 10 Jul 2003
* VID SM320VC5421-EP VID V6204607 21 Jun 2016
* Radiation & reliability report SM320VC5421PGE20EP Reliability Report 09 Apr 2012

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Debug probe

TMDSEMU560V2STM-U — XDS560™ software v2 system trace USB debug probe

The XDS560v2 is the highest performance of the XDS560™ family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7).  Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors (...)

Not available on TI.com
Debug probe

TMDSEMU560V2STM-UE — XDS560v2 System Trace USB & Ethernet Debug Probe

The XDS560v2 is the highest performance of the XDS560™ family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).

All XDS debug probes support Core and System Trace in all ARM and DSP processors (...)

Not available on TI.com
Design tool

PROCESSORS-3P-SEARCH — Arm®-based MPU, Arm-based MCU and DSP third-party search tool

TI has partnered with companies to offer a wide range of software, tools, and SOMs using TI processors to accelerate your path to production. Download this search tool to quickly browse our third-party solutions and find the right third-party to meet your needs. The software, tools and modules (...)
Package Pins Download
LQFP (PGE) 144 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos